Table des matidres du tome XVI, fascicule 1

Page

I. K4tai, On sofs characterizing number-theoretical functions (II) (The set
of “prime plus one™s 8 a set of quasi-uniqueness) . . . . . . . . . 1
Ch. P. Osgood, A method in diophantine approximation (III) e e e 5
— A method in diophanfine approximation (IV) . . . . . e ... 23
M. C. Wundorlich, A general clags of sieve generated saquenues B 1§
D. L. Goldsmith, On a question related to diophantine approximation . . 57
M. M. Dodson, The average order of two arithmetical funetions. . . . . . 71
D. Walks, A note on the least prime guadratic residne (modp) . . . 85

H. Hasse und J. Liang, Uber den Klassenledrper zmm qundm.tmehen Aahl
krper raib der Diskriminante —47 (Forfsetzung). . . . 89

R. A. MacLeod, Ereata to the paper “A new estimate for Lhe AN M(m
=Fu®” . .o e e e e e A A

Tt

A. Schinzel, Corrigendum fo the papers “On two theorems of Golfond and

gome of their applications” and “On primitive prime factors of Lehmey
numbers LII™ . . 0 L. . L o o e o e e e .10

T. Balit, Corrigendum to the paper “On ra.tm setﬁ of sets of natural numbers” 103

La revue esh consacrée b toutes les branches de U Arithmdtique ot de la Thdore
des Nombres, ainsi qu'aux fonctions ayant de Uimporianee dans ces domainas.

Pritre d’adresser lop textos dactylographids d I'un des rédacteurs de la revue
on bien A la Rédaction de

ACTA ARITEMETICA

Warszawa 1 (Pologue.), ul. Smiadeckich 8.

La méme adresse est valable pour toute corresponda.nce coneernant 1'échange
de Acta Arithmetioa.

Los volumes IV et suivants de ACTA ARITHMETICA sont & obtenir chow

Ars Polona, Warszawa 1 {Pologne), Krakowskie Przedmieseie 7.
Prix de ce fascicule 4.00 §.

Les volumes I.IIT (reddits) sont ) obtenir ches
Johnson Repriat Corp., 111 Fitth Ave., New York, N. Y.

La table des matidres des volumes I- XV go trouve & 1n Hn du volume XV,

PRINTED IN POLAND

W RO OL A WB KA DRTTIEARBDNTIA NAUZEKO W A

icm

ACTA ARITHMETICA
XVE (1960)

On sets characterizing number-theoretical funections (In
(The set of “prime phis one™ s is a set of quasi-nniqueness)
by
I KArAL (Budapest)

L. In [2] it was proved that the set 2, = {p+1}, p runs over the
primes, is a set of quasi-uniqueness, under the assumption of the validity
of the Riemapn-Diltz conjectnre. Here we prove this assertion without
any unproved hypothesis.

TrnoreM. There 4s a numerical constant K with the following property:
If f(n) is a completely additive number-theoretic function such that f(p) = 0
Jor p <L K amd f(p-+1) =0 for all primes p, then f(n) = 0 identically.

The proof is based on Bombieri’s result in the theory of the large
sieve.

2. Notation and lemmas. The letiters p, Py, Psy ...} q, g1y -.-3 ¢ stand
for prime numbers. Let ¢, ¢, ... denote numerical positive constants,
£, 81y ..., 8, 8,8 sufficiently small positive eonstants, not necessarily the
game ab every occurrence. O(...) denote constants which depend only
on the values stated in the brackes.

Let

me, k)= M 1.
Pl
p=lmod k)
Tor the proof we need some lemmas.
Lusonva 1. Let N(w, &) denole the number of the couples of primes
satisfytng the conditions p+1 = kg, p < o Then

(1) N(x, k) < a

< k<m.

Tor the proof see [3), p. 51, Theorem. 4.6,

LEMMA 2 [3]. Lét 86> 0. Then for k<o’ (L, k) =1
m
2 _—
(2) w(@, &, 1) < C(9) (logs
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Tmyma 3. Let 2 = Q2(logQ)®, Bz 44440, A, B being arbitrary
positive constants., Then

(@, 4y —1)— | < 0(4, B)- (@ = o).

a).“__..._
g—1 7T (log @)
This is an immediate congequence of Bombieri’s theorem. ([L],
Theorem 2).
3. The proof of the Theorem. Let @, be a large eonstant, @ == 2",
I, =1[1,Q], I = [@1, @] (1= 1). Let & be a sel of prime numbers
in the interval T; defined by induction ag follows. &, is the empty web.
Agsume that &y, ..., Pp_y are defined. Then &, is the set of those primes
gin I, for which there exist no k and p satisfying the following condition:
(A) p+1 = kg, the pa’ime factors of % ave all smaller thon G, and
do mot belong to the set U Fi

=0
Let &; be the number of elements of 7.
First we prove the following
Temva 4. For sufficiently large @, we have

&
(10gQ1
_ Proof. Since &, is an emphy set, (4) holds for ! = 0. Supposc that
(4) holds for I = 0, ..., m— L. Applying Lemma 3 by choosing ¢ = (.1,
A=4,8B=100,2 = Qpn_, {1080, 1)1% we have

(8)

Q=20

(4) (t=0,1,..).

{3) (@, g, _1)_(]-"“1
Cin—159<p,
Hence it follows that
3 ®
—1 e
(6) w(®, 4, ) > 4 qlogw

for all gel,, oxcept at wost @, /(logQ,)s
Now we prove that the validity of (6) implies that ¢¢. & p. Tndeod,
let Il{x, ¢) denote the number of those p < ® for which (A) holds. Then

(M Do, ) za(e,q, —1)— 2y — L,

where 2, dencte the number of those primes p << @ for which p -1 = kg
and & hag at least one prime factor not exceeding @i, which belongs
to (J & &y denotes the number of those p < @ for which, in p~-1 = ky, b

F=0
hag & prime factor greater than Q3% .
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I¥ » oceurs in 22, then p--1 has the form p-+1 = jg:q, where
< 2/(9g1) < @™ < o, say. Consequently by (1) we have

Ire 1 @
X, < E Nz E ey d— e,
2 == ( 1JQ)\ Gy glog3 99(.7) %% 6y glogm

?-gmza
Choosing 8 < efe, we obtain

(8) T, < e

gloga
Furthermore we have

I Z 7 (w, gq', —1).

(l'tlzjyz
. Q"<~Q:1:f_§1
By Lemma 2 we deduce
liw 1
<000 _2 < 2019) 1"”~ 5
= Q é@,,lm ﬁl 7'es - glo8% VI Q.
it @, is g0 large that Q. ., > Q. Assuming (4) for 1< m—2 we have
5 1 "
9 2 <206 .
o ’ (0) qloge Ld y (log@,+v)? < qlogw
Consequently choosing a small § and after this a large s, we have
1 2
10 z,
(0 T 4 qlogm

Hence we infer that (6) implies II(x, ¢, —1) > 0, i.c. that q¢Fm.
Thus (4) holds for I == m. Thiz completes the proof of Lemma 4.

Now we begin the proof of the Theorem. Let f(n) be a completely
additive function satisfying the conditions stated in the Theorem with
I > @y, where @, is such a large constant as is implied by Lemma 4.

First we prove that flg) =0 for all ¢¢ | %n. Indeed, this holds

={

for ¢ <t,. Assume that

(11) flg) == 0 for all gel;, ¢ 5 for j<<m—1.

Let geli, ¢¢ %m. Then there exists a p such that p+1 = kg for
which & = piL... o3, 90 << Qu_v, Pi gjblu‘f’,- t=1,...,7) Hence f(%) = 0
and thus 0 = f{p-41) = f(k)+f(g) = flg) tollows. This proves (11) for

j:m.
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Finally we prove that f(g) = 0 for all g¢(J & (=) i @y is saffi-
Tenl)

ciently large.

Let P(y, ¢) denote the number of those p <Iy for which p--1 == kq
and the prime factors of % do not belong to 7. We prove that Iy, ¢) = 0
if y is large, whence f(¢) = 0 follows.

Indeed,
(12) Ply, q) = a(y, g —1)— D aly, ¢'q, —1).
i
TFor large ¥ we have
. 1 Y
(13) w(yy gy —1) =5

2 glogy
Furthermore by Lemmsa 2
et , Cy 11 W o
TR e UL NS

= glogy q q
@es 4i0eY 75 4 1 Y ey 4
v<yja Gy waF

Since 3 1/¢' < & with large @, and

TeF
vl 11
— logy max e B e
oéJ ’ (\'}]“-:-1}1./‘2 o q, 10{—32?/
Wil <t ] 2
we have
- 1
3 e— H———————

4. ' qlogy

Henee, by (12), (13), P{y, ¢) > 0 follows. This completes the proof of the
Theorem.

4. The constant K in the Theorem is non-effective since (4, B)
in Lemma 3 is non-effective. It would be very interesting to prove the
Theorem with effective K since thiz would give a possibility to deeido
with numerical calenlation whether 2, is a sel of uniqueness or not.
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A method in diophantine approximation (I¥I)*
by

CrariEs T, Oscoop (Washington, D. C.)

Introduction. We begin by giving the hypotheses and statement
of a regult, called Proposition I below, which was stated and proved in [2]
nsing slightly different notation.

Let D denote differentiation with respeet to the complex variable
2, let 1 be an integer grester than one; let each g(e) for 1 <i<1 he
a polynomial of degree less than j with eoefficients in the Gaussian field.
Suppose that we are in a simply connected region D where a () is analytie
and that m,(2), ..., m,(2) are »n = 1 solutions of

i
(1) miz) = 3 g:(2) D'm )+ alz)

which ave analytic in some open disk ¥ = D about 2, on which g(z)
does not vanigh, Suppose 2, belongs to N and z, is a Gaussian rational.
Let % be a differentiable path in D with endpoints at &, which does not
pass through any of the zeros of g(z). Suppose that m,(2) # m(2),...
wev, Tp(2) 5= m,{2) are the function elements, analytic on N, obtained
by extending m.(2), ..., m,(2), respectively, along % and back to 2z, and
that 9, (2)—my(2), ..., My (@)—m,(2) are linearly independent over
the complex numbers. Let

d = 1na;;{..‘..cjlfg_9.'?'_(f.)_}‘
i Ui—degg;(e)

Let {a|, for any complex number «, dencte the distance from « to the
neprest Gaunssian integer. Let (4., ..., 4,) denofe any nonzero element
of the Cartesian product of the Gaussian integers with thernselves »
times.

* This paper was written while the author was on a postdoctoral Rescarclh
Associateship at the National Burean of Standards, Washington, D. C. (This award
is given by the National Bureaun of Standards in association with the National
Academy of Sciences and the National Resemrch Couneil.)



