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Extreme copositive quadratic forms
by

Vicror J. D. Bisrox (Southampton)

1. Introduction. A real quadratic form Q=0Q®,...,m,) = D ayaiw
(@ij = i, L4, f <) is called copositive if ) ( () +-.y ) = 0 whenever
@20, ..., 4, 2 0. A copositive quadratic form @ is extreme when@ = Q,+
+0,, Whele @, and @, are copositive, implies @, =10,0, = (1—-2)Q,
0 <A< 1. An extreme copositive quadratic form is basic if no two rows
(or columns) of its matrix are identical. If § is the class of positive semi-
definite quadratic forms and P the class of quadratic forms with non-
negative coefficients then clearly any form expressible as a sum of ele-
ments of P and § is necessarily copositive. Hall and Newman [4] have
determined the extreme copositive quadratic forms belonging to the class
P+A8 so interest now centres on the extreme copositive quadratic forms
not in P+8; the Horn form

(01— By -1~ 3+ @y — 55)2 + it 204 + 4or5 (05— ),

constructed by Horn [5], shows that such forms do in fact exist. The
Horn form has the property |ay| =1 (1<4,j<n) where n =5 and
there are extreme copositive quadratic forms with this property for each
7z B; this is immediate from the following theorem of Baumert [1].

TurEOREM. If @, is an exltreme copositive quadratic form in n > 3
variables ©,, ..., , then replacing any x; by @;+ z, 11 M @y yields o new
copositive form Q1 which is extreme.

However Baumert [2] has also shown that there are no hasic extreme-
copositive quadratic forms with |a;] =1 (1 <4,j< n) for » = 6 and 7.

In this paper we obtain simple necessary and sufficient conditions
for & quadratic form with |a;) =1 to be an extreme copositive form.
From these conditions we obtain a stronger form of the Hall and Newman
Theorem 4.1 in [4] for basic extreme copositive gquadratic forms with
lal =1 and n = 5, which shows that the Horn form plays a fundamental
role in every form of this type and which also enables us to prove the
conjecture 4.1 of Baumert [2] for such forms. Finally we show that basic
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extreme copositive quadratic forms with jay| =1 (1<4, J<m) exist
for all integers n > 8 and then obtain some of their properties.

2. In this section we obtain necessary and sufficient conditions
for a guadratic form Q = Yaywa; with ay = @ity oyl =1 (1< 4,5 < n)
to be an extreme copositive form. For copositivity we must clearly have
[ 1 (l <’L<’Ib)

Levma 2.1 Let Q&g ..., %) = Daymay where ay = ay, |ay| = 1
and ay =1 (1 <4, < n) then @ is copositive if and only if there is no triple
(r,8,1) such that ay = —1 = Gy = Gy.

Proof. Necessity. If there is such a triple (r, s, t) we may clearly
suppose that (r,s,?) = (1,2, 3) and then @(1,1,1,0,0,...,0) = —3
so that @.is not copositive.

Sufficiency. If n = 1 or 2, @ is clearly copositive 50 we may agsume
% 2> 8.-Suppose @ satisfies the condition but is not copositive. Since n > 3
there exists a paiv (r, s) with 7 # s such that a,; = 1 for, if not, the con-
dition is violated; we may clearly suppose 7 =1, s = 2. Let T be the
set of ¢ such that ay = — ay, then

(1) Q@1 Byy eeny @) = Q(0, &1+ 2, a4, tery ;Irn)+~1-’1}12 Ay Ty
iem
and
-
(2) Q1 Zay ooy Bn) = Qa1+ @2, 0, &g, ..., By) 4"4"”22 ]
te
-
= Q@+ gy 0, 8y, ..., ) —day 2_‘ Gy 2y
teT
Since @ is not copositive there exists (u,, ... ) W) With a2 0 (L <i < m)

sueh that Q(uy,...,u,) < 0. If tZ‘ Ayt 2 0, Q(0, Uy + Ugy gy oony Uy) < 0

. el

from (1) whilst if 3 ayu; <0 Q(u;+us 0, gy ..., u) < 0 from (2).
T

Thus if @(wy, ..., x,) i not copositive it contains a subform of (n—1)
variables which is also not copositive; further this subform satisfies the
condition since @ does. If # > 4 repeat the argument on this subform and
continue the process until one obtains that § has a subform of two variables

which is not copositive. We now have a contradiction and the lemma is
established.

Levma 2.2. 4 copositive quadratic form Q(zy, ..., 3,) = D ¢y
where @y = ag, oy =1 and ay = 1 (1 <4 yJ < n) is extreme if and only
if for each pair (r,s) with » #s and e = 1 there exists a t such that
Ot = —1 = ag.

Proof. Necessity. Suppose there is a pair (r,s) with » #%s and
% =1 such that there i3 no ¢ with ay = —1 = ag. We may clearly

i=m®
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assume r =1,s=2. Let V be the set of v >2 such that By = Qgy
then

P (@) Bay - ey &)= Q iy, Doy vney Bn) — A0 T,
1) = Q(&,—,, 0, @y, ..., @n) - 4y Z“wmv
zeV
(2) =Q(0,m2—w1,m,,...,wn)+4w12awm,,.
vel
Now @y, = 1 for veV gsince there is no ¢ such that oy = —1 = ay and

further € is copositive so P> 0 for ;>0 (1< i< n) and %, = x, from
(1) whilst P> 0 for ;>0 (1<i<n) and @, > @, from (2). Thus P is
copositive and, since @ = P+ 42,2,,Q is not extreme.

Sufficiency. The result is trivial for #» = 1 and # = 2 so We”niﬁgf
assume » > 3. Suppose ¢ satisfies the condition and @ = Q.+ Q. where @,
and @, are copositive. Consider the term a,, with » s then either
(i) @ = —1 or (ii) a, = 1.

(i) It a, = —1, on replacing all the #; except 2, and =, by zero,
Q reduces to (z— x,)? which is extreme so @, must reduce to s (0, — )2
and @, 10 (1— ) (2, — 52 0 < A < 1. )

(ii) If @, =1 then, since r s s, by the condition there is a ¢ such
that @ = —1 = ay. Thus, on replacing all the »; except ., s, and =
by zero, @ reduces to (x,+ ®;— 2,)? which is extreme so @, -must reduce
10 Aps(@r+os—@)? and Q@ to (1— du)(0r+2s— )2, 0 < A< 1.

Thus, in Q,, the coefficient of both «? and «? is A, and the coefficient
of w4, is 2250, Taking u with » # 7, % 5 s and 1 <u < n we obtain
similarly that the coefficient in @, of both @ and a2 is 4., 80 We must have
M = Mg = Ay, say. Clearly Ay = Ay 80 4 = 1 = A say, ie. As = 1 for
1<r,s<n. Hence @, =10,Q,=(1—2)Q,0<<i<1 and the result
is established.

Combining the results of Lemmas 2.1 and 2.2 we have:

THEOREM 2.3. Let Q(my, ..., %) = Y ayx;0; where ay = aj;  and
lagl =1 (1<4,j<n) then Q is a copositive extreme if and only if the
following conditions hold:

@) ag=1,4=1,..,n
(ii) there is no triple (i,j, k) such that ay = —1 = ay = ay,

(iii) for each pair (v, s) with r + s and 6,5 = 1 there exisis & t such that
At = —1 = Qg
3. Hall and Newman [4] have shown that extreme copositive forms,

except those of the type bz;a;, are “locally” semi-definite in' the sense
that the form becomes semi-definite if appropriate variables are replaced
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by zero and that such replacements exigt which leave any tW(E) specified
variables unchanged. In a similar sense we now show that basic extreme
copositive forms @Q (@i, ..., @) With |ayl =1 and %;5 are “loeall.y”
equivalent to the Horn form and also that they satisfy the following
conjecture by Baumert [2]. .

CONJECTURE. If Q(&y, ..., %), 0 22 3, is an exireme copositive_ quad-
ratic form, then for every index pair 4, (1 <4, j < n), @ has a non-negative
component zero u with wyu; > 0.

We firstly require:

Lemma 3.1, If Q = 2 i3 Xy X5 where Gy = Qjp ‘ai]‘] =1 ( n)
is a basic extreme copositive guadratic form then given any pair ( there
emists o pair (w,v) such that Gy = — @y =1 and ay = — a5 = —1

Proof. Since @ is basic given any pair (¢,j) there is a « such that
@ = — Gjy. We may clearly suppose an =1 and also u # 14, for ot?ner-
wise, the result iy established, then by Lemma 2.2 with (r,s) = (i, u}
there is a » with @y = —1 = @y $0 by Lemma 2.1 a5 =1 and the
lemma is proved.

THEEOREM 3.2. Let Q = 3 ay;mi; where ay; = a1, lay| = 1 (1 <4, j< n)

be a basic emtreme copositive quadratic form in n =5
be any two of the variables mq, ..., @, them, upon suitably replacing t.zll but
five of @y, ..., T by zero but neither @, nor g, Q reduces to a form equivalent
to the Horn form.

Proof. We may clearly suppose that the two variables are @, and ,.
Two cases arise either (i) a;, =1 or (ii) a,, = —1.

variables. Let @, ©s

(i) If @y, = 1 then by Lemma 2.2 there is a 1, whic-h Wwe may assume
to be 3, such that a;3 = —1 = ay,. Since the form is basic we may suppose
without loss of generality that a;, = —ay = 1. By Lemma 2.1 a5 =1
so by Lemma 2.2 with (r, s) = (1, 4) there is a u, whic}l we may assume
to be 5, such that a;; = —1 = a4. Lemma 2.1 now gives ay; = 1 = O35
and, on replacing the variables 6, ..., n by zero, we have a form equivalent
to the Horn form.

(i) B @, = —1, by Lemma 21 a3 = —1=ua; for j ome of
3,4, ..., n is impossible so we may clearly assume a,; = 1. By Lemma 31
there is a %, which we may suppose to be 4, such that ay =1 = — 8.
Now by Lemma 2.1 we cannot have @z = a4 = —1 80, without loss of
generality, we may assume dg, = 1. We may further suppose a, = —1
for, if not, by Lemma 2.2 there is a # such that ay = —1 = ay and then
by Lemma 2.1 ay; = 1. By Lemma 2.2 with (r, ) = (1, 3) we may assume
a5 = —1 = ag;. By Lemma 2.1 we must now have a5 = 1 = a2.5 and,
on replacing the variables 6,...,n by zero, we have a form equivalent
to the Horn form..

bm©
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THEOREM 3.3. If @ = D ayma; where ay = ajs, Jay] = 1 (1< 4,7 < n)

and n >3 is an extreme copositive qguadratic form then for every mdew par
i,J] <4, < n), @ has a non-negative component zero u with Uty > 0.
Proof. From Baumert [2] the result is true if @ is the Horn form or

if §is in P48 where § is the class of positive semi-definite quadratic
forms and P is the class of quadratic forms all of whose coefficients are
non-negative. Hence we may further suppose that  is not semi-definite.
If @ is not basic we may clearly express it in the form Q@ vvy )
=qW1y -y Ym) = D byyiy; say, where q(¥1y.-vy Ym) I8 a basic extreme
copositive quadratic form with [by =1 and Y= w,-l—l-a:,-z—l— +ac,-k

(j=1,. a,ndZ’y, Za;,..
Since € is not semi-definite neither is ¢ and further Q obwously sa’msﬁes
the theorem if ¢(yy, ..., yu) does since m > 2 because Q is extreme.

Thus we may assume that @ is also basic. Diananda [3] has shown
that a copositive quadratic form in » < 4 variables is in P+ 8 so from
the above we need only consider the case > 5. Hence, from Theorem 3.2,
given any pair (r, s) with 1< 7, s <n upon suitably replacing all bub
five of @y, ..., @, by zero but neither 2, nor 2, @ reduces to a form equiv-
alent to the Horn form. Since the Horn form satisfies the theorem Q
has a non-negative component zero u with u,u; > 0.

., m) where z;; = x, for somer (t =1, 2,.

4. We now show that basic extreme copositive quadratic forms with
la] =1 (L<i,j<n) exist in n variables for every integer n>8. We
also consider a few of the properties of these forms.

For p > 8 let ¢ap(®1, ..., @3) be the quadratic form whose coefficients
a;; are defined by a; = a;; and a; = 1 for ¢ < j except for the following:

ay=—1 (j=2,3,...

—1

7.p+2)!
i=2,3,..

Qi pioi1 = O pro; =

Py

Gproi-1,praipor = —1 = Bp 2 piaivor—1

(6=1,2,.c,p—1,r =1,2,..., p—i).
For p>4 define gy_i(y;...,25_;) and Qap—a(yy eevy Bap_g) DY

Gop-1(Y1y +os Yap1) = Gsp(Yas Yoy o-vy Ypy1s O, Ypiay ooy Yapo1),

Qop—2(21y -y Zap_2) = Gp(215 Bay 2ery 29, 0, 0, 2p41y 000y Zaps).

TeEOREM 4.1. The quadratic forms g.(%y, ..., @), = 9, defined above
are basic copositive extreme forms with |ayl =1 (1 <i,j< 7).

Proof. By inspection the forms are clearly basic and lagl =1
(1<4,5< 7).
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Copositivity. From the definitions gsp_; and g¢sp , are copositive
if gy is s0 it is sufficient to show that ¢sp (p = 3) is copositive. Thus con-
sider gip (p > 3); we shall show that there is no triple (r, s, t) with the
property that @ = —1 = s = art and copositivity will ‘then follow
by Lemma 2.1. We need clearly only consider those triples (r, s, t) with
r<<s<<t.

¥ a = —1=ay with s<¢ then t<p+2. M s=p+1, then
t=p+2 and ayg = 1. Otherwise 2 << s < p so that for s <k ag = —1
only if % = p--2s—1 or p+2s and since t<p+2, we must therefore
have ag = 1.

Tor fixed r with 2<r < p, @ = —1 = @y With r <s <t implies
s=p+2r—1=1-1 and then ag = dp o1 prer = 1. _
For fixed ¢ with 1<i<p—1, @prgi1e= —1 = Gpraiiy With

p+2i—1<s<t implies s = p+2i+2r, t=p+2i42r, for some
P, 1y With 1< <re<<p—4 and then Gy = Gpysitor;pysivarramy—ry = L

TFor fixed ¢ with 1<i<p—1 Gprois = —1 = Gppiy With p+20
< § <t implies 8 =p+2i-+2r—1, t = p+2i+2r,—1 for some 7,7,
with 1< r < r,<p—4 and then g = Gpiaitor_1p420rerbory-ry-1 = 1.

Hence there is no triple (r,s,?) such that a, = —1 =ay= Qg
and copositivity is established.

Batremity. To prove that gsp (p>3) is extreme, it is sufficient,
by Lemms 2.2, to show that for each pair (7, 8) with r 7 s and a, =1
there is & ¢ such that @y = — 1 = . In our proof we shall show in addition
that, if p >4, we can always find such a ¢ with ¢t #p+1,t #p+2.
From this result and their definitions, gsp_; and gsp_» Will then be extreme
by Lemma 2.2. Clearly we need only consider those a,s = 1 for which
r < 8, 80 let us examine such ay in gsp (P > 3).

s—p+1

T a,; =1 with 1 < s then p+3 < s < 3p;let ¢ = [—2———], where
[#] denotes the greatest integer not greater than @, then 2<i<p
50 ay= —1 and also § =2t+p or s=2+p—1 so0 that ag = s
= —1.

For fixed r with 2 < 7 < p consider the s with r < 8 for which. a,; = 1.
If s<p+2 then ay = —1 = g 80 consider s > p+2;

(i) I 8 = p+20—1let t = p-+2r > p-+4 then ay = —1 and, since
r # v, either 2<v<r—1 in which case g = Gpis_1,p1mw+2r—v) = —1
or r+1 < v < p in which case dy = (g = Gprampiorszp—r—1 = —1}

({) T s=p+20 let t=p+2r—1>p+3 then ay= —1 and,
since v # 7, either 2 < v < r—1 in which case st = tp o piwiopr—v)—1 = —1
or r+1<<v<p in which case ag = @ = Gpror1pizrie@-r = —L

For fixed ¢ with 1 <i<p—1 consider the s with p+2i—1<s
for which @491 =1;

h‘l"I@
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If § = p+2i choose t =1 <<p 80
Oproi1t = Opiai 10 = —1 = Gp 0i; = G-

If s=p+2i+2u—1 with 1<u<<p—i—1 choose &= p+2i+
+2u+2 > p+2 then

Upyoio1,t = Opyoi_yprricousr) = —1 = Gpoipou 1 ppoitouse = st

If s=38p—1 choose t=3p—2=p+2i4+2(p—i—1)>p+2 if
i<p—2 and ¢t =3p—4 if i =p—1 (note that ¢t >p+2 for p=4),
then as = —1 = @pioi14.

For fixed ¢ with 1 <9< p—1 consider the s with p+ 2¢ < s for which
Gpiais = 1, then § = p 42420 for some v with 1o <<p—4 For 1 <o
< p—i—1 choose ¢ =p42i+204+1>p+2 then ag = —1 = Gy ai¢-
For v = p—4 choose t =p+2i4+1>p+2 if i<p—2 and { =3p—>5
>p+2 for p=4 if ¢ =p—1, then apiu; = —1 = ay3p-

The only case @, =1 with » < s remaining for consideration is
@3p_13p = 1 in which case we choose ¢ = p s0 that @11 = dpazp_1 = —1
= Opsp = 3p t.

The extremity of g, (r > 9) now follows from the above comments.

In the clags of basic extreme copositive quadratic forms with jay| = 1
the Horn form is:

(i) the only one in 5 variables,

(ii) the only one whose matrix has at least one row containing exactly
two —1’s.

Condition (i) is immediate from Theorem 3.2 and has already been
proved by Baumert [2]. Since the only basic extreme copositive quad-
ratic forms with ja;] = 1 in less than five variables are 27 and (@;,— @)%
condition (ii) is immediate from (i) and the following lemma.

LevmA 4.2, If Q,,,, = 2 Qi B3 Tg y Q5 = Ojiy {aijl =1 (1 <‘L,j <n) is
o basic extreme copositive quadratic form and n = 6 then, for-each i (1 <14
< m), there are at least three values of § in 1 <j < n such that ay = —1.

Proof. Suppose the result is false then we may suppose that at most
two of the a;;, 2 <j < n, are —1’s. However by Theorem 3.2 we may
assume that Qn (21, 42, ..., @5, 0, 0, ..., 0) is the Horn form so the leading
5 x5 minor of the matrix associated with @, is of the form

1 -1 —1 1 1
-1 1 1 -1 1
-1 1 1 1 -1

1 -1 1 1 —1
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Thus a,;; = 1 for j > 4. By symmetry and Lemma 2.2 we may assume
ag, = —1 80 by Lemma 3.1 a5 = 1 and by Lemma 2.1 a5 = 1. From
rows 4 and 6, Lemma 3.1 says we may assume gy, = 1 = —ag. By
Lemma 2.1 @, =1 and by Lemma 2.2 g3 = —1 so by Lemma 2.1
ag; = 1. From rows 4 and 7 Lemma 2.2 says we may assume a,; = —1

= ag. By Lemma 2.1 gy = 1 = a3y and rows 1 and 8 now show that
we have a contradiction to Lemma 2.2.

We now require:

LeMMA 4.3. If Q= Z Wiy L%y, Oy = Oy, lagl =1 (1<4i,i<n)
is @ basic extreme copositive quadratic form such that, for at least one fired
i1im 1 < 4 < n, there are ot least three values of j in 1 < j < n with a; = —1,
then, n>8 and if n = 8 the form is unique apart from interchange of
variables.

Proof. We may suppose that a, =1 (I1<r<2n) and a;, = —1
= @3 = &y, then by Lemmsa 2.1 @, =1 (r,8 =2,3,4). Lemma 3.1
with (¢, j) = (2, 3) implies that » > 6 so by Lemma 4.2 at least six of the
s (* =2,3,4,8=05,6,...,n) must be —1. Hence if n < 8 there is
2 j = b such that at least two of ay, as; and @y are —1’s; we may assume
Gy = —1 = ay35. By Lemma 3.1 we Imay suppose dy = 1 = —ag,
Gy = —1 = —ag; then a; = a4 = a1; = 1 = 657 = a5, by Lemma 2.2.
By Lemma 3.1 we may suppose ag = —1 = —a;3 80, since n< 8
a5, = 1. By Lemma 2.1 ay =1 = a33. By Lemma 2.2 with (r,s) equal
to (2, 6) and (4, 5) we have respectively as = —1 and ap = —1. At
least one of ag and a4 is —1 by Lemma 4.2 and by symmetry we may
SUPPOSe g = — 1 then by Lemma 2.1 ay; = 1 = ag,. Thus by Lemma 4.2
Gy = — 1.

The form obtained is clearly basic and by suitably renumbering
the variables it becomes cyclic, i.e.

=1

8 8
Qs = (2 .’Ei)2 —92 2.’1}1;(501;+1—-|— wi+4+a1‘,1+7),
i=1

where #,,; = 2,. That the form is in fact copositive and extreme follows
from:

THEOREM 4.4,

3Mm42 3m4-2

2
(2 wi) -2 2 i (Liy1 T Lipat+ Biprt oo Bipsmir)
i=1 im1

where Trygm o = 2 18 an estreme copositive quadratic form for each m = 1.

Proof. Since the forms are cyclic the proof is particularly simple.
Employing Lemma 2.1 to prove copositivity, it is sufficient to show
that if @ = —1 = ay; then ay = 1. However if @, = —1 = ay; with

i=m®
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s<t then t=¢+3u for some u and ay = 65,3, = 1. Employing
Lemma 2.2 to prove extremity, it is sufficient to show that if ay, = 1
(s > 1) then there is a ¢ such that a;; = —1 = ay. However if a4, = 1
(s > 1), then either s = 3u or 3u--1 for some u> 1.

I s=3u let t=3u—1 then ay=ay1.30=—1= sy 13
= Qs = st

If s =3u+1 let ¢ =3u+2 then ay=0;1,3,,1 = —1 = Gsyq13us2
= Qgt.

Note that when m =1 we have the Horn form. We also remark
that, when m >3, the above forms cannot be obtained from the ¢am.»
of Theorem 4.1 by renumbering of variables.

From Lemmas 4.2 and 4.3 we have:

Levva 4.5. There is no basic extreme copositive quadratic form
Qu = D Gy, 0y = G, layl =1 (1<i,5<n) for n =6 or 7 and
there is a unique such form (apart from interchange of variables) when n = 8.
The first part of Lemma 4.5 was proved by Baumert in [2].
From Theorem 4.1 and Lemma 4.3 we finally have:

THEOREM 4.6. There emist basic exireme copositive quadratic forms

On = E @i 35

Qi = G, oyl =1 (1<4,j<n)

for o= 8.
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