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Universality of the product mappings onto products
of " and snake-like spaces

by
W. Holsztynski (Warszawa)

In paper [5] we proved, in quite an elementary manner, that the
product of the continuous mappings of connected compact spaces onto
snake-like spaces () is a universal mapping. In this paper we ghall show
that the product of such a product mapping by a universal mapping
of a compact space onto I™ ig, by hypothesis, also universal (see Theo-
rem (3.4)). Moreover, the product of a family of universal mappings,
defined on the compact spaces, such that one of those mappings is onto r
and the remaining mappings are onto the snake-like spaces.is, by hypo-
thesis, a universal mapping.

As a corollary we shall obtain also the well-known theorem (see [6])
about the dimension of the product of a paracompact space by & compact
space of positive dimension (see Theorem (3.3)) and a related set-com-
binatorial result (see Theorem (5.1)).

The following assertions on the universal mappings will be used:

LevmA A (see [3]). Let X be a normal space. Next, let
I} = {(@y, vory @a) € I": @y = ngDE}

for k= 41, -2, ..., +n, where I =[—1,1] is a closed segment. 4 con-
tinuous mapping f: X—>I" is universal if and only if the intersection of
any sequence of closed sets Fyy i=1,2, ..., 7, which are partitions between
FUI™) and FTY(IR) 48 a non-emply se.

TanorEM B (see [3]). Let X be a normal space. Then dimX > n if
and only if there exwists a wniversal mapping f: X—~I"

(1) A compact space X is said to be a snake-like space if for any open covering P
of X there exists a finite covering P’ = {Gy, ..., Ga} of X which is refinement of P and
is such that Gs N Gy = @ if and only if [i—j| < 1. Thus for any open cover P of a snake-
like space X there exists a P-mapping of X onto I. In this paper a compact space means
a compact Hausdorff space.
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THEOREM O (see [B], Theorem 3.1). Let any finite product of the
mappings fi: Xi—>Yt, te T, be a universal mapping. Then the product

mapping
i=[lf [[x~]] 2

tel' tel tel
is wniversal if X is compact for any te T.

§1. Let f: X—1I" be a continuous mapping of a space X into_the
cube I", where I=[—1,1] is & closed interval, and let 8" * be the
boundary of I" (2). Then the following easy assertions hold:

(1.1) ProrosITION. The mapping f.is mot a wniversal mapping if
and only if there emists a comtinuous mapping g: X—>8""" such that g(x)
= fle) for any xefH(S").

The above proposition immediately implies the following one:

(1.2) Prorosirion. Let A= A Cf(8""). We put

fo=flAd: A8,
If for a cohomology theory with arbitrary coefficients (see [2]) we have
(L.3) f3(e"™) ¢Im{i*: HY(X)-~H"""4)),

where 4: A—X is the identity imbedding and ¢"™ £ 0 is an element of
H"H8"Y), then f is a universal mapping.

(1.4) Prorosrrion. Let us consider the (ech-Dowker cohomology theory
with integer coefficients (see [2] chapter IX). Let n=1 or 2 and let X be
& paracompact space. Then the mapping f is universal if and only if con-
dition (1.3) holds for A =f7"(8"") and a generator " of H™ (8"

(1.5) ProposiTION. Let us consider the Cech—Dowker cohomology theory
with integer coefficients and let X be a paracompact space of covering di-
mension < n. Then the mapping f is universal if and only if condition (1.3)
holds for A = f7(8"™) and & generator ¢** of H*(S"Y).

Propositions 1.4 and 1.5 are direct consequences of (1.1) and the
respective Dowker theorems (see [1]).

As a corollary to Theorem B and Proposition (1.5) we obtain the
following Alexandrov Theorem

(1.6) TeEOREM. Let X be a finite-dimensional paracompact space.
Then m=dimX is the greatest integer such that i%: H' Y X)->H""Y(4)
is not an epimorphism for a certain closed subset A of X.

Indeed, if 7% is not an epimorphism, then H™ X, A) # 0 and con-
sequently dim X > ». On the other hand, if dim X = n, then by Theorem B

(%) In this paper # denotes a positive integer. Only in Theorem (4.4) m» denotes
4 non-negative integer.

[y
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there exists a universal mapping f: X-+I". Thus, by (1.5), Theorem (1.6)
holds.

§ 2. Let us consider a cohomology theory with arbitrary coefficients,
defined on the category of all pairs (X, 4) of topological spaces (where 4
iz a closed subspace of X) and all continuous mappings.

(2.1) Leamva. Let f: X—>I" be a continuous mapping of a space X
such that condition (1.3) holds for a closed ‘subset A .of X. We put

B=Xx{-1}uXx{1}vidxI
and
g=Ffxir XxI-I""",

where iy: I—1 is the identily, and let g, = g|lB: B—8". Then
(2.2) 93(¢") ¢ Im (i%: HNX xI)-H"(B)),

where ig: B—>X X I is the identity embedding and e* is the image of er—.(%)
Hence, by_Proposition (1.2), the product mapping fx i is universal.

Proof. We put
X ={@,y)eB: y<0} and X ={=,y)eB:y=0}.

The triada (B, X~, X") is a proper triada such that B= X~ v X*. We
can identify A and X~ ~ X*. Let us consider the cohomological additional
exact sequence of the triada (B, X~, X¥) (see [2] 1.15.2¢)

- SHVNE) + EUNX) S EA) S EYB) S BN ) - BN XY S
We have, by (1.3), fi(e*1) ¢ Imyp. Hence
o Z Ao fHen1) 0.

Now, let us consider the imbedding of the triada (B, X~, X¥) into the
triada (X xI,X x[—1,0],Xx[0,1]) and the induced homomorphism
of the cohomological additional exact sequence of the second triada
into the sequence of the first one. Then the composition

HYX xI)-2>HY(X x[—1, 0]|) +H X x[0,1))

v
HYX™)+HYXY)
() We identify S and {(&y, ..., Tn41) € S*: Ty = 0} Lot §%= {(z;, ..., ;_c,,ﬂ)
€ 8" @,y < 0} and 8% = {(&y, «s Tnpy) € 52 Bypy > 0} Then (8", 8%, 8%) is a
proper triada (see [2] 1.14.1) and e* = A(¢*™) (see [2], I, 15,2¢c).
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is-a monomorphism onto the ,,diagonal” of the last group. On the other
hand,

¢’ e Ker{p: HY(B)—»H"(X") +HYX")) = Im(d: H""‘(A)»H”(B)) .

Thus e’ ¢ Im (i%: HY(X x I)~>H"(B)), where iz: B>X x I is the identity
embedding. But, by the commutation of the diagram

H"(4)-=> H"(B)
A '

Hn~x(Su~1)__i‘_> H"(Sﬂ)

we have
eh=doff(ent) = g8 o A(enY) = gi(en) .
The lemma is proved.
The following assertion is easier than Lemma (2.1).

(2.1) Lemma. Under the assumptions of (2.1) the suspension mapping
Sf: 8X 81" = " is umiversal.

(2.3) LEMMA. Let h: I-I be a continuous mapping onto such that
h(—-l.).= —1 and h(1)= 1. Then under the assumptions of Lemma (2.1)
condition (2.2) holds for g =fx h and g, = g|B: B8

Proof. ‘Z‘[‘he mapping fx k|B: B—>8" is homotopically equivalent
to the mapping fx i; |B: B-»8" whence

(FXB)* = (f x is|By*: HYS")—H"(B)

and, by Lemma (2.1), condition (2.2) holds.

(2.4) COROLLARY. Let h: ¥->T be a continuous mapping of a normal
space X onto I such that h(¥,) = I for a simple arc X, in ¥ with the end-
po'mts' a-y and a,. Then, under the assumption of Lemma (2.1) about the
mapping f, condition (2.2) holds for B= X x h™{(8%) v A x Y, g=fxh
and g, = g|B: B—~8", where §° = {—1,1}

Proof. Without loss of generality we can assume that
BN —1) n Yy= {a_,} and B A ¥y = {a)} .
Thus there exists a retraction - Y—+Y, such that
7(h7(~1)) = {a_,} and (A1) = {a} .
We pub By= X x {a_,} v X x {8} v A xY,. The mappings

n=1ixxXrn Xx¥->Xx¥, and o= (ix X r)}|B; B—B,
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are also retractions, where ix: X+ X is the identity. Thus in the com-
mutative diagram

XX Y)-=» HYB) i
7 l lT; H-n(gn)
HY(X X To)— H'(B)* 7%t

130

r{ and 7§ are monomorphisms and, by Lemma 2.3, »¥ - g¥(e") ¢ Imi%,.
Hence gg(e") ¢ Imi% and condition (2.2) holds.

§3. Let us consider a continuous cohomology theory, defined on
the category of all pairs of spaces and all continuous mappings, with the
coefficients in category Gz (for example, let it be the Jech-Dowker theory;
see [2], Chapter IX). We shall show that the following theprem holds.

(3.1) TEEoREM. Let h: ¥ —I be a continuous mapping of a connecied
compact space ¥ onto I and let f: X—I" be as in Lemma (2.1). Then the
product mapping fx h: X X ¥ -I""" is universal. Moreover, condition (2.2)
holds for B= X xh () vAXY, g=Fxh, go= g|B.

First we shall note the following fact:

(8.2) LemmA. Any closed comnected subspace Y of a Tychonoff cube
IX is the intersection of an inverse system {Yi,is> of arcwise connected
closed subspaces of I such that the projections it are identily imbeddings.

Proof. The required inverse system is formed by the spaces P x I,
where P is a polyhedron and I is a finite subset of X such that P C I*
and Y C PxI®"

Proof of Theorem (3.1). We can assume that I is a subspace
of a Tychonoff cube I, Hence Y is the intersection of an inverse system
(Y:, > of arewise connected subspaces of I. Let h': I¥—I be a con-
tinuous extension of & and kb = h'|Y;. We put also

go=Fxh,B=Xxh'(8)vAxY, and go= gi|Bix Bi—+8"
We have obtained the mapping
(ge)e: <(X X ¥y, By, ix X iy — (1", 87)

of the inverse system of the pairs (X x Y:, B;), and the pair (X x ¥, B)
is the intersection of this system. We can identify the pair (XX ¥, B)
with the inverse limit of this inverse system (see [2], X, 2.5). By Corol-
lary (2.4)

ge(e") ¢ Tmip,: HYX x Xo)—>H"(B:) .
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Hence

A S 5o ghe™) « H™(X x T, BON(O}
for any index ¢ and (ix X it)*(eht') = /" for any ¢ <t. Thus, by the
continuity of the cohomology theory in question,

Sogiem) = (6™ e "X x ¥, B\{0} .

Thus gi(er) ¢ Imi}.

As corollaries to assertions (1.4), (1.5), (1.6), (3.1) we obtain:

(3.3) THEOREM. If X 4§ o giaracompact space and Y is a compact
space of AimY > 1, then dimX XY > dimX +1.

Remark. We can use Theorem 1.6 since X x Y is a paracompact
space (see [7]).

(3.4) THROREM. If f: X->I" is @ universal mapping of a paracompaci
space X, where

(8.5) either n <2 -0r diMX < n,

and g: Y—1I is a continuous mapping of o connected compact space Y
onto I, then the product mapping fx g: X x ¥ -I"" is universal.

Now we shall prove the main theorem of this paper:

(8.6) THEOREM. Given a universal mapping f: X—~I" of a compact
space X onto I" such that condition (3.5) holds, and a family gi: ¥i—8r,
teT, of connected compact spaces Y: onto snake-like spaces S;. Then the

product mapping _
fx[ o Xx[[x->1"x[]8,
tel

. . teT tel
18 universal,

Proof. In the case of & one-element set T = {t} and 8 = I, Theo-
rem (3.6) is & consequence of Theorem (3.4). Hence, by Lemma 1 of [4],
Theorem (3.1) holds for T = {t} and any snake-like space §;. Hence,
step by step, we infer that the theorem holds for any finite set 7. (4) Thus
it follows from Theorem (3.1) of [5] (or Theorem C of this paper) that
the theorem holds for any T.

§ 4. We shall give some remarks.

Firstly, let us remark that if the product of a family of mappings
is & universal mapping, thén any mapping of the family is -universal.
Thus if in Theorem (3.6) we put X = I, n=1 and an identity ingtead
of f, then we obtain the following result (see Theorem (3.2) of [5]).

(4.1) TeEOREM. If g ¥,—S; is a continuous mapping of a con-

(%) In the case of #<2 we use (1,2), (1.4) and (2.1).
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nected compact space Y; onto a snake-like space for any t € T, then the pro-

duct mapping
[Jo: [[7~]]s.

. teT teT tel
is universal.
Now we shall prove

(4.2) THEOREM. If f: XY i8 « universal mapping of a compaci
space X onto Ty-space Y, then f(C) = Y for some connected subset G of X.

Proof. Let O, be the component of  for any point z¢X. If
f(Cy) # ¥ for any x e X, then there exists a family (Us)cex of the closed-
open sets U, such that O, C Ur and f(U.) ¢ ¥ for any »eX. This
family is a cover and it contains a finite cover Vi, ¥, ..., V5 of X. Let
yi € Y\f(V;) and let the mapping g: X—~¥ be given as follows:

gl@y=y; for weVA\UV;i=12,.,n.
i<i

Then ¢ is a continuous mapping and g(z) % f(») for any # ¢ X in eon-
tradiction to the universality of the mapping f. Thus f(C.)= ¥ for
some e X.

Now we can formulate the following generalization of Theorems (3.6)
and (4.1).

(4.3) TeporEM. Let f: X—>I" and g:: ¥:—8: be universal mappings,
where X, Yi, 8; are compact spaces such that condition (3.4) holds, and 8
is @ snake-like space for any te T. Then the product mapping

f)(”gt: XXHY;—)I“XHS:

lel teT el

is universal for any n=1,2,..
This theorem immediately follows from Theorem (3.4), (4.1) and (4.2).

§ 5. In this section we shall give a set-combinatorial result.

(5.1) THEOREM. Let (A, As), 4= 1,2, ..., 0, be a sequence of pairs
of closed subsets A_;, A of a paracompact space X such that 4_; ~ A= 5]
for i=1,2,..,n and the intersection of any sequence of the partitions Fy
between A_; and A4y i=1,2,...,m, is a non-empty set. Next, let A_wsv),
Ay be non-empty disjoint closed subsets of a connected compact space Y.
We put B; = A;x Y for i= 1, +£2, .., &0, and B_yin= XX A ey
and By = X X Apyi. Then, under the assumption that cu»zditiorxt (3.5)
holds and if either X is a compact space or Ansi and A_niy are Sfunctionally
closed subsets of ¥, the intersection of amy sequemce of the partitions E;
between B_; and By, i =1,2,...,n+1, is a non-empty set.

Proof. Let E; be a partition between B..; and By for i=1,2,.,n+1
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and let p: X XY X and ¢: XXY->Y be.projections. For the parti-
tions H; there exist pairs of open sets G_;, G4 such that

B_QQG_i, Btg_Gi

and

Gun@=0, G ub=XxT\E

for i=1,2,..,n+1. Then, as Y is a connected compact space, the
set p(H;) is closed and the sets

H_i=p(G)\p(B:) and Hi=p(G:)\p(¥:)

are disjoint open subsets of X, for ¢ =1, 2, ..., n. Then there exist con-
tinuous mappings fi: X->I such that fi(4;) = sgnj and j-fi(x) = 0 for
any ¢ e Hy v p(Hy), j = +14,1=1, 2, ..., n. The diagonal produect

fo=Afi X1
=1

is, by Lemma of [3] (or Lemma A of this paper), a universal mapping.

Next, by the alternative assumption of the theorem about X, A .y,
Apya, there exists a continuous mapping fnyi: ¥Y—I such that fii.(4)
= 8gnj and (—j)fasa(@) <1 for any @ eg(Bpa v Gy), j= 4(n+1). The
product mapping fo X fari: X X ¥ I is, by Theorem (3.4), a universal
mapping.

We shall show that B; is a partition between f(I*%") and F73(I0+)
for i1=1,2,..,n+1.

Indeed, if 1 <i<n and j= -4, then

) = 97 (f(seng) Cp7(Hy) C G .
Similarly, if j = 4-(n +1), then
FHIF™ = ¢ fata (sgm ) € @5,
by definition of f,,.! )
Thus it follows from Lemma A, that HlEf # @. The theorem is
proved. =
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