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Finally we prove that f(g) = 0 for all g¢(J & (=) i @y is saffi-
Tenl)

ciently large.

Let P(y, ¢) denote the number of those p <Iy for which p--1 == kq
and the prime factors of % do not belong to 7. We prove that Iy, ¢) = 0
if y is large, whence f(¢) = 0 follows.

Indeed,
(12) Ply, q) = a(y, g —1)— D aly, ¢'q, —1).
i
TFor large ¥ we have
. 1 Y
(13) w(yy gy —1) =5

2 glogy
Furthermore by Lemmsa 2
et , Cy 11 W o
TR e UL NS

= glogy q q
@es 4i0eY 75 4 1 Y ey 4
v<yja Gy waF

Since 3 1/¢' < & with large @, and

TeF
vl 11
— logy max e B e
oéJ ’ (\'}]“-:-1}1./‘2 o q, 10{—32?/
Wil <t ] 2
we have
- 1
3 e— H———————

4. ' qlogy

Henee, by (12), (13), P{y, ¢) > 0 follows. This completes the proof of the
Theorem.

4. The constant K in the Theorem is non-effective since (4, B)
in Lemma 3 is non-effective. It would be very interesting to prove the
Theorem with effective K since thiz would give a possibility to deeido
with numerical calenlation whether 2, is a sel of uniqueness or not.
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A method in diophantine approximation (I¥I)*
by

CrariEs T, Oscoop (Washington, D. C.)

Introduction. We begin by giving the hypotheses and statement
of a regult, called Proposition I below, which was stated and proved in [2]
nsing slightly different notation.

Let D denote differentiation with respeet to the complex variable
2, let 1 be an integer grester than one; let each g(e) for 1 <i<1 he
a polynomial of degree less than j with eoefficients in the Gaussian field.
Suppose that we are in a simply connected region D where a () is analytie
and that m,(2), ..., m,(2) are »n = 1 solutions of

i
(1) miz) = 3 g:(2) D'm )+ alz)

which ave analytic in some open disk ¥ = D about 2, on which g(z)
does not vanigh, Suppose 2, belongs to N and z, is a Gaussian rational.
Let % be a differentiable path in D with endpoints at &, which does not
pass through any of the zeros of g(z). Suppose that m,(2) # m(2),...
wev, Tp(2) 5= m,{2) are the function elements, analytic on N, obtained
by extending m.(2), ..., m,(2), respectively, along % and back to 2z, and
that 9, (2)—my(2), ..., My (@)—m,(2) are linearly independent over
the complex numbers. Let

d = 1na;;{..‘..cjlfg_9.'?'_(f.)_}‘
i Ui—degg;(e)

Let {a|, for any complex number «, dencte the distance from « to the
neprest Gaunssian integer. Let (4., ..., 4,) denofe any nonzero element
of the Cartesian product of the Gaussian integers with thernselves »
times.

* This paper was written while the author was on a postdoctoral Rescarclh
Associateship at the National Burean of Standards, Washington, D. C. (This award
is given by the National Bureaun of Standards in association with the National
Academy of Sciences and the National Resemrch Couneil.)
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ProrosITION L. For each = > G there exists a e(e) > 0 such thet

max{”ZAh (e (21) — (1) H} rmn{lflil @iy

0f<1

for all (4, ..., 4,).
Tf % =1 and m,(2) = m(2) the above result may be rephrased ag:
CorortARY. There ewisis ¢(e) > 0 such that

I (s (2,) —

maX{ };‘-20(*)@ (440

?
(B m(zl)) q

Jor oll Gaussian integers p and ¢ with ¢ = 0,

{Note that if { iz zero or one then the requirement that degm, (2) < 7
for each j forces the g;(2) to each be congtant so all golutions of (1) are
analytic and Proposition I and the Corollary are vacuously true.)

‘What we wish to do in this paper is investigate the structure of the
get of funections m(z) which satisfy an equation of type (1) with 120
where D is an appropriate sort of simply conneeted region X. If we assume
that X is bounded and starshaped around zero and restrict ourgelves
to functions m(z) which are “nicely behaved” on such a region we uncover
an interesting algebraic structure, which has number-theoratio applications
in light of the Corollary above.

Additionally a result drops cut of the machinery developed to uncover
this strueture which is both interesting in its own right and helpful in
ghowing that the restrietions on X assumed throughout the reraniner
of this paper are not as limiting as might be supposed. Thig result is:

Prorosieron IL. If in the Corollary we weaken the hypotheses by leting
the ¢;(2) have algebraic coefficients and letiing 2, be algebraie, then m(2--24)
satisfies the hypotheses of the Corollary for a new N conmmmg zero, fm“
D shifted by —=z,, and for some new 1 and collection of g;(2) (L)
belonging to Q[i, z]. Hence the conclusion of the Corollary holds but for,
in general, new constanis d and 1,

(The proof of Proposition Xl is in the text of the paper.) Proposition IT
helps to justify the restricted situation which we shall deal with in the
balance of this paper, where X is o bounded region starshaped ahout
zero in which the only possible singulaxr point of m(2) is zero. In the situp-
tion of the Qorollary let w be any singular point of m(e) in J. Then w
is & zero of gi(e) and, henee, slgebraic. Choose 7, & rational number, such
that w--# belongs to D and is not-a zero of g(2). We see npon applying
Proposition II that m(z+w-r) satisfies an equation of type (1) with
a(#) analytic on D— (w-7). Now translate equation (1) by » and we
have placed the singular point at zero. Any point # of D~ such that the

icm
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ray from. zero to z lies entirely in D—w and does not contain any singular-
ities of m(2) may be included in a hounded region .X which is starshaped
at zero and such that zero is the only singular point of m(z) in X.

(Further Proposition II allows us to obtain the following result:
if in the hypotheses of the Corollary some unique g;{#) appearing in (1)
ig of highest degree then m(z)—m(z) = 0 can not have a power series
expansion with only Gausgsian rational coefficients about any regular
point in X. We see immediately that this “holds for all regular algebraic
points in X. ¥f 2 = « is a transcendental number in X, then for some
appropriate non-negative integer N the relation

DY (1= gy ) (i) —
7=1

implies that « is a root of a polynomial of degree max{degy;(2)}. Since
i

m(z)) =0

m(z)—m(z) = 0 we have max{degg, ()} = 1. Therefore gome derivative

~

of m(e)—m(e) is tmnqcendenml at # = ¢ and we are through.)

‘We now make some definitions and give some observations before
gtating the theorems of this paper.

DerNrmIoNg. Let § denote the rational numbers. Let ¢ denote the
complex numbers. Let X denote a bounded starshaped region about
zero. Let I be the Riemann surface over ¢ corresponding to logz. Let ¥
be the Riemann surface over X corresponding to logz. We regard ¢ — {0}
and ¥ as embedded in L. Note 0 ¢L.

Tf o function is analytic on X we say that it Aes property A. If it is
analytic on ¥ and is bounded on every finite angular sector in ¥, i.e.
any set of the form {z/2¢Y and o< argz << )}, we say that it has pro-
perty B. We nse “regular singular” for “at worst regular singular”.

Let Ry be the set of all functions with property A which satisfy
@ linear differential equation of the form

-1

Zh; (D)(D)r(2)

where « > 0 and each. k(D) belongs to @[, D]
Tet B be the set of all functions 7(2) with property A which satisfy
2 linear homogeneous differential equation with coefficlents in Q[4, 2]
that has a regular singular point at infinity (possibly a regular point).
Tet My bo the set of all functions with property B which satisty
a linear differential equation of the form

Z gi(z).0

Feal

2) (D2)r

3) m(z) = m(z)- alz),
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where each g;(z) belongs to @[, ¢], degg;(#) < j for each 7,120, and
a(z) hag property A.

If fi(=) has property A and fi(2) has property B we define fy(2)%f,(z)
on ¥ by

Al@pfate) = [ file—t)falt)dt
Q@

where the path of integration is the ray from zero to 2.
Observations. It iz clear that fi(2)*fy(z) i3 Bounded on any finite
angular sector in ¥. Suppose 2, belongs to Y. Then there exists o region

Iy = {gel| 0 < |2] << 7 and ay << arge <2 a1}

which containg 2, and is contained in ¥. Denote the region in X {0}
over which IT, lies by f7;. Choose #, = 0 such thab N = {zell| i2] < »,}
is contained in X. It is always possible to choose

Iy = {2eX| 0 < 2| < 7 and f§, < arge<< f,} < I7]

containing z, such that I7;—1I7;, the set of all differcnces of eloments
of I7;, is contained in /7, w N. Suppose Il, < I7,, lies over IF; on ¥. Then
f1(e—1) is analytie on J7,xI7,. Hence on If, we muy replace the Y
from zero to 2, by any ditferentiable path which lies totally in /7y, except
for the initial endpoint zero. It is now easy to set up the difference quotient
and calculate the derivative of f;(2)«f.(2) in I7,, which equals

(Dfs (@) *fa(2) + F1(0) fal#).
Therefore f,(2)*f(2) has property B. If f,(2) has property A, of course,
then so does f, (&) xf,(2).

We shall prove the following two theorems about the algebraic prop-
erties of RF,R'y, and M.

TurorEM L. (a) By is o ring under x and -,

(b) R¥ 18 a subring of Ry.

(c) Ry is also @ ring wnder multiplication of functional velues and ..

(d) If we replace Q(¥) by any finite eatension of Qi) in the definitions
of By and By we obtain the same sets.

Temorem L. My is an Ry module under k.

Exameres. Given o linear differential equation with coefficients in
@i, 2] whieb has a regular singular point at e, in Qi) and which has
& regular point ab 2,427 in @ (4) we let 2 = 2o+ (21— w)™" and see thut
the transformed equation has a regular point at zero and & regular singular
point at infinity, Let X be any region which is starshaped aboutb zero

and excludes the singularities of the transformed equation, Het m(w)-

icm
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= }sin Ve, observing that m(w) = —2Dm(w)—4wD2?m(w). Then m{w)
belongs to My. By Theorem II if f(2) was any solution of the original
equation then §f{e,-+ (2;—w)™")*sin Vw belongs to My. Choose w0, to
be a nonzero Gaussian rational in X. Tet ¥ wind once about zero. By

the Corollary to Proposition I we conclude that f(z+ (2,—w) "}#sin Vw
has at least one non Gaussian-rational in its power series expansion abous

;. Instead of sin ]/170 we might use
logw. ,~ -
glm) = == ) T, (V)
2T -
where J,(w) is the Bessel function of order one. Note that Vwd 1(]/?::)
satisfies the differential equation

Yy = —4wD?y
80
glw) = —4wD*g(w)+a(w)
where
a(w) = 4wD{(2mi V) T (V) -+ 4{(2mi) " DV, (V w)))

is an entire function. Thus proceeding as above we conelude that
Fleo+(a—w) ) (w0 T2 (V)
has a non Gaussian rational in its power series expansion about w,.

Also we note that m(z) = f(z[,—}—(zlww)‘l)*(]/le(]/w)) itself satisfies
an equation of type (1) with «(2) = 0. Thns we may apply the Corollary
with D = (. The different analytic continuations of our new m(z) from
X are given by the infiegral

-4

[Vat 7,0Ve=0)fls+ (er— 1)) @t

Q
where the path must only avoid the singularities of the function from Ry.
If X is {2 |2l < §} then (2—1)" and (2—2)"* each Dbelong to Ry; hence
50 does {z—1)Y(z—2)"", Now

fl/:z:_tJl(l/m)(twl)i(tﬁﬂ"ldt

has Dranch points at 2 = 1 and 2 = 2 and the difference hetween two
branches is of the form

[Ve=ta(Ve=t)(1—1)'1— 2" dt,

where the path of integra.tinﬁ winds arvound the branch pointg 1 and 2.
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Theorems I and IT were suggested by study of the effects of Laplace
transforms and inverse Laplace transforms upon some of the functions
wnder diseussion. The Laplace transform is not used in our proofs because
of convergence problems. However, it could be used to formulate & differ-
ent proof of Theorem I (b).

Seetion 1.

LumMA L. Ry 4s the set of all elements of Ry which satisfy an equation
of type (2) with degh;(D) < a—j for each j.

Proof. First we shall show that any equation of type (2) with
degh; (D) < a—j for each § has o regular singular point at infinity. Note

that Dz = 2D -1 so we rapy rewrite (2), under these conditiony, ag
a1
(eD)'r(z) = 3 Iy (D)(=D)'r(z)
J=0

for some new set of A (D) in Q[i, D] with deghy(D)< a~j for each j.
‘Now get w = 2. We note that 2D goes into —w.D and D goes into —w?D.

This gives
(— wa

Fual

—w? DY —wDY r(w),

and uging Dw == wD -1 repeatedly we ohtain

(2 by (o

for a seb of & (w) in Q[4, w]. Tt follows from examining {4) that the coeffi-
cient of D*r(w) equals (—1)“w"— k,(e0)w" ™ for some k.(w) in ¢4, w]
and that each coefficient of each D'r{w) vanishes to at leagt the order j
at zero. Then zero is a regular singular poinf, so infinity was a regular
singnlar point of (2).

Now suppose that r(w) satisfies a homogeneous linear differentinl
equation with coefficients in Q[4, w] which has a regular singular point
at zero. Setting 2z = w™" we wish to show that »(2) satisfies an equation
of type (2) with degh;(D) < a—j for each j. Buppose that we write the
equation satisfied by r(w) in the form

(4) (—wD)* (DY 1 (10)) -+ 10k, (10) (s D) ()

Zp;(w (wDY r(w)

LRSI

2p(t) (wDY'r(w) =

for some # > 0 where the py{w) are in Q[i, w] and pa(0) is nonzero.

Change variables to 2z = w™! obtaini11g
Pale ™) (— 2DV r(2) = Zzof J(—eDYr(z).
J=0

icm
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Let t be the maximum of the degrees of the p;(w) for 0 <j < f. Then

5} ps(0) D'd(—2D)f
B—-1

= D' ) dpy (57 (— =D

Vr ()| — D'& [pte™")— ps(0))(— 2D)’r (2).
7=0

Setting « — 4t and using 2D == Dz—1 repeatedly we may put (5)
in form (2) with degh;{D)< a—j for each j.

Derrvrrrons. If i(D) belongs to the n by n matrices over @ [4, D]
then degh(D) denotes the mazimum of the degrees of its components.

Let By be the sebt of all component funections of all » by 1 matrix
valued functions {for » =1, 2,...) with property A which satisfy an
equation of type (2), where the k(D) belong to the n by » matrices over
Q[2, D] and for each j, degh;(D) < a—1. Clearly Ry = Ry.

Let

(6) A;(z) D'y =0

.N??

i=0

I

be any linear homogeneous differential equation with coefficients in the
n by n matrices over @[i,2]. If each 2 *(di(2)) " 4i(2) is analytic at
zero for 0 << i<k we say that (6) has a regular singulayr point ot zero.
I we set w =2z in (6) and the transformed equation hag a regular
gingnlar point at zero we say that (6) has a regqular singuler point at
anfinity.

Let Ry be the set of component functmns of all » by 1 matrix valued
functions r(2) {for n =1, 2, ...) having property A and satisfying a linear
homogeneons differential equa.tion with coefficients in the # by # matrices
over @ [%, 2] that has & regular singular point at infinity. Clearly Ry = Ry.

LemuMa II. Ry = Byp.

The proof iz the same as the proof of Lemma I, except now the
(D), & (DY, and p;(D) (j = ) are matrices., We choose pg{w) as the
smallest degree monic polynomial such that each p;(w) has components
in Q[i,w), for 0 <j < f—1. '

DerrxiTioNs. Let By be the set of component functions of all »
by 1 matrix valued funetions »(z) (for n = 1,2,...} with property A
which satisty an equation of type (2) where the A;(D) belong to the n by n
matrices over Q[i, D). Clearly By = Ry.

Let: 3 be the set of all component functions of » by 1 matrix valned
funetions m(e) (for #» =1,2,...) which have property B and satisfy
a linear differential equation of form (3) where each g;(2) beloEgs to the
n by » matrices over @[%, 2], and a(e) has property A. Clearly My 2 My.
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Lunva TIL. (a) By = Ry, (b) By = Ry, and (¢) My == My,

Proof. (b) We notice that in equation (2) we may apply Dz to the
equation and obfain, after simplification, another equation of the same
type with a-+1 replacing «, whether equation (2) i scalar or vectior.
Applying Dz, (D2), ... to (2) we obtain a sel of equations which allows
1§ to express each (D2 (2) (1< h < w) as a sum of ferms of the form
a polynomial in D times (Dz)'ry(z) for 0<j<a—1 and 1=5k=n
Therefore, the funetions (D2 #y(2), for NV =2 0, are.contained in a finitely
generated module over (he Noetherian ring @i, D). By the ascending
chain condition on finitely genmerated modules over a Noetherisn ring
we see that for some W, ('Dz)N 7, (2) may be written as a linear combination
over @i, D] of the (D2¥ () with 0 < § < N. This proves (D).

(2) We use B = F. Recall from the proot of Lomma 1L that awy
veotor differential equation with coefficients fn the # by » madrices over
Q[i, ] which has a regular singnlar point at zere mwy be written in the
form. ’

-1
(7) plw)(wD)'r(w) = D piiw)(wDYr{w)
el

where each p;(w) (0 <j< f—1) belongs to the n Dy = matrices over
Qi, wl, plw)e@i, w]l, and p(0) = 0. Applying wD repeated to (7) we
may express each p(w)(wD) N ry{w) (1< h<in) ag o linear combinution
over O[5, w] of the (wDYr(w) for 0= j< N4-4 and 1=k im Using
all of these equations we may expross each (p(w))™ ™ (W)™ Pr(w) us
a linear combination over @[, w] of the (wDYry(w) (with 0 =7 f—1
and 1< k<n) for ench N = 0. By the ascending chain condition we
conclude that for some N = 0, (p(w)"V " (wDy * r,(w) may be written
as 2 linear combination of the (wD) vy (w) (for 0« j < N--fi) over Q[7, w]l.
This equation hag a regular singular point at zero. A change of variables
proves the corresponding statement about regular singulaxr points ab
infinity.

(c) We assume that we are working with the vector verston of (3).
Ditferentiating both sides of (3) N times we obbain

I
(8) DY) — DV afz) = 3 Ioy(¥, 2) DV m(z)

Fei

where each &, (N, 2) belongs to the #» by » mafrices over the Noetherian
ring Q[1, N, 2]. We use (8) to write, formally, D" my,(2)—(a funetion with
property A}, DYy, (#)—{another function with property A), ..., as alinear
combination over ¢4, N, 2] of the p+ m(2) (L j 1 and 1= b=l n).
By the ascending chain eondition we then have for some positive integer

icm
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A, formally
i, .
DY () = 3 (N, ) DY (1) 45 (I, 2),
i=1 ‘

where each p;(V,2) belongs to @4, ¥, 2] and 5(N, 2) has property A.
If ¥ > A then the above relation is valid. Replace N¥—A by N where
now N = 0. The_n

i

(9) DVmu(z) = Y g N, &) DV (2) +-a (¥, 2)

by
where each ¢;(¥,2) belongs to @i, NV, 2] and a(N, ) has property A
i
for each I = 0. We wish to replace 3 ¢;(N,2) DV my(2) by DV times
= _
a particular N-fold indefinite integral of 3 g;(N,2) D" ma(s). Let us
J=1

first define

- (z_t)f—l

D m(2) =0f TRk

for each r > ¢, where the path is the ray from zero to z. Now given any
expression of the form p(z) D°ma(2), Where p(e) is a polynomial in # of
degree d and o is any integer, we define T by
4
Tp (2) Dma(2) = 3, (— 1) (D'p(2)) D omy (2),

=0 :
and extend 7 by linearity to the space of all sums of terms of the form
pl&) Doy (2). If N is any positive integer we have then

d
T p@ D) = (=1 T D) 0 ).
f=t ’ .

Now (9) may be rewritten as

(10 Dy () = DV ( 3 s, ) D'ma(a)) +a(N, 2)

j

A
= D7 ([ 3 (¥, ) Do)+, 2),
f=—k
tor some %3 0 and a set of (N, ) in Q[4, N, #]. We may rewrite (10)
in the form

. a A
(11) DNWLH(Z) - Z (N‘|‘3) v (N 1) bl ( Z'J"s,g‘(z)pimh(_z)) —|—CE(N, 2)

1
rEY 8 =—

where each r,;(#) belongs to @4, 2] and § iz some non negative integer.
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Our immediate objective is to replace the sum on the right gide of (11)
by @ sum of terms similar to those now appearing there, but with poly-

nomials in z replacing the (s e o N as coefficient Functions.
We notice that .
(12) pieg = g W (7‘:"7 LR py e,

. !
80 , -%

N _ N.-8,9 > N
(13) DV m(2) —gl) 2 (j%cv,,,,(z)p mh(z))
RS {(I\H—s N4+ 1=) oy
el Ll

2

(1)"””’ Z 73 (2) D ’mn(z))} +a(N, 2).

Feam i

Now the term in curly brackets in (13) is of the proper form for us to
apply (12) again. After at most § uses of (12) we obtain for a new value

of A
(14) DY (2 Z’z‘“DN{ Z U (&) D ()} + a( 2)
]_'I— ir
where y > 0 and the U, ;{2} are in @ [7, 2]. Wenow show that deg U, (@) < §

for each s and j. Suppose not. Let o wmax{deg Uyile}—it 2 0. Let

the maximum value of j occmrring in {(S,j | deg Uy y(#)—7 = a} be b.
Let ¢ be the maximum value of s oceurring in {(s, b)| deg U, u(2)—b == a}.
Porforming all the indicated differentiations in (14) we see that up to
2 nonzero coefficient in @ (4) we obtain a term of the form

s N (F—bt1)
z

1 DY %, (2)

on the right hand side, and no gecond term of thig type can ocenr
to cancel it out. But, after performing the indicated differentintions,
the right hand side of (14) must be identically equal to the right hand
side of (9) where no such term appears. Thiy proves deg U, ,(2) < j for
each j. A consequence is that nonpositive values of j may not appour
in (14) so

(15) N (2 Zz DN{): s 1(2) Doy (2 )}+a(N, 2).

Sral) Faml

icm
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We now show that if s = 1,

A

{2 Uy (2) D oma (2)}

J=1

has property A, for each nonnegative value of N. Differentiating (15)
and gabtracting from this derivative (15) with & 1 substituted for N
gives

(18) Zsz ‘1DN{2 U,y (a) Dy (2 )}

LES

hag property A. Now differentiate (16) and subtract from this derivative:
(16) with N1 substituted for N. Continuing we obtain the result that

each.
A

DY 3 Toy () D' ma(2))

F=1

has property A, for each s> 1. Set NV = 0 in {15) obtaining

(17) mp (2) = E Usi () D () + & (0, 2) -+ a ()

J=1
where deg U, () < j for each j and () has property A. This completes
the proof of Lemma ITT.

We suppose that f,(2) has property A and f,(#) has property B below.

Layma IV,
z(fl(z)*fz(z)) (zfl(z )*fz(z )+ fi(2) (fifz )
(b) -D(f1(z #fa(2)) = (Df1 Nafa(e)+f1(0)fa(2), which equals fi(2)*
(Dfa(2))+F,(2)f2(0) if Dfa(z) has property B; and

(¢) De(fule)xfu(®) = (Dafs(2) wfale)--fo(2) %[ Defole)), o Dfule) has
property B.

Proof. {a) This is trivial. (b) The second part of this follows upon.
-
using integration by parts on [ (Dfi(e—#)f.(t)ds. (The first part was
0

covered under Obgervations in the Introduction.) (¢) Use (a) and (b). This
proves Lemma IV. _

We agsume below that r(z) satisfies an ath order scalar differential
equation of type (2) (alternately, with the extra condition degh; (1)
< a~§ for each j). Let 7(2) be the a+ 1)(e)/2 by one matrix consisting
of the component functions DY (D2)r (), for 0<<it+h<<a—1.

TEMMA V. Then #(z) satisfies an o-th order vestor differential equa-

tion of type (2) (alternately, with deghy(D) < a—j for each j).
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Proof. Let ug write {2) as

5 pra 0t

gzz0 8=0

{alternately, with q—l—s a) for a set of Gaussian rational f,.. Operate
on (18) with D(De)" where 0 < ik < a—1. We notice that

DD (D2)*r(z) = (Dz)* D' D2)r(2),

plus terms involving k4 a—0 factors of 2 and i+ k4 a—0 Inctors ol I}
where 1 < 0 < «. The terms on the right hand side of (18), after operating
with D'{D2)*, each have k-+s factors of « and (¢-49)-- k¢ factors of 1)
oceurring. Writing s = a— 0 where 1< 0« o, they have k|- a~ 0 factors
of 7z and q+4-i--k+a—8 factors of D for O 0+ a (alternately, 0 ¢
< 0 < a). Consolidating terms above we Inay wrile (f)z)"(.l')"‘(J)z)""f(z)),
as a sum of terms involving k--a— 0 factors of z and (‘rj e &) ol B o
factors of D where 0< 05 ¢ (alternately, 0 g« 0:a). Using 2D
= Dz—1 repeatedly we attempt to write (Dz)“( ('ﬂd)’cr(,u)) a8 o g
of terms each having a factor of (Dz)™* directly in front of r(2). If this
fails in a particular term we have run out of factors of 2. Thus, more
generally, we attempt to place D*'~ YDz divectly in fmnt of r(z) for
0 < t< a—1. This lather procedure can only fail when we run out of
powers of D. In this case only, we obtain terms of the form D (D) (2)
for 0 < @< a~1-—1 Otherwise our procedure doos noti fail and we
continue, using 2D = Dz—1, to obtain a sum of terms of the form
DY (De) (D (De)friz)) for w0 and vz 0 where if t< a—1,0 = 0.
(Note that the total nurober of factors of D oceurring above (n.n 1od;
be greater than ¢-+¢+ k- a— 0 which, alternately, is less than or equal
to ¢+ k+u< 2e—1. Thus in this case w+o< ) Now writing the
above equations (for each ¢ and % in the desired range) in matrix form
gives the desired equation.

{18) (D2)"r (2) =

3

Section II.

Proof of Theorem I We note (see Observations in the Tntroduetion)
that property A is preserved under -- and *. Also, by Lemma X, By 2 -
Thus we need only show closure of Ry and R}, respectively, under |-
and *. Because of Lemmas IT and EIT we need only show that the gumg
and products lie in By or By = R}, respectively.

Suppose that ,(2) and r,{z) are in Ky (alternately, R3-). Wa shall
" ghow that using matrix block notation

() F14(2)
ry(2)

75(7)

r(z) =

icm
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satisfies an equation of type (2) (alternately, where degh; (D) < a—j
for each j). Applying powers of Dz to the equation satisfied by r (2) or
r3(z) we see that we may take a¢; = ¢, = . Then

(D2)*ry(2)+ (D) ry (2)
(D2)"r,(2)
(Dz)ry(2)

(D2)'r(2) =

Each of the rows on the right above may be expressed as a sum of terms
of the appropriate sort, using the equations of type (2) for 7,(2) and r,(2).
This proves closure under --.

Keeping v((2), rs(2), and « as above, form 7,(2) and F,(z). (See the
paragraph before the statement of Lemma V.) Then by Lemma V, 7, ()
and 7,(#} each satisfies an ath order equation of type (2) (alternately, with
degh; (D) < a—j for each j§). Let 7 (2)*7,(2) denote the column vector
of all possible convolution produets of the form a component of 7, (z)
times 2 component of 7,(z), Let (jD‘V v"l(O)) 7.(2z) denote the column vector
of all possible ordinary products of the form a component of D'F(0),
for any 0-< j < ¥ (where & will be determined later), times a component
of 7,(2). We detine 7,(z)(D"F,(0)) analogously. Using matrix block no-
tation define the column vector ¥(2) by

Fi(z)* Fy(2)
(DY7,(0)) 7 (2)
F1(2) (—DN?W"z (0))

Operating on 7(z) with {Dz)* and applying Lemma V, we see that the
bottom twe blocks of rows of (D2)°% (z) may be expressed as a sum of
terms appropriate for an equation of type (2). A typical element of
Fo(2)#iy(2) In (D¥(De)r,(2)) % (D°(De)ry(2)) where a,b,c, and 4 are non-
negative integers satisfying a+b< a—1 and e+d << a—1. Operating
on a term of thiz form with (D2)" yields a sum of terms of the form (see
Lemma IV (c))

7(2) =

((D2)"=. D% (De) 7y (2)) #{(D2)" D (Da)ra(2))

where 0 < ¢ < . We may write each term of this sort as a sum of terms
of the form

(D% (De) v, (2)) % (D° (D) 74 (%))

where ¢+f < a-{a—e+b) < 2a—1—e¢and c+g<et-(d+e} <L a—14e
We show thm in general we may take f<a—1 and g<<a—1. To gee
this rewrite (Dz) 7, (2) (or (Dz)'7,(2)) using the equation for v,{z) (or 7,(z))

Acta Arithmetica XVI1
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a sum of terms of the form
(D4(D2) 74(2)) (D" (D) s (2)

with f< e—1and ¢ < a— 1. If r, () and 7y(2) belong .to Iy then Wo shill
have a4 f< 2a—1—eé and e-+g < a—1+e6. Otherwise we merely kn_nw
that we may pick N = 3a—2, depending on the degrees of the jpol'ynmm‘uls
hy(D) appearing in the equations for ry(z) &n("l ?’%(3)! H‘a(i}‘l that o J»H__
o--g< N. This specifies oux N in the definition .ni‘ ¥ (). A'pplymg
Lemma IV (b) repeatedly (use both formulas) we obtain terms which are
derivatives of components of ¥ (2) appearing in the bottom two bloeks
of rows and a term of the form

D' {(D" (D) (2)) % (DF (D) 1 (2))}
where h+f< a—1, b+g < a—1, and j < max {0, a--fto-f-g—2 (a—;:L)}
(Alternately, j< max{0,a+f+c+g— 2(a—1)} = max {0, u} == a.) This
proves Theorem I parts (a) and (b).

Part (). Suppose ri(2) and ry(2) belong to Ry. We may assune
without loss of generality thatb for some a2z 0

3 ‘ l
PP (2) («D)'r, (%) = Z pi2) (2Dy (z) ,
B

N 1
o (E) = Napeenrin})

where pt(¢), p™(z), each p{)(2), and each p{’(z) helong to Q[i,#] and
P (2)p® (2) does not vanish at zero. Then the module over @[7, 2] goncr-
ated by the elements of

{[P“’ @) p® ()T (DY ry (%) 7, (_i'_), for each N = 0}

is finitely generated. By the ascending chain condition we have for soroe
Nz=0

e @ @ (3) )

?

= 5] Q)" @p® @)V (D) 7y (1) w(1)
J=al

for a set of Qs(e) in @[7, 2]. Thus wl(z)fa(z) helongs 1:0. Jffﬁ&r.
(1) We have shown that Ry = By and Ry = By, Suppose thal
the (D) in (2) are in K[D] for some K with [K:@(4)) < sc. Choose

icm
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a basis 1 = w,, ..., w, for K over (i) and write an equation of type
(2) for the column vector (w;y), 0 < j<n, with coefficients which are
matrices over Q {4, D]. Then w,y = ¥ belongs to Ry = Ry or By = Ry.
Prooi of Theorem II. From Obgervations in the Introduction
we recall that if r(2) has property A and my(2) has property B then
#(z)xmy(2) hag property B. Also, by Lemma 11T, Hy = Myp. Therefore,
all we must show 18 that if m,(z) and m,(z) belong to My and »(2) belongs
to Ry then m,(2)-+ m,(2) and »(z)xm () belong to My.
Sets
M1 (2) + My (2}
miz) = my(2)
M (7)

Using the equations of type (3) satisfied by m, (2) and m,(2) we may express
m(z) as a sum of terms g;(z) D'm(z} (wheve the ¢;(2) belong to the 3 by 3
matrices over @i, 2], degg;(2) < j, and 1< j<< max{l,,}) plus o term
a{z) with property A. This proves closure under -}-.

Let my(z) =m(2) and }, =1. If I = 0 or 1 then by a remark in the
Introduction m(z) has property A. In this case »(2)*m(2) has property A,
8o it is in My. Therefore we may assume [ > 2 in what follows. Further,
as we shall now show, we may assume that D'm(z) has property B. Using
indefinite integration ! fimes on equation (3) we see that

i

- (e—t) e (BT
ao) | ((zz—t:)t)' mpdi— 31 M (—1)'= i
0 .

F=1 0gi<? !
= 2
. - (z—t)l_l (z-—‘t)lﬁl
(D' g5(2)) DY "( f ~m(t)dt)— f BTV ama
s (=1! J =u!
ig a polynomial. Thus

4 -1

{z—1)

belongs to My, and

has property B. H we know that

2 l~1
Pz) f —-————(fz_?), mit) dt
. .
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belongs to My it follows that

7 g (e—i)" 7

satisties an equation of the appropriate sort for moembership in By
Using Lemmsa IV (b) I times we see that the above iteratied derivadive
equals 7(2)=m(z). Further »(2)*m(2) hag property B since #() ha‘,ﬂ prop-
erty A and m(z)} has property B. Thus »{z)*m(z) belongs to My,
In what follows we take 7 2 and assume bhat Dim{z) has property 1.
Let ((D2)* " r(2)}xm(z) denote the column veuior of all
((Dz)"'r(z)) wm{z) for O j-a—1
and let (D¥r(0)m(z) denote the column vector of all
(_D“w((}))’m(z) for 0 < k< N = Samax{degh; (D] k(1) appears in (2)}.
J
Set
- ((De)* o (2)) % m(s)
Fi(e) == ,
(DN 7 (0))m(2)
using matrix bloek notation. We ray write the hottom Dlock of rows a8

equal to a sum of tevms of the appropriate sort for an equation of type
(3) in M(2), by using equation (3) N -1 times. Consider any onbry from.,
the top Dblock of rows, swy [(])z)’ 7'(3))$m(‘z) where 0= a-1. Using
~equation (3) we may write this as a snm of terms of the form

(D) r(2)) % (Do) Dom(2)),

where p+o <! and 0 < ¢, plus ({.Dz)jr(z))*a(z) which has f[)l.‘.f)].)(’:'r'ii’_ﬁ? A
By Lemma IV (¢) we may write each ((De)r(2)* (D) 'm(z)) a8
a sum of terms of the form

(D)™ (D 7 (=) « (D (2))

where 0 << % < p. Now we may use the equation of type (2) sutisfied Dy
7(2) to write each term above a8 u sum. of tormg of {he Lowvn

(D) =" |[1" (D2)r (@) [ D an ()|
with ¢ < a1 and 8 << (i) (111§m {deghy{ DY) 2rz(rru;.x {degh; (I} == N.
Using Lemma IV (b) s times we obtain
(D" D*[{( D) 7 ()% D an ()],
minug terms of the form

(D2~ DDy (0)')(53'1 m(2))] = (De)?~" DT DIy (0)) ()

icm
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where 1 <j<<{s< V. SBince 0 < g these latter terms are of an appro-
priate sort for an equation of type (2) in M (2). Finally using Lemma IV
(b) ¢ times we obhtain

(D2)*~" D ((Da)'r (#) x m (=),

where t<Ca—1 and 0 << ¢, plus terms with property A, This proves
Theorem II.

Proof of Proposition II. We must show that under the hypotheses
of the Corollary m{z+ 2,) satisfies an equation of type (1) with coefficients
in Q1) where # = 0 iy & regular point. Let K be the extension of the
Gaussian rationals generated by the coefficients of the g;(2) and by 2.
Ifwy, =1, w;,..., 1w, s a basis for K over Q(¢) then we can write a matrix
equation of type (1) for the column veetor with components w;m(z-+2,),
0 < j < n, where the coefficients have entxies in G[<,2]. We now wish
o use the proof that My = My in Lemma IIT, Tf we let X in the proof
of Temma IIT be an open disk about zero in N—z = {#—=2;| 2< N}
and replace property A Dby the property of being analytie on D—z,
= {#—2,| 2D} 2 X, the proof goes through line by line to prove that
m{z+2,) satisties an equation of type (1) with coefficients in @{%). (The
point is that the class of functions satisfying our “new property A” ig
closed under addition, multiplication of functional values, indefinite
integration, and differentiation just as was the class of functions satistying
our “old property A”.) In what follows assume m(z-+2,) satisfies (1).

If m(z4-2,) satisfies any linear differential equation with coefficients
n @[, 2] of the form Im{z+2) = a,(2) where a,(2) is analytic on D—g,
then for some N =1

1
(20) miz+a) :Zgj(z)Djwz(erzl)+a(z)-[—DN(Lm(z+zl)—al(z))

is an equation of type (1) which has singular points precisely at the sin-
gularities of L or of a(2)— D" a(2). .

Now go back to the scalar equation for m{z--2,) which was regular
at zevo. We may easily obtain an equation of the form p(2) D"miz+ &)
equals a linear combination of the D'm(z-+2,), 0 < j < n—1, over K[z]
plus some a(z) analytic on D—z,, where p(2) belongs to @[i, 2] and
»(0) # 0. Applying the ascending chain condition to the module over
Q[#, 2] generated by the elements of

o ()Y DY m(z+-2,)] N = 0}

we obtain an equation of the desired sort Lwm(z--2;) = a4,(2) with a,(2)
analytic on D—z and 2 = 0 a regular point of L.
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Now we can apply the Corollary to (20) and the objects D, N, 2,2,
and ¥ where
D' = D2, = {p—2| 2e D},
N ig a sufficiently small neighborhood of zero, 2y = &, = 0, and ¥’ is the
translation of ¥. Thus the conclusion of Proposition I holds here but for
possibly new values of ! and d.
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Introduction. Tn this paper we shall extend to funetions of » >1
complex variables some of the results of Part IIT of this series of papers
(referred to below as Part III).

DEFINITION. By Z, @, @ (), and € we shall mean, respectively, the
integers, the rational numbers, the Gaussian rational numbers, and the
complex numbers. Throughout this paper ¢ and = will stand for n-tuples

of complex numbers.

ahl a}ln
By D" we shall mean B B where each A (1<<k<n)
i 1 n

is a non-negative integer. Analogously we define D’ and D°. We define

) . o a
DM to be D" D7, We use D, to denote — and 8 to denote — ... —a—-
Dz oz, Oz

By |h| or |j| we shall mean max{f| 1< E<n} or max{jp| 1< k< n},
regpectively.

If for some positive integer N, g(z) belongs to the N by N matrices
over Q[i, ], then by deg.g(z) we wmean min{i> 0| D' g(z) = 0).

We define a norm, || ||, on matrices over the complex numbers by
letting | matrix || denote the maximum of the absolute values of the
entries of the matrix.

For each 1 < k < » choose X, to be a bounded starshaped region about
zero in € which shall remain fixed throughont this paper. Let Ly and Yy
denote the Riemann surfaces generated by loge, over ¢ and X; respec-
tively. Note zero is not in either Iy or ¥5. We shall regard C— {0} and

b

X,—{0} as being embedded in Iy and ¥ respectively. Set L = Il L,
™ D) k=1
Y == [] ¥ and X = [] (X;—{0}). Then ¥ = ¥ < L. From now on any

=1 k=1
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