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L-functions and character sums for quadratic forms (II)*
. by
H. M. STARK (Ann Arbor, Mich.)

1. Let Q(o, y) = ax?+ bay - cy® be a positive definite binary quadratic
form with integral coefficients and discriminant d = b2— 4ac < 0, and
let 4 be a character (modk). Let

(1) LG 1,Q) =% > 2@ 9)Q (=, v
Z,y#0,0

The series converges to an analytic function of s for Res > 1. The function
in (1) is a special case of the functions considered in [7] where quadratic
forms in n variables were considered. As shown in [7], if (k, d) = 1 and g
is a primitive character (modk), then L(s, 7, Q) can be extended to an
entire function of s satisfying a functional equation (in [7], it was con-
venient to call —d the discriminant of @; this will account for the sign
changes between certain equations in [7] and here). In this paper we
present an expansion of L(s, x, Q) which is very rapidly convergent in
the neighborhood of s = 1. Similar expansions have been known for
the Epstein zeta function for some time [1], [2] and certain cases of this
expansion have been considered in [5] and [6] (k¥ a prime, y real, and
k =8 or 12, x real respectively). However the expansion in general and
the functional equation both depend on a character identity quoted
below as Theorem 1.

2. Notation and statement of results. It will be assumed throughout
that y is a primitive character (mod%) and % > 1. As noted in [7], this
means that k== 2(mod4). However x2 is not necessarily a primitive char-
acter (modk). Thus we put
(2) 1= o1
where y, is the principal character (mod%) and x, is a primitive character
(mod k). We set &k = kok, and note that we do allow %, = 1. In any event

(3) yi(—1) = 1.

* This paper was written while the author held an ONR postdoctoral research
associateship. '
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Set

) o) = > aeld)y ) = Y o)
j=1 J=1

where for convenience we write

o(j) = .
Because of (3) and the fact that yx; is primitive (modk,) ([3], p. 70),
(5) (1)t (%) = ko
Set '
K (—1)E-92g i ks odd,
(6) () = (_]—)’ = —k it k= 0(mod 4).

Here we have used the Kronecker symbol. Now let

1 it k= 1(mod4),
M £ {I/ it k=0 or 3(mod4)
and
(8) _ 22 @Dl

and the Dirichlet L-functions
L(s, ) = Zw‘x(n)n“s.
In addition we will use the modified Bessel function of the second kind
9) K,(x) =fe‘°’”°“‘”coshstdt
0

defined for all s and # > 0. In fact K,(z) is an entire function of s and
(10) Ky(x) = K_g(w)
for all s and » > 0.

TusoReEM 1. If (d, k) =1 and y is & primilive character (modFk)

then
k k
(11) 2 2@ ez = o 37w, 2))onlay).
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THEOREM 2. Under the hypothesis of Theorem 1,

(12) @I, 2, Q) = 7(a)L(2s, 72) H( )
Difig

P prime

kVid) )”s Vrl(s—1/2)

1 aza) S (

21(p)
2s—1 —_
k 2ak, I(s) L(2s~1, 1) ]’;](1 pz-zs)+
'errlime
_i_ L]/*-d—l _8}[ )
T(s) \ 2am (®)
where "
Vial mnlV)d]
13 = H (s = 2|- o ts (B ” ) x
(13) His) = H(s, z) = (JM) Ze-uk(bn)ffsﬁj,-( " )
NEQ
X [nf*m i ZJI ® (4 ) ex(Gnly)
Y|
v>0
is an entire function of s and
(14) Hs, y) = all(1—s, 7).
CorOLLARY 1. Under the hypothesis of Theorem 1,
© o (wany Wi\ _
w0 26, 1,0 = 2 ra—gra-sz 0.
4T ar

CorOLLARY 2. If x 48 a real primitive character (modk) and (k, d) = 1,

16)  @'Lis, 1, Q) = z(@i@s) [ [a—p)+

1;1)7-,rilﬁm
Aku) Vrl(s—1/2)
| > ORI Q(l”p +
pprime o —
1 _A(kl/ldl) His)
I'(s) \ 2an

where now H (s) simplifies to

A Vid[\v2 mVdl ., :
17)  H(s) = E' T 2‘ 1-28
amn (8) =4 (Za,k) i Ks—1/2( ok ) ¥y X

yjn

P
{Z /C(Q (4, 7/ ex{n/y) eaan bn)}
fe=

and if @ =1 then the quantity in { } is already a real number.


Pem


310 H. M. Stark
Remark 1. The restriction that @ be positive definite is unnecessary
in Theorem 1.

Remark 2. Most of the expansion in Theorem 2 is independent
of the conditions that y be primitive (mod#%) and (%, d) = 1 (see Lemma 3).
These conditions are used only in applications of Theorem 1. In fact
Theorem 1 is used only to prove (14) and evaluate the sum

2(Q U, w)n'™*

\f
e

"

il
P
il
—

7

in Lemma 5. It is interesting to note that when y is real, Ramanujan’s
sum is involved in this last sum in an unfamiliar form.

Remark 3. Corollary 1 was proved in [7]. It is included here as
an application of the expansion of Theorem 2. :

3. Proof of Theorem 1 and lemmas. For all practical purposes,
Theorem 1 was proved in [7]. If we put
Q(z,y) = ca®—bay+ay* = Q(y, —2)
then Theorem 1’ of [7] says that

k

%
2@ (@, y)es(az) = « D' 7(@(—2 2))ex(oy) = o Y 7(Q(w, 2)) ex(wy)

1 T=1 Z=1

g

8
1

which is Theorem 1. Theorem 1’ of [7] is valid for indefinite forms and
thus so is Theorem 1 here.

LeMMA 1. If # is veal and Res >1/2,

Val'(s—1/2)

00 s . _ 0,
fﬂ._ du = [‘(8) Uc &x
— (u2+1)3 - 21/; fa] s—1/2
I'(s) (_2—) Hoowpllwl)  if @ 0.

Proof. The first part is a well known result on gamma and beta
functions (see for example, the last 3 lines of [1], p. 369) and the second
is contained in Lemma 1 of [1].

Leyma 2. If > w, > 0 and s is in a bounded region B of the s plane
then there is a real number ¢ which depends only on B and w, such that

| K (m)| < ce™ .

Proof. This is a special case of Lemma 2 of [l
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LemmA 3. Whether or not y is primitive (modk) and whether or not
(ky @) = 1, we still have for Res > 1,

CL(s, 7, @) = 2@ L, 1) [ [ 1—mw)p)+

" bl
P prime

o0 &

1(Vidl\"=* Val(s—1)2) VPR B LA AT I\
+%( Y ) “*}W(;)"’“gﬁ 2@, v)y'? +'I"(;~)‘ (*ga;;‘) H(s)

where H(s) is given by (13) and is an entire function of s.
Proof. For Res > 1,

(18) @’ L(s, 1, Q) =

I
=
&

2 L)+ a**_jzx(@(w, 1)@z, y)*

D=1 y=1 =

k
= 2@ s, 1)+ D 3400, v) ) @+ksp)

Y=1 j=1

f

(@I, 1) [ | i—n))+

Dy
P prime

© k 0
D 2(@G,w) D) [ 0+ g)te e,
7=1 - T —oo

y=1

+af

where we have used Poisson’s summation formula to evaluate the sum
over z, this being allowable for Re s > 1. If we let

Vid|
2a

(19) R =

and make the substitution
j -+ ke b —iﬂ u
j y = Ry

in the integral, we get

s . e s 1 _ . b ~ ex(— 2y Ru)
a L. 8 ,—2mize — 128 [ AT .
fQ(H— % 9) e 0 = - (By) ek(wj—|~2a wy)_i T

~00
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Thevefore - . : Proof. Let
w k 0o ko n
’ > f ke, y) e @z (21) Sm) = y f#( ) 71( )%1 (—)
(20) P 22{ Q(j+ k2 o) f ) !
Y=l j= —®© .
. . . We note that fl(n, %) if and only if fi(nik, ka) Also, if f|(n, &,
1 ;‘ - J]fu then
— _R1—282 Z 2 ek ')"j+ f v - du
T 4 g L | 1) n+k n k n
=1 "= j=1 X\ = Xl 7 +"Dk1) = Zl(—)
S 7 77 7l
2l s N :
= %R“”Z,ezuk(b”) f - (uz ,1_ ), S Y2 X((z) iy )bl (infy). and thus
n —a q}/l\f; f:l B(n+k) = 8(n).
By Lemma 1, the » =0 term in (20) is Thus we may expand S(n) in a finite Fourier series,
k
1, vﬂr & \’ (22) S(my = > aje;(nf)
ZR Z _{J (.77 ?])) J=1
y=1 J=1 where
. I
d J 8 O ine to giv 1
and the n % 0 terms combine to give 23) @ = = 2 S(n) 0 (— )
kR\"® =t
Al o
Y\ rw i %
- 3 2w
Thus the expansion in Lemma 3 follows from (18), (19) and (20). n=1 fm
It remains to show that H(s) is entire. By Lemma 2, if s is in ) . .
a bounded tegion B of the s plane and = 5 0, == Y (_0)9? (2)2 (ﬁ) s
x ex(—nj)
P P
7i
(nlmV i )' J—" ) e
§-1j2 . — )
“* — £ DT HDB) D) m)ay(—m)
fJLO M=
where ¢ is a positive real number depending on B but not on n. There- . i § . .
fore the series in (13) converges absolutely and uniformly on B and thus and we have replaced f by kof in the last step. Bus if we set
H(s) is an analytic function on B. Since B is arbitrary, I (s) is an entire mo=r+ok, 0<v<f—1, 1<r<k
funection. . : : then
LEMMA 4. "'11’ P
D xa(m)ery(— ) 1) ey (— 1) D er(—j)
2 £ ( ) ( 700) (17) i1 o | w0
% (J)ex(nj) 2 1 28 oy
fi(" ko) f f f a

_ Y e (—rilf) i flj,
where p(n) is the Mabius function. When y is a veal character, -this is @ well =1 ' .
known formula for Remanujan’s sum ([4], p. 237). . 0 it .
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Therefore .
24) @ = —Zu Nl ,le( Yex, (—7ilf)
1 Tk
fii
- m%;)mf)xl(fm( il P
7a(— .'/) (Xl) . 0 it (4, k) >1
Tk 1o# Gk =1
=il [0 i Gk >1
=T it Gm=1
;1(—.7.)1(%1) . 7(%1) —s
= % — n(]) = 7‘1 ( )

by (2) and (3). The lemmas follows from (5), (21), (22) and (24).
LeyuMA 5. If y is a primitive character (modk) and (k, d) = 1 then
for Res > 1,

o
.
>yt
y=1

Proof. By Theorem 1 and Lemma 4,

M -

00, 9] = s @RI —1, ) [] (L=Ta)p™.
DIk,
P prime

[
-

7

k

291"”21(@(3}?/))= 2 2 (@G i)
y=1 =1 Y=1 =1
00 k
= ai(a)gyl‘“gwmum
= - 7 _ 7‘0 Ty 5
- S5 ol ol el
Y=1 ”%ﬁ) f f f
Let :
_ 1 it flk,
9(f) ‘ 0 & s
Then )
oo k 0
1--28 . 1—28 —Y ](.0 k()
S ewn - avrss S St ol o
—_ © 7,0
= ay(a)t(x) L(2s—1, x,) fldsf‘“( ) (.._%.)g(f)

=1

bm©

L-functions and character sums for gquadratic forms

and

Srnfafeon= Drn{sfaf) - 5 295

£~ e f ! & =
=57 [ (=% .
ik
P prime

4. Proof of Theorem 2 and corollaries. The expansion (12) is an
immediate consequence of Lemmas 3 and 5 and we have shown that
H(s) is entire in Lemma 3. We use Theorem 1 to prove (14). It follows
from (10) that for all # > 0, ’

Ks~l/2(m)
By Theorem 1, for »n > 0,

I yyl 232/{

wllb
V>0

(25) = K(1~s)-1/2 (@).

(26) Q4. ) e (Gnfy)

= ""‘”“21/’”“2%(0 (s /) ex(39)

o

— a’“‘(1~s)—1/22,l/1—2(1 8) 27

v
U0

Nex(jnfy),

where we have replaced y by nfy in the last step. By Theorem 1, for
n<< 0,

1) Inf Nyt 2‘“2;5 @, v) e (infy)
wln
y=0

k
= a3y 3T (Q(

3y nly))ex(jy)

I f=1
y>=0
k
— .l - \ 1 . .
= a7 31y 3 (03, — ) er(—infy)
Win 7=1
Y=>0
= ajn|0= Jly-20-9 v;c(Q (4, ) exlin y),
72 =

where we have replaced y by —n Jy and § by —j in the last two steps.

Equation (14) follows from (13), (26), (26), (27). This completes the proof
of Theorem 2. '
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The functional equation of L(s, y1) is ([3], p. T1; recall x,(—1) =1),

L\ (1-8)2 _ _ T \5? 3
(B) ™ r(EY) g0 =SR2 73]z w.

T T

When we replace s in this functional equation by 2s—1, we geb

o 18 98 al 1
(—7‘1) P(L—8)D(2— 28, 7)) = 7(Z) 7™ K1 (e—~)z< s—1, 7).

T

It follows from this and Theorem 2 that

. v /Zf s
(28) (M) ()L, 1, Q)
a7t
B - .
— o) gqet) Tl L2822 [ =nws)+
A
I 1-8 _ .
s ro—ane-202) [ 1= e 420, 2.
plky

P prime

Now if we replace s by 1—s and g by y in (28) and then multiply both
sides by «, then the right side of the new equation is identical to the ught
side of (28). This is because of (14) and the fact that «a = 1 where
is not only the complex conjugate of a but is also the number defined
in (8) when y is replaced by z. This proves Corollary 1.

The proof of Corollary 2 is also simple. First, when x is a real primi-
tive character then ¢ = 1 always. This follows from the fact that the
only primitive real characters are the Kronecker symbols

e _4‘—7’) (Eq,) (LSL-’) . 1y
(j)’(j’ iy ) e=E

where ¢ is an odd positive square-free integer and the corresponding
moduli are ¢, 4¢, 8¢ and 8¢ respectively ([3], p. 42). When y is real, (17)
follows instantly from (13). Lastly, if y is real, y|n and « = 1 then

k

N rlet—by, ) eh( PR oy o

F=1

k
2 ek (gnfy) e (— bn)

X(Q (J, ) ex(— jnfy) ez (— bn)

1

!

'M .

(Q %)) )91. (7 /y) ear (bn)

.
i
-

If

7

]
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k
80 that Z x(Q(j, y))ek(jn/y)e,h(bn) is equal to its own complex conjugate
i=1

and is hence real. This last fact was discovered accidentally in [6] in
certain cases with & = 8 and 12.

5. Concluding remarks. The expansion of Theorem 2 has already
proved very useful. In particular, the point s = 1 plays an important
role and we should expect an analogue of Kronecker’s limit formula
when x is real. Such a formula does in fact exist with L(1, y, @) coming
out in terms of logarithms of algebraic numbers. In another vein, after
Lemma 3 we should not be surprised to learn that Theorems 1 and 2
may be generalized to other cases where (k, d) 5= 1 or y is not prlrmtlve
(modk). This is indeed possible although the form of (11), (12), (14),
and (15) change in the generalizations. These results will appear in future
papers.
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