

Universality of the product mappings onto products of Iⁿ and snake-like spaces

bу

W. Holsztyński (Warszawa)

In paper [5] we proved, in quite an elementary manner, that the product of the continuous mappings of connected compact spaces onto snake-like spaces (1) is a universal mapping. In this paper we shall show that the product of such a product mapping by a universal mapping of a compact space onto I^n is, by hypothesis, also universal (see Theorem (3.4)). Moreover, the product of a family of universal mappings, defined on the compact spaces, such that one of those mappings is onto I^n and the remaining mappings are onto the snake-like spaces is, by hypothesis, a universal mapping.

As a corollary we shall obtain also the well-known theorem (see [6]) about the dimension of the product of a paracompact space by a compact space of positive dimension (see Theorem (3.3)) and a related set-combinatorial result (see Theorem (5.1)).

The following assertions on the universal mappings will be used:

LEMMA A (see [3]). Let X be a normal space. Next, let

$$I_k^n = \{(x_1, ..., x_n) \in I^n : x_{|k|} = \operatorname{sgn} k\}$$

for $k = \pm 1, \pm 2, ..., \pm n$, where I = [-1, 1] is a closed segment. A continuous mapping $f \colon X \to I^n$ is universal if and only if the intersection of any sequence of closed sets F_i , i = 1, 2, ..., n, which are partitions between $f^{-1}(I_{-k}^n)$ and $f^{-1}(I_k^n)$ is a non-empty set.

THEOREM B (see [3]). Let X be a normal space. Then $\dim X \geqslant n$ if and only if there exists a universal mapping $f: X \rightarrow I^n$.

⁽¹⁾ A compact space X is said to be a snake-like space if for any open covering P of X there exists a finite covering $P' = \{G_1, ..., G_n\}$ of X which is refinement of P and is such that $G_i \cap G_j \neq \emptyset$ if and only if $|i-j| \leq 1$. Thus for any open cover P of a snake-like space X there exists a P-mapping of X onto I. In this paper a compact space means a compact Hausdorff space.

THEOREM C (see [5], Theorem 3.1). Let any finite product of the mappings $f_t: X_t \rightarrow Y_t$, $t \in T$, be a universal mapping. Then the product mapping

$$f = \prod_{t \in T} f_t \colon \prod_{t \in T} X_t \to \prod_{t \in T} Y_t$$

is universal if X_t is compact for any $t \in T$.

- § 1. Let $f: X \to I^n$ be a continuous mapping of a space X into the cube I^n , where I = [-1, 1] is a closed interval, and let S^{n-1} be the boundary of I^n (2). Then the following easy assertions hold:
- (1.1) PROPOSITION. The mapping f is not a universal mapping if and only if there exists a continuous mapping $g: X \to S^{n-1}$ such that g(x) = f(x) for any $x \in f^{-1}(S^{n-1})$.

The above proposition immediately implies the following one:

(1.2) Proposition. Let $A = \overline{A} \subseteq f^{-1}(S^{n-1})$. We put

$$f_0 = f|A: A \rightarrow S^{n-1}$$
.

If for a cohomology theory with arbitrary coefficients (see [2]) we have

(1.3)
$$f_0^*(e^{n-1}) \notin \operatorname{Im} \left(i^*: H^{n-1}(X) \to H^{n-1}(A)\right)$$
,

where $i: A \to X$ is the identity imbedding and $e^{n-1} \neq 0$ is an element of $H^{n-1}(S^{n-1})$, then f is a universal mapping.

- (1.4) Proposition. Let us consider the Čech-Dowker cohomology theory with integer coefficients (see [2] chapter IX). Let n=1 or 2 and let X be a paracompact space. Then the mapping f is universal if and only if condition (1.3) holds for $A=f^{-1}(S^{n-1})$ and a generator e^{n-1} of $H^{n-1}(S^{n-1})$.
- (1.5) Proposition. Let us consider the Čech-Dowker cohomology theory with integer coefficients and let X be a paracompact space of covering dimension $\leq n$. Then the mapping f is universal if and only if condition (1.3) holds for $A = f^{-1}(S^{n-1})$ and a generator e^{n-1} of $H^{n-1}(S^{n-1})$.

Propositions 1.4 and 1.5 are direct consequences of (1.1) and the respective Dowker theorems (see [1]).

As a corollary to Theorem B and Proposition (1.5) we obtain the following Alexandrov Theorem

(1.6) THEOREM. Let X be a finite-dimensional paracompact space. Then $n=\dim X$ is the greatest integer such that $i_A^*\colon H^{n-1}(X)\to H^{n-1}(A)$ is not an epimorphism for a certain closed subset A of X.

Indeed, if i_A^* is not an epimorphism, then $H^n(X, A) \neq 0$ and consequently $\dim X \geqslant n$. On the other hand, if $\dim X = n$, then by Theorem B

there exists a universal mapping $f: X \to I^n$. Thus, by (1.5), Theorem (1.6) holds.

- § 2. Let us consider a cohomology theory with arbitrary coefficients, defined on the category of all pairs (X, A) of topological spaces (where A is a closed subspace of X) and all continuous mappings.
- (2.1) LEMMA. Let $f: X \rightarrow I^n$ be a continuous mapping of a space X such that condition (1.3) holds for a closed subset A of X. We put

$$B = X \times \{-1\} \cup X \times \{1\} \cup A \times I$$

and

$$g = f \times i_I : X \times I \rightarrow I^{n+1}$$

where $i_I: I \to I$ is the identity, and let $g_0 = g \mid B: B \to S^n$. Then

$$(2.2) g_0^*(e^n) \notin \operatorname{Im} (i_B^*: H^n(X \times I) \to H^n(B)),$$

where $i_B: B \rightarrow X \times I$ is the identity embedding and e^n is the image of e^{n-1} .(*) Hence, by Proposition (1.2), the product mapping $f \times i_I$ is universal.

Proof. We put

$$X^{-} = \{(x, y) \in B: y \leq 0\}$$
 and $X^{+} = \{(x, y) \in B: y \geq 0\}$.

The triada (B, X^-, X^+) is a proper triada such that $B = X^- \cup X^+$. We can identify A and $X^- \cap X^+$. Let us consider the cohomological additional exact sequence of the triada (B, X^-, X^+) (see [2] I.15.2c)

$$\dots \xrightarrow{\varphi} H^{n-1}(X^-) + H^{n-1}(X^+) \xrightarrow{\psi} H^{n-1}(A) \xrightarrow{\delta} H^n(B) \xrightarrow{\varphi} H^n(X^-) + H^n(X^+) \xrightarrow{\psi} \dots$$

We have, by (1.3), $f_0^*(e^{n-1}) \notin \text{Im } \psi$. Hence

$$e^{I} \stackrel{\mathrm{df}}{=} \Delta \circ f_0^*(e^{n-1}) \neq 0$$
.

Now, let us consider the imbedding of the triada (B, X^-, X^+) into the triada $(X \times I, X \times [-1, 0], X \times [0, 1])$ and the induced homomorphism of the cohomological additional exact sequence of the second triada into the sequence of the first one. Then the composition

$$\begin{array}{c} H^n(X\times I) \xrightarrow{-q} H^n(X\times [-1,0]) + H^n(X\times [0,1]) \\ \downarrow \\ H^n(X^-) + H^n(X^+) \end{array}$$

⁽²⁾ In this paper n denotes a positive integer. Only in Theorem (4.4) n denotes a non-negative integer.

^(*) We identify S^{n-1} and $\{(x_1,\dots,x_{n+1})\in S^n\colon x_{n+1}=0\}$. Let $S^n_-=\{(x_1,\dots,x_{n+1})\in S^{n+1}\colon x_{n+1}=0\}$. Then (S^n,S^n_-,S^n_+) is a proper triada (see [2] I.14.1) and $e^n=\Delta(e^{n-1})$ (see [2], I, 15,2c).

is a monomorphism onto the "diagonal" of the last group. On the other hand.

$$e^I \in \operatorname{Ker} \bigl(\varphi \colon \operatorname{H}^n(B) \to \operatorname{H}^n(X^-) + \operatorname{H}^n(X^+) \bigr) = \operatorname{Im} \bigl(\varDelta \colon \operatorname{H}^{n-1}(A) \to \operatorname{H}^n(B) \bigr) \ .$$

Thus $e^I \notin \text{Im}(i_B^*: H^n(X \times I) \to H^n(B))$, where $i_B: B \to X \times I$ is the identity embedding. But, by the commutation of the diagram

$$H^{n-1}(A) \xrightarrow{d} H^{n}(B)$$

$$\downarrow f_{0}^{\uparrow} \qquad \qquad \uparrow g_{0}^{\downarrow}$$

$$H^{n-1}(S^{n-1}) \xrightarrow{d} H^{n}(S^{n})$$

we have

$$e^{I} = \Delta \circ f_0^*(e^{n-1}) = g_0^* \circ \Delta(e^{n-1}) = g_0^*(e^n)$$
.

The lemma is proved.

The following assertion is easier than Lemma (2.1).

(2.1') LEMMA. Under the assumptions of (2.1) the suspension mapping Sf: $SX \rightarrow SI^n = I^{n+1}$ is universal.

(2.3) LEMMA. Let h: $I \rightarrow I$ be a continuous mapping onto such that h(-1) = -1 and h(1) = 1. Then under the assumptions of Lemma (2.1) condition (2.2) holds for $g = f \times h$ and $g_0 = g \mid B \colon B \to S^n$.

Proof. The mapping $f \times h|B: B \rightarrow S^n$ is homotopically equivalent to the mapping $f \times i_I \mid B: B \to S^n$, whence

$$(f \times h|B)^* = (f \times i_I|B)^* \colon H^n(S^n) \to H^n(B)$$

and, by Lemma (2.1), condition (2.2) holds.

(2.4) Corollary. Let h: $Y \rightarrow I$ be a continuous mapping of a normal space Y onto I such that $h(Y_n) = I$ for a simple arc Y_n in Y with the endpoints a-1 and a1. Then, under the assumption of Lemma (2.1) about the mapping f, condition (2.2) holds for $B = X \times h^{-1}(S^0) \cup A \times Y$, $g = f \times h$ and $g_0 = g|B: B \to S^n$, where $S^0 = \{-1, 1\}$.

Proof. Without loss of generality we can assume that

$$h^{-1}(-1) \cap Y_0 = \{a_{-1}\}$$
 and $h^{-1}(1) \cap Y_0 = \{a_1\}$.

Thus there exists a retraction $r: Y \rightarrow Y_0$ such that

$$r(h^{-1}(-1)) = \{a_{-1}\}$$
 and $r(h^{-1}(1)) = \{a_1\}$.

We put $B_0 = X \times \{a_{-1}\} \cup X \times \{a_1\} \cup A \times Y_0$. The mappings

$$r_1 = i_X \times r$$
: $X \times Y \rightarrow X \times Y_0$ and $r_0 = (i_X \times r)|B: B \rightarrow B_0$

are also retractions, where $i_X: X \to X$ is the identity. Thus in the commutative diagram

$$\begin{array}{ccc} H^n(X\times Y) & \xrightarrow{\stackrel{\circ}{B}} H^n(B) & \searrow \sigma_0^{\circ} \\ r_1^{\circ} & & \downarrow r_0^{\circ} & H^n(S^n) \\ H^n(X\times Y_0) & & \mapsto H^n(B_0) & \swarrow r_0^{\circ} \circ \rho_0^{\circ} \end{array}$$

 r_1^* and r_0^* are monomorphisms and, by Lemma 2.3, $r_0^* \circ q_0^*(e^n) \notin \text{Im } i_{R_0}^*$. Hence $g_0^*(e^n) \notin \text{Im } i_B^*$ and condition (2.2) holds.

§ 3. Let us consider a continuous cohomology theory, defined on the category of all pairs of spaces and all continuous mappings, with the coefficients in category \mathfrak{G}_R (for example, let it be the Čech-Dowker theory; see [2], Chapter IX). We shall show that the following theorem holds.

(3.1) THEOREM. Let h: $Y \rightarrow I$ be a continuous mapping of a connected compact space Y onto I and let f: $X \to I^n$ be as in Lemma (2.1). Then the product mapping $f \times h$: $X \times Y \rightarrow I^{n+1}$ is universal. Moreover, condition (2.2) holds for $B = X \times h^{-1}(S^0) \cup A \times Y$, $g = f \times h$, $g_0 = g|B$.

First we shall note the following fact:

(3.2) LEMMA. Any closed connected subspace Y of a Tychonoff cube $I^{\mathbf{K}}$ is the intersection of an inverse system $\langle Y_t, i_s^t \rangle$ of arcwise connected closed subspaces of IK such that the projections is are identity imbeddings.

Proof. The required inverse system is formed by the spaces $P \times I^{K \setminus L}$ where P is a polyhedron and L is a finite subset of K such that $P \subset I^L$ and $Y \subset P \times I^{K \setminus L}$.

Proof of Theorem (3.1). We can assume that Y is a subspace of a Tychonoff cube I^K . Hence Y is the intersection of an inverse system $\langle Y_t, i_s^t \rangle$ of arcwise connected subspaces of I^K . Let $h': I^K \to I$ be a continuous extension of h and $h_t = h'|Y_t$. We put also

$$g_t = f \times h_t$$
, $B_t = X \times h_t^{-1}(S^0) \cup A \times Y_t$ and $g_{0,t} = g_t | B_t$: $B_t \to S^n$.

We have obtained the mapping

$$(g_t)_t: \langle (X \times Y_t, B_t), i_X \times i_s^t \rangle \rightarrow (I^{n+1}, S^n)$$

of the inverse system of the pairs $(X \times Y_t, B_t)$, and the pair $(X \times Y, B)$ is the intersection of this system. We can identify the pair $(X \times Y, B)$ with the inverse limit of this inverse system (see [2], X, 2.5). By Corollary (2.4)

$$g_{0,t}^*(e^n) \notin \operatorname{Im} i_{B_t} : H^n(X \times Y_t) \to H^n(B_t)$$

Hence

$$e_t^{n+1} \stackrel{\mathrm{df}}{=} \delta \circ g_{0,t}^*(e^n) \in H^{n+1}(X \times Y_t, B_t) \setminus \{0\}$$

for any index t and $(i_X \times i_s^t)^*(e_s^{n+1}) = e_t^{n+1}$ for any s < t. Thus, by the continuity of the cohomology theory in question,

$$\delta \circ g_0^*(e^n) = (e_t^{n+1})_t \in H^{n+1}(X \times Y, B) \setminus \{0\}.$$

Thus $g_0^*(e^n) \notin \operatorname{Im} i_B^*$.

As corollaries to assertions (1.4), (1.5), (1.6), (3.1) we obtain:

(3.3) Theorem. If X is a paracompact space and Y is a compact space of $\dim Y \geqslant 1$, then $\dim X \times Y \geqslant \dim X + 1$.

Remark. We can use Theorem 1.6 since $X \times Y$ is a paracompact space (see [7]).

- (3.4) THEOREM. If $f: X \rightarrow I^n$ is a universal mapping of a paracompact space X, where
 - (3.5) either $n \leq 2$ or $\dim X \leq n$,

and $g \colon Y \to I$ is a continuous mapping of a connected compact space Y onto I, then the product mapping $f \times g \colon X \times Y \to I^{n+1}$ is universal.

Now we shall prove the main theorem of this paper:

(3.6) THEOREM. Given a universal mapping $f: X \to I^n$ of a compact space X onto I^n such that condition (3.5) holds, and a family $g_t: Y_t \to S_t$, $t \in T$, of connected compact spaces Y_t onto snake-like spaces S_t . Then the product mapping

$$f \times \prod_{t \in T} g_t$$
: $X \times \prod_{t \in T} Y_t \to I^n \times \prod_{t \in T} S_t$

is universal.

Proof. In the case of a one-element set $T = \{t\}$ and $S_t = I$, Theorem (3.6) is a consequence of Theorem (3.4). Hence, by Lemma 1 of [4], Theorem (3.1) holds for $T = \{t\}$ and any snake-like space S_t . Hence, step by step, we infer that the theorem holds for any finite set T. (4) Thus it follows from Theorem (3.1) of [5] (or Theorem C of this paper) that the theorem holds for any T.

§ 4. We shall give some remarks.

Firstly, let us remark that if the product of a family of mappings is a universal mapping, then any mapping of the family is universal. Thus if in Theorem (3.6) we put X = I, n = 1 and an identity instead of f, then we obtain the following result (see Theorem (3.2) of [5]).

(4.1) Theorem. If g_t : $Y_t \rightarrow S_t$ is a continuous mapping of a con-

nected compact space Y_t onto a snake-like space for any $t \in T$, then the product mapping

$$\prod_{t \in T} g_t \colon \prod_{t \in T} Y_t \to \prod_{t \in T} S_t$$

is universal.

Now we shall prove

(4.2) THEOREM. If $f: X \rightarrow Y$ is a universal mapping of a compact space X onto T_1 -space Y, then f(C) = Y for some connected subset C of X.

Proof. Let C_x be the component of x for any point $x \in X$. If $f(C_x) \neq Y$ for any $x \in X$, then there exists a family $(U_x)_{x \in X}$ of the closed-open sets U_x such that $C_x \subseteq U_x$ and $f(U_x) \neq Y$ for any $x \in X$. This family is a cover and it contains a finite cover $V_1, V_2, ..., V_n$ of X. Let $y_i \in Y \setminus f(V_i)$ and let the mapping $g: X \to Y$ be given as follows:

$$g(x) = y_i$$
 for $x \in V_i \setminus \bigcup_{j < i} V_j$, $i = 1, 2, ..., n$.

Then g is a continuous mapping and $g(x) \neq f(x)$ for any $x \in X$ in contradiction to the universality of the mapping f. Thus $f(C_x) = Y$ for some $x \in X$.

Now we can formulate the following generalization of Theorems (3.6) and (4.1).

(4.3) THEOREM. Let $f: X \rightarrow I^n$ and $g_i: Y_t \rightarrow S_t$ be universal mappings, where X, Y_t, S_t are compact spaces such that condition (3.4) holds, and S_t is a snake-like space for any $t \in T$. Then the product mapping

$$f \times \prod_{t \in T} g_t : X \times \prod_{t \in T} Y_t \to I^n \times \prod_{t \in T} S_t$$

is universal for any n = 1, 2, ...

This theorem immediately follows from Theorem (3.4), (4.1) and (4.2).

§ 5. In this section we shall give a set-combinatorial result.

(5.1) THEOREM. Let (A_{-i}, A_i) , i=1,2,...,n, be a sequence of pairs of closed subsets A_{-i} , A_i of a paracompact space X such that $A_{-i} \cap A_i = \emptyset$ for i=1,2,...,n and the intersection of any sequence of the partitions F_i between A_{-i} and A_i , i=1,2,...,n, is a non-empty set. Next, let $A_{-(n+1)}$, $A_{(n+1)}$ be non-empty disjoint closed subsets of a connected compact space Y. We put $B_i = A_i \times Y$ for $i=\pm 1, \pm 2, ..., \pm n$, and $B_{-(n+1)} = X \times A_{-(n+1)}$ and $B_{n+1} = X \times A_{n+1}$. Then, under the assumption that condition (3.5) holds and if either X is a compact space or A_{n+1} and $A_{-(n+1)}$ are functionally closed subsets of Y, the intersection of any sequence of the partitions E_i between B_{-i} and B_i , i=1,2,...,n+1, is a non-empty set.

Proof. Let E_i be a partition between B_{-i} and B_i for i = 1, 2, ..., n+1

⁽⁴⁾ In the case of $n \le 2$ we use (1,2), (1.4) and (2.1).

and let $p: X \times Y \to X$ and $q: X \times Y \to Y$ be projections. For the partitions E_i there exist pairs of open sets G_{-i} , G_i such that

$$B_{-i} \subset G_{-i}$$
, $B_i \subseteq G_i$

and

$$G_{-i} \cap G_i = \emptyset$$
, $G_{-i} \cup G_i = X \times Y \setminus E_i$

for i = 1, 2, ..., n+1. Then, as Y is a connected compact space, the set $p(E_i)$ is closed and the sets

$$H_{-i} = p(G_{-i}) \backslash p(E_i)$$
 and $H_i = p(G_i) \backslash p(E_i)$

are disjoint open subsets of X, for i=1,2,...,n. Then there exist continuous mappings $f_i\colon X\to I$ such that $f_i(A_j)=\operatorname{sgn} j$ and $j\cdot f_i(x)\geqslant 0$ for any $x\in H_j\cup p(E_i),\ j=\pm i,\ i=1,2,...,n$. The diagonal product

$$f_0 = \int_{i=1}^n f_i \colon X \to I^n$$

is, by Lemma of [3] (or Lemma A of this paper), a universal mapping.

Next, by the alternative assumption of the theorem about X, $A_{-(n+1)}$, A_{n+1} , there exists a continuous mapping $f_{n+1}\colon Y\to I$ such that $f_{n+1}(A_j)=\operatorname{sgn} j$ and $(-j)f_{n+1}(x)<1$ for any $x\in q(E_{n+1}\cup G_j),\ j=\pm(n+1)$. The product mapping $f_0\times f_{n+1}\colon X\times Y\to I^{n+1}$ is, by Theorem (3.4), a universal mapping.

We shall show that E_i is a partition between $f^{-1}(I_{-i}^{n+1})$ and $f^{-1}(I_i^{n+1})$ for i = 1, 2, ..., n+1.

Indeed, if $1 \le i \le n$ and $j = \pm i$, then

$$f^{-1}(I_j^{n+1}) = p^{-1}(f_i^{-1}(\operatorname{sgn} j)) \subset p^{-1}(H_i) \subset G_i$$
.

Similarly, if $j = \pm (n+1)$, then

$$f^{-1}(I_j^{n+1}) = q^{-1}(f_{n+1}^{-1}(\operatorname{sgn} j)) \subseteq G_j,$$

by definition of f_{n+1} .

Thus it follows from Lemma A, that $\bigcap_{i=1}^{n+1} E_i \neq \emptyset$. The theorem is proved.

References

- [1] C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), pp. 200-240.
- [2] S. Eilenberg and N. E. Steenrod, Foundation of Algebraic Topology, Princeton, 1952.

[3] W. Holsztyński, Une généralisation du théorème de Brouwer sur les points invariants, Bull. Acad. Polon. Sci. 12 (1964), pp. 603-606.

[4] — Universal mappings and fixed point theorems, Bull. Acad. Polon. Sci., 15 (1967), pp. 433-438.

[5] — Universality of mappings onto the products of snake-like spaces. Relation with dimension, Bull. Polon. Acad. Sci. 16 (1968), pp. 161-167.

[6] K. Morita, On the dimension of product spaces, Amer. J. Math. 75 (1953), pp. 205-223.

[7] J. Dieudonné, Une généralisation des espaces compacts, J. Math. Pures et Appl. 23 (1944), pp. 65-76.

Reçu par la Rédaction le 28. 8. 1967