

Page

Table des matières du tome XV, fascicule 4

v.	J. D. Baston, Extreme copositive quadratic forms	319
М.	Peters, Ternäre und quaternäre quadratische Formen und Quaternio-	
	nenalgebren	329
М.	N. Huxley, On the differences of primes in arithmetical progressions	36
н.	Davenport and W. M. Schmidt, Approximation to real numbers by	
	algebraic integers	393
Ind	lex alphabétique des tomes I-XV (1937-1969)	41

La revue est consacrée à toutes les branches de l'Arithmétique et de la Théorie des Nombres, ainsi qu'aux fonctions ayant de l'importance ces domaines.

Prière d'adresser les textes dactylographiés à l'un des rédacteurs de la revue ou bien à la Rédaction de

ACTA ARITHMETICA

Warszawa 1 (Pologne), ul. Śniadeckich 8.

La même adresse est valable pour toute correspondance concernant l'échange de Acta Arithmetica.

Les volumes IV et suivants de ACTA ARITHMETICA sont à obtenir chez Ars Polona, Warszawa 1 (Pologne), Krakowskie Przedmieście 7.

Prix de ce fascicule 4.00 \$.

Les volumes I-III (reédits) sont à obtenir chez Johnson Reprint Corp., 111 Fifth Ave., New York, N. Y.

PRINTED IN POLAND

WROCLAWSKA DRUKARNIA NAUKOWA

ACTA ARITHMETICA XV (1969)

Extreme copositive quadratic forms

by

VICTOR J. D. BASTON (Southampton)

1. Introduction. A real quadratic form $Q = Q(x_1, \ldots, x_n) = \sum a_{ij}x_ix$ $(a_{ij} = a_{ji}, 1 \leq i, j \leq n)$ is called copositive if $Q(x_1, \ldots, x_n) \geq 0$ whenever $x_1 \geq 0, \ldots, x_n \geq 0$. A copositive quadratic form Q is extreme when $Q = Q_1 + Q_2$, where Q_1 and Q_2 are copositive, implies $Q_1 = \lambda Q$, $Q_2 = (1-\lambda)Q$, $0 \leq \lambda \leq 1$. An extreme copositive quadratic form is basic if no two rows (or columns) of its matrix are identical. If S is the class of positive semi-definite quadratic forms and P the class of quadratic forms with nonnegative coefficients then clearly any form expressible as a sum of elements of P and S is necessarily copositive. Hall and Newman [4] have determined the extreme copositive quadratic forms belonging to the class $P + \hat{S}$ so interest now centres on the extreme copositive quadratic forms not in P + S; the Horn form

$$(x_1-x_2+x_3+x_4-x_5)^2+4x_2x_4+4x_3(x_5-x_4)$$

constructed by Horn [5], shows that such forms do in fact exist. The Horn form has the property $|a_{ij}| = 1$ $(1 \le i, j \le n)$ where n = 5 and there are extreme copositive quadratic forms with this property for each $n \ge 5$; this is immediate from the following theorem of Baumert [1].

THEOREM. If Q_n is an extreme copositive quadratic form in $n \ge 3$ variables x_1, \ldots, x_n then replacing any x_i by $x_i + x_{n+1}$ in Q_n yields a new copositive form Q_{n+1} which is extreme.

However Baumert [2] has also shown that there are no basic extreme copositive quadratic forms with $|a_{ij}|=1$ $(1\leqslant i,j\leqslant n)$ for n=6 and 7.

In this paper we obtain simple necessary and sufficient conditions for a quadratic form with $|a_{ij}| = 1$ to be an extreme copositive form. From these conditions we obtain a stronger form of the Hall and Newman Theorem 4.1 in [4] for basic extreme copositive quadratic forms with $|a_{ij}| = 1$ and $n \ge 5$, which shows that the Horn form plays a fundamental role in every form of this type and which also enables us to prove the conjecture 4.1 of Baumert [2] for such forms. Finally we show that basic

extreme copositive quadratic forms with $|a_{ij}| = 1$ $(1 \le i, j \le n)$ exist for all integers $n \ge 8$ and then obtain some of their properties.

2. In this section we obtain necessary and sufficient conditions for a quadratic form $Q = \sum a_{ij} x_i x_j$ with $a_{ij} = a_{ji}$, $|a_{ij}| = 1$ $(1 \le i, j \le n)$ to be an extreme copositive form. For copositivity we must clearly have $a_{ii} = 1$ $(1 \le i \le n)$.

LEMMA 2.1. Let $Q(x_1,\ldots,x_n)=\sum a_{ij}x_ix_j$ where $a_{ij}=a_{ji}$, $|a_{ij}|=1$ and $a_{ii}=1$ $(1\leqslant i,j\leqslant n)$ then Q is copositive if and only if there is no triple (r,s,t) such that $a_{rs}=-1=a_{rt}=a_{st}$.

Proof. Necessity. If there is such a triple (r, s, t) we may clearly suppose that (r, s, t) = (1, 2, 3) and then Q(1, 1, 1, 0, 0, ..., 0) = -3 so that Q_{-} is not copositive.

Sufficiency. If n=1 or 2, Q is clearly copositive so we may assume $n \ge 3$. Suppose Q satisfies the condition but is not copositive. Since $n \ge 3$ there exists a pair (r, s) with $r \ne s$ such that $a_{rs} = 1$ for, if not, the condition is violated; we may clearly suppose r = 1, s = 2. Let T be the set of t such that $a_{1t} = -a_{2t}$, then

(1)
$$Q(x_1, x_2, \ldots, x_n) = Q(0, x_1 + x_2, x_3, \ldots, x_n) + 4x_1 \sum_{t \in T} a_{1t} x_t$$

and

(2)
$$Q(x_1, x_2, ..., x_n) = Q(x_1 + x_2, 0, x_3, ..., x_n) + 4x_2 \sum_{t \in T} a_{2t} x_t$$
$$= Q(x_1 + x_2, 0, x_3, ..., x_n) - 4x_2 \sum_{t \in T} a_{1t} x_t.$$

Since Q is not copositive there exists (u_1,\ldots,u_n) with $u_i\geqslant 0$ $(1\leqslant i\leqslant n)$ such that $Q(u_1,\ldots,u_n)<0$. If $\sum_{t\in T}a_{1t}u_t\geqslant 0$, $Q(0,u_1+u_2,u_3,\ldots,u_n)<0$ from (1) whilst if $\sum_{t\in T}a_{1t}u_t<0$ $Q(u_1+u_2,0,u_3,\ldots,u_n)<0$ from (2). Thus if $Q(x_1,\ldots,x_n)$ is not copositive it contains a subform of (n-1) variables which is also not copositive; further this subform satisfies the condition since Q does. If $n\geqslant 4$ repeat the argument on this subform and continue the process until one obtains that Q has a subform of two variables which is not copositive. We now have a contradiction and the lemma is established.

LEMMA 2.2. A copositive quadratic form $Q(x_1, \ldots, x_n) = \sum a_{ij} x_i x_j$ where $a_{ij} = a_{ji}$, $|a_{ij}| = 1$ and $a_{ti} = 1$ $(1 \leqslant i, j \leqslant n)$ is extreme if and only if for each pair (r, s) with $r \neq s$ and $a_{rs} = 1$ there exists a t such that $a_{ri} = -1 = a_{st}$.

Proof. Necessity. Suppose there is a pair (r, s) with $r \neq s$ and $a_{rs} = 1$ such that there is no t with $a_{rt} = -1 = a_{st}$. We may clearly

assume $r=1,\,s=2.$ Let V be the set of v>2 such that $a_{1v}=a_{2v}$ then

$$P(x_1, x_2, ..., x_n) = Q(x_1, x_2, ..., x_n) - 4x_1x_2$$

$$= Q(x_1 - x_2, 0, x_3, \ldots, x_n) + 4x_2 \sum_{v \in V} a_{1v} x_v$$

(2)
$$= Q(0, x_2 - x_1, x_3, \ldots, x_n) + 4x_1 \sum_{n \in \mathbb{Z}} a_{1n} x_n.$$

Now $a_{1v}=1$ for $v \in V$ since there is no t such that $a_{1t}=-1=a_{2t}$ and further Q is copositive so $P \geqslant 0$ for $x_t \geqslant 0$ $(1 \leqslant i \leqslant n)$ and $x_1 \geqslant x_2$ from (1) whilst $P \geqslant 0$ for $x_i \geqslant 0$ $(1 \leqslant i \leqslant n)$ and $x_2 > x_1$ from (2). Thus P is copositive and, since $Q = P + 4x_1x_2$, Q is not extreme.

Sufficiency. The result is trivial for n=1 and n=2 so we may assume $n \ge 3$. Suppose Q satisfies the condition and $Q = Q_1 + Q_2$ where Q_1 and Q_2 are copositive. Consider the term a_{rs} with $r \ne s$ then either (i) $a_{rs} = -1$ or (ii) $a_{rs} = 1$.

(i) If $a_{rs}=-1$, on replacing all the x_i except x_r and x_s by zero, Q reduces to $(x_r-x_s)^2$ which is extreme so Q_1 must reduce to $\lambda_{rs}(x_r-x_s)^2$ and Q_2 to $(1-\lambda_{rs})(x_r-x_s)^2$, $0 \le \lambda_{rs} \le 1$.

(ii) If $a_{rs}=1$ then, since $r \neq s$, by the condition there is a t such that $a_{rt}=-1=a_{st}$. Thus, on replacing all the x_i except x_r, x_s and x_t by zero, Q reduces to $(x_r+x_s-x_t)^2$ which is extreme so Q_1 must reduce to $\lambda_{rs}(x_r+x_s-x_t)^2$ and Q_2 to $(1-\lambda_{rs})(x_r+x_s-x_t)^2$, $0 \leqslant \lambda_{rs} \leqslant 1$.

Thus, in Q_1 , the coefficient of both x_r^2 and x_s^2 is λ_{rs} and the coefficient of x_rx_s is $2\lambda_{rs}a_{rs}$. Taking u with $u \neq r$, $u \neq s$ and $1 \leqslant u \leqslant n$ we obtain similarly that the coefficient in Q_1 of both x_r^2 and x_u^2 is λ_{ru} so we must have $\lambda_{ru} = \lambda_{rs} = \lambda_r$, say. Clearly $\lambda_{ij} = \lambda_{ji}$ so $\lambda_i = \lambda_j = \lambda$ say, i.e. $\lambda_{rs} = \lambda$ for $1 \leqslant r, s \leqslant n$. Hence $Q_1 = \lambda Q, Q_2 = (1 - \lambda)Q, 0 \leqslant \lambda \leqslant 1$ and the result is established.

Combining the results of Lemmas 2.1 and 2.2 we have:

THEOREM 2.3. Let $Q(x_1, \ldots, x_n) = \sum a_{ij}x_ix_j$ where $a_{ij} = a_{ji}$ and $|a_{ij}| = 1$ $(1 \le i, j \le n)$ then Q is a copositive extreme if and only if the following conditions hold:

- (i) $a_{ii} = 1, i = 1, ..., n,$
- (ii) there is no triple (i, j, k) such that $a_{ij} = -1 = a_{ik} = a_{jk}$,
- (iii) for each pair (r, s) with $r \neq s$ and $a_{rs} = 1$ there exists a t such that $a_{rt} = -1 = a_{st}$.
- 3. Hall and Newman [4] have shown that extreme copositive forms, except those of the type bx_ix_j , are "locally" semi-definite in the sense that the form becomes semi-definite if appropriate variables are replaced

by zero and that such replacements exist which leave any two specified variables unchanged. In a similar sense we now show that basic extreme copositive forms $Q(x_1, \ldots, x_n)$ with $|a_{ij}| = 1$ and $n \ge 5$ are "locally" equivalent to the Horn form and also that they satisfy the following conjecture by Baumert [2].

Conjecture. If $Q(x_1, \ldots, x_n)$, $n \ge 3$, is an extreme copositive quadratic form, then for every index pair $i, j \ (1 \le i, j \le n)$, Q has a non-negative component zero u with $u_iu_j > 0$.

We firstly require:

LEMMA 3.1. If $Q = \sum a_{ij}x_ix_j$ where $a_{ij} = a_{ji}$, $|a_{ij}| = 1$ $(1 \le i, j \le n)$ is a basic extreme copositive quadratic form then given any pair (i,j) there exists a pair (u,v) such that $a_{iu} = -a_{ju} = 1$ and $a_{iv} = -a_{jv} = -1$.

Proof. Since Q is basic given any pair (i,j) there is a u such that $a_{iu}=-a_{ju}$. We may clearly suppose $a_{iu}=1$ and also $u\neq i$, for otherwise, the result is established, then by Lemma 2.2 with (r,s)=(i,u) there is a v with $a_{iv}=-1=a_{uv}$ so by Lemma 2.1 $a_{jv}=1$ and the lemma is proved.

THEOREM 3.2. Let $Q = \sum a_{ij} x_i x_j$ where $a_{ij} = a_{ji}$, $|a_{ij}| = 1$ $(1 \le i, j \le n)$ be a basic extreme copositive quadratic form in $n \ge 5$ variables. Let x_r, x_s be any two of the variables x_1, \ldots, x_n then, upon suitably replacing all but five of x_1, \ldots, x_n by zero but neither x_r nor x_s , Q reduces to a form equivalent to the Horn form.

Proof. We may clearly suppose that the two variables are x_1 and x_2 . Two cases arise either (i) $a_{12} = 1$ or (ii) $a_{12} = -1$.

- (i) If $a_{12}=1$ then by Lemma 2.2 there is a t, which we may assume to be 3, such that $a_{13}=-1=a_{23}$. Since the form is basic we may suppose without loss of generality that $a_{14}=-a_{24}=1$. By Lemma 2.1 $a_{34}=1$ so by Lemma 2.2 with (r,s)=(1,4) there is a u, which we may assume to be 5, such that $a_{15}=-1=a_{45}$. Lemma 2.1 now gives $a_{25}=1=a_{35}$ and, on replacing the variables $6,\ldots,n$ by zero, we have a form equivalent to the Horn form.
- (ii) If $a_{12}=-1$, by Lemma 2.1 $a_{j1}=-1=a_{j2}$ for j one of $3,4,\ldots,n$ is impossible so we may clearly assume $a_{13}=1$. By Lemma 3.1 there is a u, which we may suppose to be 4, such that $a_{14}=1=-a_{34}$. Now by Lemma 2.1 we cannot have $a_{32}=a_{42}=-1$ so, without loss of generality, we may assume $a_{32}=1$. We may further suppose $a_{42}=-1$ for, if not, by Lemma 2.2 there is a t such that $a_{2t}=-1=a_{3t}$ and then by Lemma 2.1 $a_{1t}=1$. By Lemma 2.2 with (r,s)=(1,3) we may assume $a_{15}=-1=a_{35}$. By Lemma 2.1 we must now have $a_{45}=1=a_{25}$ and, on replacing the variables $6,\ldots,n$ by zero, we have a form equivalent to the Horn form.

THEOREM 3.3. If $Q = \sum a_{ij} x_i x_j$ where $a_{ij} = a_{ji}$, $|a_{ij}| = 1$ $(1 \leqslant i, j \leqslant n)$ and $n \geqslant 3$ is an extreme copositive quadratic form then for every index pair i, j $(1 \leqslant i, j \leqslant n)$, Q has a non-negative component zero u with $u_i u_i > 0$.

Proof. From Baumert [2] the result is true if Q is the Horn form or if Q is in P+S where S is the class of positive semi-definite quadratic forms and P is the class of quadratic forms all of whose coefficients are non-negative. Hence we may further suppose that Q is not semi-definite.

If Q is not basic we may clearly express it in the form $Q(x_1, ..., x_n) = q(y_1, ..., y_m) = \sum_{j=1}^n b_{ij}y_iy_j$ say, where $q(y_1, ..., y_m)$ is a basic extreme copositive quadratic form with $|b_{ij}| = 1$ and $y_j = x_{j1} + x_{j2} + ... + x_{jk_j}$ (j = 1, ..., m) where $x_{jl} = x_r$ for some r $(t = 1, 2, ..., k_j)$ and $\sum_{j=1}^n y_j = \sum_{r=1}^n x_r$. Since Q is not semi-definite neither is q and further Q obviously satisfies the theorem if $q(y_1, ..., y_m)$ does since $m \ge 2$ because Q is extreme.

Thus we may assume that Q is also basic. Diananda [3] has shown that a copositive quadratic form in $n \leq 4$ variables is in P+S so from the above we need only consider the case $n \geq 5$. Hence, from Theorem 3.2, given any pair (r,s) with $1 \leq r, s \leq n$ upon suitably replacing all but five of x_1, \ldots, x_n by zero but neither x_r nor x_s Q reduces to a form equivalent to the Horn form. Since the Horn form satisfies the theorem Q has a non-negative component zero u with $u_r u_s > 0$.

4. We now show that basic extreme copositive quadratic forms with $|a_{ij}| = 1$ $(1 \le i, j \le n)$ exist in n variables for every integer $n \ge 8$. We also consider a few of the properties of these forms.

For $p \ge 3$ let $g_{3p}(x_1, \ldots, x_{3p})$ be the quadratic form whose coefficients a_{ij} are defined by $a_{ij} = a_{ji}$ and $a_{ij} = 1$ for $i \le j$ except for the following:

$$egin{aligned} a_{1j} &= -1 & (j=2,3,...,p+2), \ a_{i,p+2i-1} &= a_{i,p+2i} &= -1 & (i=2,3,...,p), \ a_{p+2i-1,p+2i+2r} &= -1 &= a_{p+2i,p+2i+2r-1} \ & (i=1,2,...,p-1,r=1,2,...,p-i). \end{aligned}$$

For $p\geqslant 4$ define $q_{3p-1}(x_1,\,\ldots,\,x_{3p-1})$ and $q_{3p-2}(x_1,\,\ldots,\,x_{3p-2})$ by

$$q_{3p-1}(y_1, \ldots, y_{3p-1}) = q_{3p}(y_1, y_2, \ldots, y_{p+1}, 0, y_{p+2}, \ldots, y_{3p-1}),$$

$$q_{3p-2}(z_1, \ldots, z_{3p-2}) = q_{3p}(z_1, z_2, \ldots, z_p, 0, 0, z_{p+1}, \ldots, z_{2p-2}).$$

 $q_{3p-2}(z_1,\ldots,z_{3p-2})=q_{3p}(z_1,z_2,\ldots,z_p,0,0,z_{p+1},\ldots,z_{3p-2}).$

THEOREM 4.1. The quadratic forms $q_r(x_1, ..., x_r), r \geqslant 9$, defined above are basic copositive extreme forms with $|a_{ij}| = 1$ $(1 \leqslant i, j \leqslant r)$.

Proof. By inspection the forms are clearly basic and $|a_{ij}| = 1$ $(1 \le i, j \le r)$.

Copositivity. From the definitions q_{3p-1} and q_{3p-2} are copositive if q_{3p} is so it is sufficient to show that q_{3p} $(p \ge 3)$ is copositive. Thus consider q_{3p} $(p \ge 3)$; we shall show that there is no triple (r, s, t) with the property that $a_{rs} = -1 = a_{st} = a_{rt}$ and copositivity will then follow by Lemma 2.1. We need clearly only consider those triples (r, s, t) with r < s < t.

If $a_{1s}=-1=a_{1t}$ with s < t then $t \leqslant p+2$. If s=p+1, then t=p+2 and $a_{st}=1$. Otherwise $2 \leqslant s \leqslant p$ so that for s < k $a_{sk}=-1$ only if k=p+2s-1 or p+2s and since $t \leqslant p+2$, we must therefore have $a_{st}=1$.

For fixed r with $2 \le r \le p$, $a_{rs} = -1 = a_{rt}$ with r < s < t implies s = p + 2r - 1 = t - 1 and then $a_{st} = a_{p+2r-1,p+2r} = 1$.

For fixed i with $1 \le i \le p-1$, $a_{p+2i-1,s} = -1 = a_{p+2i-1,t}$ with p+2i-1 < s < t implies $s = p+2i+2r_1$, $t = p+2i+2r_2$ for some r_1, r_2 with $1 \le r_1 < r_2 \le p-i$ and then $a_{st} = a_{p+2i+2r_1, p+2i+2r_1, p+2i+2r_1+2(r_2-r_1)} = 1$.

For fixed i with $1 \le i \le p-1$ $a_{p+2i,s} = -1 = a_{p+2i,t}$ with p+2i < s < t implies $s = p+2i+2r_1-1$, $t = p+2i+2r_2-1$ for some r_1, r_2 with $1 \le r_1 < r_2 \le p-i$ and then $a_{st} = a_{p+2i+2r_1-1,p+2i+2r_1+2(r_2-r_1)-1} = 1$.

Hence there is no triple (r, s, t) such that $a_{rs} = -1 = a_{rt} = a_{st}$ and copositivity is established.

Extremity. To prove that q_{3p} $(p \ge 3)$ is extreme, it is sufficient, by Lemma 2.2, to show that for each pair (r,s) with $r \ne s$ and $a_{rs} = 1$ there is a t such that $a_{rt} = -1 = a_{st}$. In our proof we shall show in addition that, if $p \ge 4$, we can always find such a t with $t \ne p+1$, $t \ne p+2$. From this result and their definitions, q_{3p-1} and q_{3p-2} will then be extreme by Lemma 2.2. Clearly we need only consider those $a_{rs} = 1$ for which r < s, so let us examine such a_{rs} in q_{3p} $(p \ge 3)$.

If $a_{1s}=1$ with 1< s then $p+3\leqslant s\leqslant 3p$; let $t=\left[\frac{s-p+1}{2}\right]$, where

[x] denotes the greatest integer not greater than x, then $2 \le t \le p$ so $a_{1t} = -1$ and also s = 2t + p or s = 2t + p - 1 so that $a_{st} = a_{ts} = -1$.

For fixed r with $2 \le r \le p$ consider the s with r < s for which $a_{rs} = 1$. If $s \le p+2$ then $a_{r1} = -1 = a_{s1}$ so consider s > p+2;

- (i) If s = p + 2v 1 let $t = p + 2r \ge p + 4$ then $a_{rt} = -1$ and, since $r \ne v$, either $2 \le v \le r 1$ in which case $a_{st} = a_{p+2v-1,p+2v+2(r-v)} = -1$ or $r+1 \le v \le p$ in which case $a_{st} = a_{ts} = a_{p+2r,p+2r+2(v-r)-1} = -1$;
- (ii) If s = p + 2v let $t = p + 2r 1 \ge p + 3$ then $a_{rt} = -1$ and, since $v \ne r$, either $2 \le v \le r 1$ in which case $a_{st} = a_{p+2v,p+2v+2(r-v)-1} = -1$ or $r+1 \le v \le p$ in which case $a_{st} = a_{ts} = a_{p+2r-1,p+2r+2(v-r)} = -1$.

For fixed i with $1 \le i \le p-1$ consider the s with p+2i-1 < s for which $a_{p+2i-1,s} = 1$;

If s = p + 2i choose t = i < p so

$$a_{p+2i-1,t} = a_{p+2i-1,i} = -1 = a_{p+2i,i} = a_{st}.$$

If s=p+2i+2u-1 with $1\leqslant u\leqslant p-i-1$ choose t=p+2i+2u+2>p+2 then

$$a_{p+2i-1,t} = a_{p+2i-1,p+2i+2(u+1)} = -1 = a_{p+2i+2u-1,p+2i+2u+2} = a_{st}.$$

If s = 3p-1 choose t = 3p-2 = p+2i+2(p-i-1) > p+2 if $i \le p-2$ and t = 3p-4 if i = p-1 (note that t > p+2 for $p \ge 4$), then $a_{st} = -1 = a_{p+2i-1}i$.

For fixed i with $1 \le i \le p-1$ consider the s with p+2i < s for which $a_{p+2i,s} = 1$, then s = p+2i+2v for some v with $1 \le v \le p-i$. For $1 \le v \le p-i-1$ choose t = p+2i+2v+1 > p+2 then $a_{st} = -1 = a_{p+2i,t}$. For v = p-i choose t = p+2i+1 > p+2 if $i \le p-2$ and t = 3p-5 > p+2 for $p \ge 4$ if i = p-1, then $a_{p+2i,t} = -1 = a_{t,3p}$.

The only case $a_{rs} = 1$ with r < s remaining for consideration is $a_{3p-1,3p} = 1$ in which case we choose t = p so that $a_{3p-1,t} = a_{p,3p-1} = -1 = a_{p,3p} = a_{3p,t}$.

The extremity of q_r $(r \ge 9)$ now follows from the above comments. In the class of basic extreme copositive quadratic forms with $|a_{ij}| = 1$ the Horn form is:

- (i) the only one in 5 variables,
- (ii) the only one whose matrix has at least one row containing exactly two -1's.

Condition (i) is immediate from Theorem 3.2 and has already been proved by Baumert [2]. Since the only basic extreme copositive quadratic forms with $|a_{ij}| = 1$ in less than five variables are x_1^2 and $(x_1 - x_2)^2$, condition (ii) is immediate from (i) and the following lemma.

LEMMA 4.2. If $Q_n = \sum a_{ij}x_ix_j$, $a_{ij} = a_{ji}$, $|a_{ij}| = 1$ $(1 \le i, j \le n)$ is a basic extreme copositive quadratic form and $n \ge 6$ then, for each i $(1 \le i \le n)$, there are at least three values of j in $1 \le j \le n$ such that $a_{ij} = -1$.

Proof. Suppose the result is false then we may suppose that at most two of the a_{1j} , $2 \le j \le n$, are -1's. However by Theorem 3.2 we may assume that $Q_n(x_1, x_2, \ldots, x_5, 0, 0, \ldots, 0)$ is the Horn form so the leading 5×5 minor of the matrix associated with Q_n is of the form

Thus $a_{1j}=1$ for $j\geqslant 4$. By symmetry and Lemma 2.2 we may assume $a_{62}=-1$ so by Lemma 3.1 $a_{63}=1$ and by Lemma 2.1 $a_{64}=1$. From rows 4 and 6, Lemma 3.1 says we may assume $a_{47}=1=-a_{67}$. By Lemma 2.1 $a_{27}=1$ and by Lemma 2.2 $a_{37}=-1$ so by Lemma 2.1 $a_{57}=1$. From rows 4 and 7 Lemma 2.2 says we may assume $a_{48}=-1=a_{78}$. By Lemma 2.1 $a_{28}=1=a_{38}$ and rows 1 and 8 now show that we have a contradiction to Lemma 2.2.

We now require:

LEMMA 4.3. If $Q_n = \sum a_{ij}x_ix_j$, $a_{ij} = a_{ji}$, $|a_{ij}| = 1$ $(1 \leqslant i, j \leqslant n)$ is a basic extreme copositive quadratic form such that, for at least one fixed i in $1 \leqslant i \leqslant n$, there are at least three values of j in $1 \leqslant j \leqslant n$ with $a_{ij} = -1$, then $n \geqslant 8$ and if n = 8 the form is unique apart from interchange of variables.

Proof. We may suppose that $a_{rr}=1$ $(1\leqslant r\leqslant n)$ and $a_{12}=-1=a_{13}=a_{14}$ then by Lemma 2.1 $a_{rs}=1$ (r,s=2,3,4). Lemma 3.1 with (i,j)=(2,3) implies that $n\geqslant 6$ so by Lemma 4.2 at least six of the a_{rs} $(r=2,3,4,s=5,6,\ldots,n)$ must be -1. Hence if $n\leqslant 8$ there is a $j\geqslant 5$ such that at least two of a_{2j} , a_{3j} and a_{4j} are -1's; we may assume $a_{25}=-1=a_{35}$. By Lemma 3.1 we may suppose $a_{26}=1=-a_{36}$, $a_{27}=-1=-a_{37}$ then $a_{15}=a_{16}=a_{17}=1=a_{57}=a_{56}$ by Lemma 2.2. By Lemma 3.1 we may suppose $a_{58}=-1=-a_{18}$ so, since $n\leqslant 8$ $a_{54}=1$. By Lemma 2.1 $a_{28}=1=a_{38}$. By Lemma 2.2 with (r,s) equal to (2,6) and (4,5) we have respectively $a_{67}=-1$ and $a_{48}=-1$. At least one of a_{36} and a_{87} is -1 by Lemma 4.2 and by symmetry we may suppose $a_{36}=-1$ then by Lemma 2.1 $a_{87}=1=a_{64}$. Thus by Lemma 4.2 $a_{47}=-1$.

The form obtained is clearly basic and by suitably renumbering the variables it becomes cyclic, i.e.

$$Q_8 = \left(\sum_{i=1}^8 x_i\right)^2 - 2\sum_{i=1}^8 x_i(x_{i+1} + x_{i+4} + x_{i+7}),$$

where $x_{r+8} = x_r$. That the form is in fact copositive and extreme follows from:

THEOREM 4.4.

$$\left(\sum_{i=1}^{3m+2} x_i\right)^2 - 2\sum_{i=1}^{3m+2} x_i (x_{i+1} + x_{i+4} + x_{i+7} + \ldots + x_{i+3m+1})$$

where $x_{r+3m+2} = x_r$ is an extreme copositive quadratic form for each $m \geqslant 1$.

Proof. Since the forms are cyclic the proof is particularly simple. Employing Lemma 2.1 to prove copositivity, it is sufficient to show that if $a_{1s} = -1 = a_{1t}$ then $a_{st} = 1$. However if $a_{1s} = -1 = a_{1t}$ with

s < t then t = s + 3u for some u and $a_{st} = a_{s,s+3u} = 1$. Employing Lemma 2.2 to prove extremity, it is sufficient to show that if $a_{1s} = 1$ (s > 1) then there is a t such that $a_{1t} = -1 = a_{st}$. However if $a_{1s} = 1$ (s > 1), then either s = 3u or 3u + 1 for some $u \ge 1$.

If s = 3u let t = 3u - 1 then $a_{1t} = a_{1,1+3u-2} = -1 = a_{3u-1,3u} = a_{ts} = a_{st}$.

If s = 3u + 1 let t = 3u + 2 then $a_{1t} = a_{1,1+3u+1} = -1 = a_{3u+1,3u+2} = a_{nt}$.

Note that when m=1 we have the Horn form. We also remark that, when $m \ge 3$, the above forms cannot be obtained from the q_{3m+2} of Theorem 4.1 by renumbering of variables.

From Lemmas 4.2 and 4.3 we have:

LEMMA 4.5. There is no basic extreme copositive quadratic form $Q_n = \sum a_{ij}x_ix_j$, $a_{ij} = a_{ji}$, $|a_{ij}| = 1$ $(1 \le i, j \le n)$ for n = 6 or 7 and there is a unique such form (apart from interchange of variables) when n = 8.

The first part of Lemma 4.5 was proved by Baumert in [2].

From Theorem 4.1 and Lemma 4.3 we finally have:

THEOREM 4.6. There exist basic extreme copositive quadratic forms

$$Q_n = \sum a_{ij} x_i x_j, \quad a_{ij} = a_{ji}, \; |a_{ij}| = 1 \; (1 \leqslant i,j \leqslant n)$$

for $n \geqslant 8$.

References

[1] L. D. Baumert, Extreme copositive quadratic forms, Pacific Journ. Math. 19 (1966), pp. 197-204.

[2] - Extreme copositive quadratic forms II, Pacific Journ. Math. 20 (1967), pp. 1-20.

[3] P. H. Diananda, On non-negative forms in real variables some or all of which are non-negative, Proc. Cambridge Philos. Soc. 58 (1962), pp. 17-25.

[4] Marshall Hall, Jr. and M. Newman, Copositive and completely positive quadratic forms, Proc. Cambridge Philos. Soc. 59 (1963), pp. 329-339.

[5] Marshall Hall, Jr., Discrete problems, A Survey of Numerical Analysis, ed. John Todd, New York 1962, pp. 518-542.

Reçu par la Rédaction le 23. 2. 1968