

ACTA ARITHMETICA XV (1969)

L-functions and character sums for quadratic forms (II)*

Эγ

H. M. STARK (Ann Arbor, Mich.)

1. Let $Q(x, y) = ax^2 + bxy + cy^2$ be a positive definite binary quadratic form with integral coefficients and discriminant $d = b^2 - 4ac < 0$, and let χ be a character (mod k). Let

(1)
$$L(s, \chi, Q) = \frac{1}{2} \sum_{x, y \neq 0, 0} \chi(Q(x, y)) Q(x, y)^{-s}.$$

The series converges to an analytic function of s for $\text{Re}\,s>1$. The function in (1) is a special case of the functions considered in [7] where quadratic forms in n variables were considered. As shown in [7], if (k,d)=1 and χ is a primitive character $(\text{mod}\,k)$, then $L(s,\chi,Q)$ can be extended to an entire function of s satisfying a functional equation (in [7], it was convenient to call -d the discriminant of Q; this will account for the sign changes between certain equations in [7] and here). In this paper we present an expansion of $L(s,\chi,Q)$ which is very rapidly convergent in the neighborhood of s=1. Similar expansions have been known for the Epstein zeta function for some time [1], [2] and certain cases of this expansion have been considered in [5] and [6] (k a prime, χ real, and k=8 or 12, χ real respectively). However the expansion in general and the functional equation both depend on a character identity quoted below as Theorem 1.

2. Notation and statement of results. It will be assumed throughout that χ is a primitive character (mod k) and k>1. As noted in [7], this means that $k\not\equiv 2 \pmod 4$. However χ^2 is not necessarily a primitive character (mod k). Thus we put

$$\chi^2 = \chi_0 \chi_1$$

where χ_0 is the principal character (mod k) and χ_1 is a primitive character $(\text{mod } k_1)$. We set $k = k_0 k_1$ and note that we do allow $k_1 = 1$. In any event

$$\chi_1(-1) = 1.$$

^{*} This paper was written while the author held an ONR postdoctoral research associateship.

Set

(4)
$$\tau(\chi) = \sum_{j=1}^{k} \chi(j) e_k(j), \quad \tau(\chi_1) = \sum_{j=1}^{k_1} \chi_1(j) e_{k_1}(j)$$

where for convenience we write

$$e_r(j) = e^{2\pi i j/r}$$
.

Because of (3) and the fact that χ_1 is primitive (mod k_1) ([3], p. 70),

(5)
$$\tau(\chi_1)\tau(\bar{\chi}_1) = k_1.$$

Set

(6)
$$\chi_2(j) = \left(\frac{k'}{j}\right), \quad k' = \begin{cases} (-1)^{(k-1)/2}k & \text{if } k \text{ is odd,} \\ -k & \text{if } k \equiv 0 \pmod{4}. \end{cases}$$

Here we have used the Kronecker symbol. Now let

(7)
$$\varepsilon = \begin{cases} 1 & \text{if } k \equiv 1 \pmod{4}, \\ i & \text{if } k \equiv 0 \text{ or } 3 \pmod{4} \end{cases}$$

and

(8)
$$\alpha = \frac{\varepsilon^2 \chi(d) \chi_2(-d) \tau(\chi)}{\tau(\overline{\chi})}.$$

We will use the Riemann zeta function

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s}$$

and the Dirichlet L-functions

$$L(s, \chi) = \sum_{n=1}^{\infty} \chi(n) n^{-s}.$$

In addition we will use the modified Bessel function of the second kind

(9)
$$K_s(x) = \int_0^\infty e^{-x \cosh t} \cosh st \, dt$$

defined for all s and x > 0. In fact $K_s(x)$ is an entire function of s and

$$(10) K_s(x) = K_{-s}(x)$$

for all s and x > 0.

Theorem 1. If (d, k) = 1 and χ is a primitive character $(\text{mod}\, k)$ then

(11)
$$\sum_{x=1}^{k} \chi(Q(x,y)) e_k(xz) = a \sum_{x=1}^{k} \overline{\chi}(Q(x,z)) e_k(xy).$$

THEOREM 2. Under the hypothesis of Theorem 1,

(12)
$$a^{s}L(s, \chi, Q) = \chi(a)L(2s, \chi_{1}) \prod_{\substack{p \mid k_{0} \\ p \text{ prime}}} \left(1 - \frac{\chi_{1}(p)}{p^{2s}}\right) +$$

$$+ aar{\chi}(a) rac{ au(ar{\chi}_1)}{k_1} \left(rac{kV|ar{d}|}{2ak_1}
ight)^{1-2s} rac{Var{\pi}\Gamma(s-1/2)}{\Gamma(s)} L(2s-1, \chi_1) \prod_{\substack{p \mid k_0 \ p ext{ prime}}} \left(1 - rac{ar{\chi}_1(p)}{p^{2-2s}}
ight) + \\ + rac{1}{\Gamma(s)} \left(rac{kV|ar{d}|}{2a\pi}
ight)^{-s} H(s)$$

where

(13)
$$H(s) = H(s, \chi) = 2\left(\frac{\sqrt{|d|}}{2ak}\right)^{1/2} \sum_{n \neq 0} e_{2ak}(bn) K_{s-1/2}\left(\frac{\pi |n|\sqrt{|d|}}{ak}\right) \times$$

$$imes |n|^{s-1/2} \sum_{\substack{y|n \ y>0}} y^{1-2s} \sum_{j=1}^k \chiig(Q(j,y)ig) e_k(jn/y)$$

is an entire function of s and

(14)
$$H(s,\chi) = aH(1-s,\overline{\chi}).$$

COROLLARY 1. Under the hypothesis of Theorem 1,

(15)
$$\left(\frac{kV|\overline{d}|}{2\pi}\right)^{s} \Gamma(s)L(s,\chi,Q) = a\left(\frac{kV|\overline{d}|}{2\pi}\right)^{1-s} \Gamma(1-s)\Gamma(1-s,\overline{\chi},Q).$$

COROLLARY 2. If χ is a real primitive character (mod k) and (k, d) = 1,

(16)
$$a^{s}L(s, \chi, Q) = \chi(a)\zeta(2s) \prod_{\substack{p | k \\ p \text{ prime}}} (1 - p^{-2s}) + \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi}\Gamma(s - 1/2) \sum_{\substack{p | k \\ p \text{ prime}}} \Gamma(2s - 1) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) \sum_{\substack{p | k \\ p \text{ prime}}} \Gamma(2s - 1) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) \sum_{\substack{p | k \\ p \text{ prime}}} \Gamma(2s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi} \Gamma(s - 1/2) = \frac{1}{2} \left(\frac{k\sqrt{|d|}}{|d|} \right)^{1-2s} \sqrt{\pi}$$

$$+\chi(a)\left(rac{kV|d|}{2a}
ight)^{1-2s}rac{V\pi\Gamma(s-1/2)}{\Gamma(s)}\,\zeta(2s-1)\prod_{\substack{p|k \ p\, ext{prime}}}(1-p^{2s-2})+ \ +rac{1}{\Gamma(s)}\left(rac{kV|d|}{2a\pi}
ight)^{-s}H(s)$$

where now H(s) simplifies to

(17)
$$H(s) = 4 \left(\frac{\sqrt{|d|}}{2ak} \right)^{1/2} \sum_{n=1}^{\infty} K_{s-1/2} \left(\frac{\pi n \sqrt{|d|}}{ak} \right) n^{s-1/2} \sum_{y|n} y^{1-2s} \times \operatorname{Re} \left\{ \sum_{j=1}^{k} \chi(Q(j,y)) e_k(jn/y) e_{2ak}(bn) \right\}$$

and if a = 1 then the quantity in $\{ \}$ is already a real number.

310

Remark 1. The restriction that Q be positive definite is unnecessary in Theorem 1.

Remark 2. Most of the expansion in Theorem 2 is independent of the conditions that χ be primitive (mod k) and (k,d)=1 (see Lemma 3). These conditions are used only in applications of Theorem 1. In fact Theorem 1 is used only to prove (14) and evaluate the sum

$$\sum_{n=1}^{\infty} \sum_{j=1}^{k} \chi(Q(j, n)) n^{1-2s}$$

in Lemma 5. It is interesting to note that when χ is real, Ramanujan's sum is involved in this last sum in an unfamiliar form.

Remark 3. Corollary 1 was proved in [7]. It is included here as an application of the expansion of Theorem 2.

3. Proof of Theorem 1 and lemmas. For all practical purposes, Theorem 1 was proved in [7]. If we put

$$\bar{Q}(x, y) = cx^2 - bxy + ay^2 = Q(y, -x)$$

then Theorem 1' of [7] says that

$$\sum_{x=1}^{k}\chi\big(Q\left(x,\,y\right)\big)e_{k}(xz)\,=\,a\,\sum_{x=1}^{k}\overline{\chi}\big(\overline{Q}\left(-z,\,x\right)\big)e_{k}(xy)\,=\,a\,\sum_{x=1}^{k}\,\overline{\chi}\big(Q\left(x,\,z\right)\big)e_{k}(xy)$$

which is Theorem 1. Theorem 1' of [7] is valid for indefinite forms and thus so is Theorem 1 here.

LEMMA 1. If x is real and Res > 1/2,

$$\int\limits_{-\infty}^{\infty} rac{e^{ixu}}{\left(u^2+1
ight)^s} \; du = egin{dcases} rac{\sqrt{\pi}\Gamma(s-1/2)}{\Gamma(s)} & if & x=0\,, \ rac{2\sqrt{\pi}}{\Gamma(s)} \left(rac{|x|}{2}
ight)^{s-1/2} & K_{s-1/2}(|x|) & if & x
eq 0\,. \end{cases}$$

Proof. The first part is a well known result on gamma and beta functions (see for example, the last 3 lines of [1], p. 369) and the second is contained in Lemma 1 of [1].

LEMMA 2. If $x \geqslant x_0 > 0$ and s is in a bounded region B of the s plane then there is a real number c which depends only on B and x_0 such that

$$|K_s(x)| < ce^{-x}.$$

Proof. This is a special case of Lemma 2 of [1].

LEMMA 3. Whether or not χ is primitive (mod k) and whether or not (k, d) = 1, we still have for Re s > 1,

$$a^sL(s,\chi,Q) = \chi(a)L(2s,\chi_1)\prod_{\substack{p|k_0\ p\ ext{prime}}} (1-\chi_1(p)p^{-2s}) +$$

$$+\left.\frac{1}{k}\left(\frac{\sqrt{|d|}}{2a}\right)^{1-2s}\frac{\sqrt{\pi}\Gamma(s-1/2)}{\Gamma(s)}\sum_{y=1}^{\infty}\sum_{j=1}^{k}\chi\!\left(\!Q(j,y)\!\right)\!y^{1-2s}+\frac{1}{\Gamma(s)}\left(\frac{k\sqrt{|d|}}{2a\pi}\right)^{\!-s}\!H\left(s\right)$$

where H(s) is given by (13) and is an entire function of s. Proof. For Res > 1.

(18)
$$a^{s} L(s, \chi, Q) = \frac{a^{s}}{2} \sum_{x,y \neq 0,0} \chi(Q(x, y))Q(x, y)^{-s}$$

$$= \chi(a) \sum_{x=1}^{\infty} \chi(x^{2})x^{-2s} + a^{s} \sum_{y=1}^{\infty} \sum_{x} \chi(Q(x, y))Q(x, y)^{-s}$$

$$= \chi(a) L(2s, \chi^{2}) + a^{s} \sum_{y=1}^{\infty} \sum_{j=1}^{k} \chi(Q(j, y)) \sum_{x} Q(j + kz, y)^{-s}$$

$$= \chi(a) L(2s, \chi_{1}) \prod_{\substack{p \mid k_{0} \\ p \text{ prime}}} (1 - \chi_{1}(p)/p^{2s}) +$$

$$+ a^{s} \sum_{x=1}^{\infty} \sum_{x=1}^{k} \chi(Q(j, y)) \sum_{x=1}^{\infty} Q(j + kz, y)^{-s} e^{-2\pi i xx} dz,$$

where we have used Poisson's summation formula to evaluate the sum over z, this being allowable for Re s > 1. If we let

(19)
$$R = \frac{\sqrt{|d|}}{2a}$$

and make the substitution

$$j + kz + \frac{b}{2a}y = Ryu$$

in the integral, we get

$$a^{s} \int_{-\infty}^{\infty} Q(j+kz,y)^{-s} e^{-2\pi i xz} dz = \frac{1}{k} (Ry)^{1-2s} e_{k} \left(xj + \frac{b}{2a} xy \right) \int_{-\infty}^{\infty} \frac{e_{k}(-xyRu)}{(u^{2}+1)^{s}} du.$$

Therefore

$$(20) a^{s} \sum_{y=1}^{\infty} \sum_{j=1}^{k} \chi(Q(j, y)) \sum_{x} \int_{-\infty}^{\infty} Q(j + kz, y)^{-s} e^{-2\pi i xz} dz$$

$$= \frac{1}{k} R^{1-2s} \sum_{y=1}^{\infty} \sum_{x} y^{1-2s} \sum_{j=1}^{k} \chi(Q(j, y)) e_{k} \left(xj + \frac{b}{2a} xy\right) \int_{-\infty}^{\infty} \frac{e_{k}(-xyRu)}{(u^{2}+1)^{s}} du$$

$$= \frac{1}{k} R^{1-2s} \sum_{n} e_{2ak}(bn) \int_{-\infty}^{\infty} \frac{e_{k}(-nRu)}{(u^{2}+1)^{s}} du \sum_{y|n} y^{1-2s} \sum_{j=1}^{k} \chi(Q(j, y)) e_{k}(jn/y).$$

By Lemma 1, the n=0 term in (20) is

$$\frac{1}{k} R^{1-2s} \frac{\sqrt{\pi} \Gamma(s-1/2)}{\Gamma(s)} \sum_{y=1}^{\infty} y^{1-2s} \sum_{j=1}^{k} \chi(Q(j,y))$$

and the $n \neq 0$ terms combine to give

$$\frac{1}{\Gamma(s)} \left(\frac{kR}{\pi}\right)^{-s} H(s).$$

Thus the expansion in Lemma 3 follows from (18), (19) and (20).

It remains to show that H(s) is entire. By Lemma 2, if s is in a bounded region B of the s plane and $n \neq 0$,

$$\left|K_{\hat{s}-1/2}\left(rac{\pi\left|n
ight|\sqrt{\left|d
ight|}}{ak}
ight)
ight|< ce^{-\pi\left|n
ight|\sqrt{\left|d
ight|}/ak}$$

where c is a positive real number depending on B but not on n. Therefore the series in (13) converges absolutely and uniformly on B and thus H(s) is an analytic function on B. Since B is arbitrary, H(s) is an entire function.

LEMMA 4.

$$\sum_{j=1}^{k} \overline{\chi}^{2}(j) e_{k}(nj) = \tau(\overline{\chi}_{1}) \sum_{f \mid (n, k_{0})} f \mu\left(\frac{k_{0}}{f}\right) \overline{\chi}_{1}\left(\frac{k_{0}}{f}\right) \chi_{1}\left(\frac{n}{f}\right)$$

where $\mu(n)$ is the Möbius function. When χ is a real character, this is a well known formula for Ramanujan's sum ([4], p. 237).

Proof. Let

(21)
$$S(n) = \sum_{f \mid (n, k_0)} f \mu\left(\frac{k_0}{f}\right) \overline{\chi}_1\left(\frac{k_0}{f}\right) \chi_1\left(\frac{n}{f}\right).$$

We note that $f|(n, k_0)$ if and only if $f|(n+k, k_0)$. Also, if $f|(n, k_0)$ then

$$\chi_1\left(\frac{n+k}{f}\right) = \chi_1\left(\frac{n}{f} + \frac{k_0}{f}k_1\right) = \chi_1\left(\frac{n}{f}\right)$$

and thus

$$S(n+k) = S(n).$$

Thus we may expand S(n) in a finite Fourier series.

$$S(n) = \sum_{j=1}^{k} a_j e_k(nj)$$

where

(23)
$$a_{j} = \frac{1}{k} \sum_{n=1}^{k} S(n) e_{k}(-nj)$$

$$= \frac{1}{k} \sum_{n=1}^{k} \sum_{\substack{f | n \\ f \mid k_{0}}} f \mu\left(\frac{k_{0}}{f}\right) \overline{\chi}_{1}\left(\frac{k_{0}}{f}\right) \chi_{1}\left(\frac{n}{f}\right) e_{k}(-nj)$$

$$= \frac{1}{k} \sum_{f \mid k_{0}} f \mu\left(\frac{k_{0}}{f}\right) \overline{\chi}_{1}\left(\frac{k_{0}}{f}\right) \sum_{n=1}^{k} \chi_{1}\left(\frac{n}{f}\right) e_{k}(-nj)$$

$$= \frac{1}{k_{1}} \sum_{f \mid k_{0}} \frac{1}{f} \mu(f) \overline{\chi}_{1}(f) \sum_{m=1}^{k} \chi_{1}(m) e_{k_{1}f}(-mj)$$

and we have replaced f by k_0/f in the last step. But if we set

$$m = r + vk_1$$
, $0 \le v \le f - 1$, $1 \le r \le k$

then

$$\begin{split} \sum_{m=1}^{k_1 f} \chi_1(m) \, e_{k_1 f}(-\, m j) &= \sum_{r=1}^{k_1} \chi_1(r) \, e_{k_1 f}(-\, r j) \sum_{v=0}^{f-1} e_f(-\, v j) \\ &= \begin{cases} f \sum_{r=1}^{k_1} \chi_1(r) \, e_{k_1}(-\, r j | f) & \text{if} \quad f \mid j \\ 0 & \text{if} \quad f \! \uparrow j \end{cases} \end{split}$$

Therefore

$$(24) \quad a_{j} = \frac{1}{k_{1}} \sum_{\substack{f \mid k_{0} \\ f \mid j}} \mu(f) \overline{\chi}_{1}(f) \sum_{r=1}^{k_{1}} \chi_{1}(r) e_{k_{1}}(-rj|f)$$

$$= \frac{\tau(\chi_{1})}{k_{1}} \sum_{f \mid (k_{0}, j)} \mu(f) \overline{\chi}_{1}(f) \overline{\chi}_{1}(-j|f) = \frac{\overline{\chi}_{1}(-j)\tau(\chi_{1})}{k_{1}} \sum_{f \mid (k_{0}, j)} \mu(f)$$

$$= \frac{\overline{\chi}_{1}(-j)\tau(\chi_{1})}{k_{1}} \cdot \begin{cases} 0 & \text{if} \quad (j, k_{0}) > 1\\ 1 & \text{if} \quad (j, k_{0}) = 1 \end{cases}$$

$$= \frac{\overline{\chi}_{1}(-j)\tau(\chi_{1})}{k_{1}} \cdot \begin{cases} 0 & \text{if} \quad (j, k) > 1\\ 1 & \text{if} \quad (j, k) = 1 \end{cases}$$

$$= \frac{\overline{\chi}_{1}(-j)\tau(\chi_{1})}{k_{1}} \chi_{0}(j) = \frac{\tau(\chi_{1})}{k_{1}} \overline{\chi}^{2}(j)$$

by (2) and (3). The lemmas follows from (5), (21), (22) and (24).

LEMMA 5. If χ is a primitive character (mod k) and (k, d) = 1 then for Res > 1,

$$\sum_{y=1}^{\infty} y^{1-2s} \sum_{j=1}^k \chi \big(Q(j,y) \big) = \, a \overline{\chi}(a) \, \tau(\overline{\chi}_1) \, k_0^{2-2s} L(2s-1,\,\chi_1) \prod_{\substack{p \mid k_0 \\ p \text{ prime}}} \big(1 - \overline{\chi}_1(p) \, p^{2s-2} \big).$$

Proof. By Theorem 1 and Lemma 4,

$$\begin{split} \sum_{y=1}^{\infty} y^{1-2s} \sum_{j=1}^{k} \chi(Q(j,y)) &= a \sum_{y=1}^{\infty} y^{1-2s} \sum_{j=1}^{k} \overline{\chi}(Q(j,0)) e_{k}(jy) \\ &= a \overline{\chi}(a) \sum_{y=1}^{\infty} y^{1-2s} \sum_{j=1}^{k} \overline{\chi}^{2}(j) e_{k}(jy) \\ &= a \overline{\chi}(a) \tau(\overline{\chi}_{1}) \sum_{y=1}^{\infty} y^{1-2s} \sum_{f \mid (y,k_{0})} f \mu\left(\frac{k_{0}}{f}\right) \overline{\chi}_{1}\left(\frac{k_{0}}{f}\right) \chi_{1}\left(\frac{y}{f}\right). \end{split}$$

Let

$$g(f) = \begin{cases} 1 & \text{if } f \mid k_0, \\ 0 & \text{if } f \nmid k_0. \end{cases}$$

Then

$$\begin{split} \sum_{y=1}^{\infty} y^{1-2s} \sum_{j=1}^{k} \chi \big(Q(j,y) \big) &= a \overline{\chi} \left(a \right) \tau \left(\overline{\chi}_1 \right) \sum_{y=1}^{\infty} y^{1-2s} \sum_{j \mid y} \chi_1 \bigg(\frac{y}{f} \bigg) \cdot f \mu \bigg(\frac{k_0}{f} \bigg) \overline{\chi}_1 \bigg(\frac{k_0}{f} \bigg) g(f) \\ &= a \overline{\chi} \left(a \right) \tau \left(\overline{\chi}_1 \right) L \left(2s - 1, \ \chi_1 \right) \sum_{f=1}^{\infty} f^{1-2s} f \mu \bigg(\frac{k_0}{f} \bigg) \overline{\chi}_1 \bigg(\frac{k_0}{f} \bigg) g(f) \end{split}$$

and

$$\begin{split} \sum_{f=1}^{\infty} f^{2-2s} \mu\left(\frac{k_0}{f}\right) \overline{\chi}_1\!\left(\frac{k_0}{f}\right) g\left(f\right) &= \sum_{f \mid k_0} f^{2-2s} \mu\left(\frac{k_0}{f}\right) \overline{\chi}_1\!\left(\frac{k_0}{f}\right) = k_0^{2-2s} \sum_{f \mid k_0} \frac{\mu\left(f\right) \overline{\chi}_1\left(f\right)}{f^{2-2s}} \\ &= k_0^{2-2s} \prod_{\substack{p \mid k_0 \\ p \text{ prime}}} \left(1 - \overline{\chi}_1(p) p^{2s-2}\right). \end{split}$$

4. Proof of Theorem 2 and corollaries. The expansion (12) is an immediate consequence of Lemmas 3 and 5 and we have shown that H(s) is entire in Lemma 3. We use Theorem 1 to prove (14). It follows from (10) that for all x > 0,

(25)
$$K_{s-1/2}(x) = K_{(1-s)-1/2}(x).$$

By Theorem 1, for n > 0,

(26)
$$n^{s-1/2} \sum_{\substack{y|n\\y>0}} y^{1-2s} \sum_{j=1}^{k} \chi(Q(j,y)) e_k(jn/y)$$

$$= \alpha n^{s-1/2} \sum_{\substack{y|n\\y>0}} y^{1-2s} \sum_{j=1}^{k} \overline{\chi}(Q(j,n/y)) e_k(jy)$$

$$= \alpha n^{(1-s)-1/2} \sum_{\substack{y|n\\y>0}} y^{1-2(1-s)} \sum_{j=1}^{k} \overline{\chi}(Q(j,y)) e_k(jn/y),$$

where we have replaced y by n/y in the last step. By Theorem 1, for n < 0,

$$(27) |n|^{s-1/2} \sum_{\substack{y|n\\y>0}} y^{1-2s} \sum_{j=1}^{k} \chi(Q(j,y)) e_{k}(jn/y)$$

$$= \alpha |n|^{s-1/2} \sum_{\substack{y|n\\y>0}} y^{1-2s} \sum_{j=1}^{k} \chi(Q(j,n/y)) e_{k}(jy)$$

$$= \alpha |n|^{1/2-s} \sum_{\substack{y|n\\y>0}} y^{2s-1} \sum_{j=1}^{k} \chi(Q(j,-y)) e_{k}(-jn/y)$$

$$= \alpha |n|^{(1-s)-1/2} \sum_{\substack{y|n\\y>0}} y^{1-2(1-s)} \sum_{j=1}^{k} \chi(Q(j,y)) e_{k}(jn/y),$$

where we have replaced y by -n/y and j by -j in the last two steps. Equation (14) follows from (13), (25), (26), (27). This completes the proof of Theorem 2.

The functional equation of $L(s, \chi_1)$ is ([3], p. 71; recall $\chi_1(-1) = 1$),

$$\left(\frac{k_1}{\pi}\right)^{(1-s)/2} \varGamma\left(\frac{1-s}{2}\right) L(1-s,\overline{\chi}_1) = \frac{\tau(\overline{\chi}_1)}{k_1^{1/2}} \left(\frac{k_1}{\pi}\right)^{s/2} \varGamma\left(\frac{s}{2}\right) L(s,\,\chi_1).$$

When we replace s in this functional equation by 2s-1, we get

$$\left(\frac{k_1}{\pi}\right)^{1-s}\Gamma(1-s)\,L(2-2s,\,\overline{\chi}_1)\,=\,\tau(\overline{\chi}_1)\,\pi^{1/2-s}\,k_1^{s-1}\,\Gamma\!\left(s-\frac{1}{2}\right)\!L(2s-1,\,\chi_1)\,.$$

It follows from this and Theorem 2 that

$$\begin{split} (28) \qquad & \left(\frac{k\sqrt{|d|}}{2\pi}\right)^{s} \Gamma(s)L(s,\chi,Q) \\ & = \chi(a) \left(\frac{k\sqrt{|d|}}{2a\pi}\right)^{s} \Gamma(s)L(2s,\chi_{1}) \prod_{\substack{p|k_{0} \\ p \text{ prime}}} \left(1-\chi_{1}(p)\,p^{-2s}\right) + \\ & + a\overline{\chi}(a) \left(\frac{k\sqrt{|d|}}{2a\pi}\right)^{1-s} \Gamma(1-s)L(2-2s,\overline{\chi}_{1}) \prod_{\substack{p|k_{0} \\ p \text{ prime}}} \left(1-\overline{\chi}_{1}(p)\,p^{2s-2}\right) + H(s,\chi). \end{split}$$

Now if we replace s by 1-s and χ by $\overline{\chi}$ in (28) and then multiply both sides by α , then the right side of the new equation is identical to the right side of (28). This is because of (14) and the fact that $a\overline{a}=1$ where \overline{a} is not only the complex conjugate of α but is also the number defined in (8) when χ is replaced by $\overline{\chi}$. This proves Corollary 1.

The proof of Corollary 2 is also simple. First, when χ is a real primitive character then $\alpha=1$ always. This follows from the fact that the only primitive real characters are the Kronecker symbols

$$\left(\frac{q'}{j}\right), \quad \left(\frac{-4q'}{j}\right), \quad \left(\frac{8q}{j}\right), \quad \left(\frac{-8q}{j}\right) \quad q' = (-1)^{(q-1)/2},$$

where q is an odd positive square-free integer and the corresponding moduli are q, 4q, 8q and 8q respectively ([3], p. 42). When χ is real, (17) follows instantly from (13). Lastly, if χ is real, $y \mid n$ and a = 1 then

$$\sum_{j=1}^{k} \chi(Q(j, y)) e_{k}(jn/y) e_{2k}(bn) = \sum_{j=1}^{k} \chi(Q(j-by, y)) e_{k}\left(\frac{n(j-by)}{y}\right) e_{2k}(bn)$$

$$= \sum_{j=1}^{k} \chi(Q(-j, y)) e_{k}(jn/y) e_{2k}(-bn)$$

$$= \sum_{j=1}^{k} \chi(Q(j, y)) e_{k}(-jn/y) e_{2k}(-bn)$$

so that $\sum_{j=1}^{k} \chi(Q(j,y)) e_k(jn/y) e_{2k}(bn)$ is equal to its own complex conjugate and is hence real. This last fact was discovered accidentally in [6] in certain cases with k=8 and 12.

5. Concluding remarks. The expansion of Theorem 2 has already proved very useful. In particular, the point s=1 plays an important role and we should expect an analogue of Kronecker's limit formula when χ is real. Such a formula does in fact exist with $L(1,\chi,Q)$ coming out in terms of logarithms of algebraic numbers. In another vein, after Lemma 3 we should not be surprised to learn that Theorems 1 and 2 may be generalized to other cases where $(k,d)\neq 1$ or χ is not primitive (mod k). This is indeed possible although the form of (11), (12), (14), and (15) change in the generalizations. These results will appear in future papers.

References

[1] P.T. Bateman and E. Grosswald, On Epstein's zeta function, Acta Arith. 9 (1964), pp. 365-373.

[2] S. Chowla and A. Selberg, On Epstein's zeta function (I), Proc. Nat. Acad. Sci. U.S.A. 35 (1949), pp. 371-374.

[3] Harold Davenport, Multiplicative number theory, Chicago 1967.

[4] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 3rd edition, Oxford 1956.

[5] H. Heilbronn and E. H. Linfoot, On the imaginary quadratic corpora of class-number one, Quart. Journ. Math. Oxford, Ser. 5 (1934), pp. 293-301.

[6] H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. Journ. 14 (1967), pp. 1-27.

[7] - L-functions and character sums for quadratic forms (I), Acta Arith. 14 (1968), pp. 35-50.

Added in proof. Besides the application to [6], further uses of the expansions in Theorem 2 and Corollary 2 will appear shortly in [8], [9], [10]. In particular, we see in [9] that (16) is perhaps even more valuable with composite k than with prime k.

Additional references

[8] A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1969), to appear.

[9] H. M. Stark, A historical note on complex quadratic fields with class-number one, Proc. Amer. Math. Soc. 20 (1969), to appear.

[10] — The role of modular functions in a class-number problem, Journal of Number Theory, to appear.

Reçu par la Rédaction le 28. 6. 1968