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4-spaces and fixed point theorems
by
J. W. Jaworowski* and M. J. Powers (Bloomington, Ind.)

1. A Lefschetz space is defined in [2] to be a space X such that,
for every continuous map f: XX, the Tefschetz number A(f)
o0
= 20(—1)”tr( Jea) is well-defined and when .( f) # 0, f has a fixed point
—
{(fen is the induced homomorphism of singular homology groups with
rational coefficients). In particular, this implies that the homology of X
is of finite type.

Since the appearance of Leray-Schauder fixed point results there
has been interest in considering more general spaces and compact self-
mappings of these spaces. The purpose of this note is to generalize fixed
point theorems to “A-spaces.” A A-space is a space X such that, for
every compact map f: XX, the Lefschetz number is defined and the
Lefschetz theorem holds. We show that spaces which are, in a certain
way, dominated by A-spaces are again A-spaces; and that every poly-
hedron with the Whitehead topology is a A-space. As a corollary of
these results we find that (metric) absolute neighborhood retracts are
A-spaces. This fact has been proved also by A. Granas [3]. A weaker
result along these same lines was obtained by F. E. Browder in [2], Theo-
rem 3.

2. For the purpose of this note, the nature of a homology theory
under consideration is important only to the extent that the homology
groups be vector spaces; that they agree with the usual homology groups
with rational coefficients for compact polyhedra; and that they con-
stitute a functor H, satisfying the homotopy axiom and the dimension
axiom for the category of topological spaces under consideration. Thus H,
may be the singular homology, the Cech homology or' any other functor
satisfying the above requirements. The homomorphism induced by 2 map
fi X~ will be denoted, as usual, by fo: Hn(X)—Hy( Y).

Let V be a finite dimensional vector space over a field ¢ (in our
case, C = @, the field of rational numbers), let ¥* be the dual of ¥ and let
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Eﬁd(V):Eom(V,V) be the vector space of endomorphisms va_
Then we have a canonical linear form 7: V*® V-+C and a canonical
isomorphism 6: V* x V3 End(V).

The trace, try, is the canonical linear form

trp =70 671 Bod(V)—C.

When no confusion can arise, we write try = tr. )

PrOPOSITION. (see [1], page 112). If V and W are finite dimensional
vector spaces and g: VW, h: W~V are linear maps then try(hog)
= trw(g o h). '

Let W be a subspace of a vector space V and let

End(V; W) = {f ¢ End(V): f(V)C W}.

Let 4: W~V be the inclusion map and let i,: Hom(V, W)—
~End(V; W) and i*: Hom(V, W)—End(W) be the maps f-»iof and
JS—>f o4, respectively. We have the inclusion End(V; W)C End (V) and
a natural map a: End(V; W)->Hom(V, W) such that iy c o = 1gnaw; wy-
Let f=i*o a: End(V; W)->End(W).

(2.1) Lemma. If V is finite dimensional then

try o § = trp|End(V; W): End(V; W)—C.

Proof. Let f e End(V; W). If g = o(f) then io g = f and go i = g(f).
By the Proposition quoted above, trw(g-o2) = trv(f).

(2.2) LEMMA. Let X be a vector space and fe End(X) be such that
FHX) is finite dimensional for some integer n. Let V be a finite dimensional
subspace of X such that fNX)CV and f(V)CfYX). Then if f: V>V
and " fUX)>f"X) are defined by the restriction of f, we have tr(f’)
= tr(f").

Proof. Apply (2.1) to ¥, W = f"(X), and f'« End(V; W).

(2.3) DerFinrTioN. Let X be a vector space and fe End (X). Suppose
that there exists an integer # such that V = f*(X) is finite dimensional.
Let f': f(X)—fX) be defined by the restriction of f. Define the trace
of f by tr(f) = trv(f’). By (2.2), tx(f) is well-defined.

By saying “tr(f) is defined” we shall mean that the assumptions
of (2.3) are fulfilled.

(2.4) Lemwa. Let X, Y be vector spaces and let g X—Y, h: Y>X
be linear maps suoch that tr(ho g) is defined. Then tr(go h) is defined and
tr(h o g) = tr(g o h).

Proof. Since tr(hog) is defined, there exists an integer n such
that (hog)"(X) is finite dimensional. Then (g o h)™*(¥)C g((h « g)™(X))
and (goh)"*!(¥) is finite dimensional. Thus tr(goh) is defined. Let
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V={(hog)""(X) and W = g((hog)”(X)); then V and W are finite di-
mensional subspaces of X and ¥, Tespectively, and ¢(V)C W, h(W)CV.
Let ¢: V—>W and »': WV be the maps defined by the restrictions
of g and &, respectively.

Let e=hogeEnd(X), f=gohe End(Y). Observe that ¢(V)CV,
f(W)C W and that the maps e V-V, f's W-—>W defined by the re-
strictions of e and f are ¢' = h'o ¢’ and f' = g' o I'. By definition, tr(k o g)
== tr(e’). Moreover, (g0 h)"™(¥)C W and again by (2.2), tr(g o b) = tr(f").

Thus tr(heg) = tr(e’) = tr (k' o ¢') and tr(ge k) = tr(f) = tr(g’ o ').
Since V' and W are finite dimensional, in view of the Proposition we have
tr(h' o g') = tr(g’ o b').

(2.5) DEFINITION. Let X be a topological space and f: X-+X a con-

oo

tinuous map. Then f is said to be a Lefschetz map if A(f) = X (—1)tr(fon)
n=0

is well-defined and A(f) + 0 implies that 7 has a fixed point (in particular
this implies that tr(fe,) is defined).

(2.6) DEFINITION. A topological space X is said to be a <l-space
if each compact map f: X—X is a Lefschetz map. (A map f is compact
if there is a compact subset of X which contains f(xy)) -

3. For simplicity, when writing the induced homomorphisms, the
dimension subseript will be omitted.

(3.1) THEOREM. Let X be any space and let f: XX be a compact
map. Suppose that there ewists a A-space ¥ and maps g: XY and
h: ¥ =X such that h is compact and h o g=1f. Then f i a Lefschetz map.

Proof. The mapping g« h: ¥—Y is compact and hence is a Lefschetz
map. Considering the induced homomorphisms on the homology groups,
we have f, = h, o ¢, at each dimension.

Hy(Y) — M | g,(7)

4
i

.
.
9x \'}*\\ 9+
.
N
Hau(X) — H,(X)

We have g.: Ho(X)—>Ho(¥) and hy: Ha(¥)->Hu(X) linear maps
of vector spaces such that tr(geh,) is defined (since A(gh) exists). By
Lemma 2.4, tr(h,gs) is defined and tr(hsgs) = tr(gchs). Then since
Je = hegu, tr(fi) = tr(gshi). Hence A(f) is defined and A(f) = A(gh).

Suppose A(f) 5= 0. Then there is a point y ¢ ¥ such that ghiy) =1y
Let o = h(y) e X. Then f(z) = z. Q.E.D.
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Let f: X—X be a compact map. For any compact set K containing
f(X), let fg: K—EK denote the restriction defined by f. Clearly, f has
a fixed point iff fx has a fixed point. The following theorem is along this
line and is a useful tool in the study of compact maps. The proof is omitted
since it follows very closely the proof of theorem (3.1).

(3.2) TaEOREM. Let f: XX be a compact mapping.

(a) If A(f) ewists, then A(fx) ewisis for all compact K containing f(X)
and A(f) = A(fs).

(b) If A(fx) ewists for some compact K containing f(X), then A(f)
exists and A(f)= A(fx).

In particular, we have

(3.3) CoroLLARY. Let f: X—X be a compact mapping.

(a) If f is @ Lefschetz map, then fx is a Lefschetz map for all compact K
containing f(X).

(b) If fx is a Lefscheiz map for some compact K containing f(X), then f
18 a Lefschetz map.

(3.4) CoroLrARY. If X 4s a topological space and f: X—>X can be
factored through a Lefschetz space, then f is a Lefschetz map.

(3.5) TmEOREM. Let X be a topological space such that there is
a A-space Y and mappings g: X—Y and h: Y—>X with hog==1x
(1x = identity map on X). Then X is a A-space.

Proof. Let f: X—+X be a compact mapping. Then foh: ¥
is a compact mapping and f= (foh)og. Then by Theorem (3.1), f is
& Lefschetz map. Q.E.D.

(3.6) COROLLARY. A relract of a A-space is again a A-space.

4. An essential fact in the proof of Theorem (3.1) was that fy == by o gy.
The condition that f = h o ¢ is certainly not necessary. By placing a suitable
restriction on the space X, Theorem (3.1) ean be generalized as follows.

(4.1) THEOREM. Let X be a regular, T, space (i.c., Ty space) and
J: X»X a compact mapping. Suppose that Jor each open cover a of X,
there is a A-space ¥, and mappings g,: XY, and h,: Y.~ X satisfying

(a) ko 15 compaet,

(b) huog, ~f, and

(€) koo g and f are a-near (i.e., for each @ « X, there is an elemeni U
of a containing both hyg.z) and fl@)).

Then f is a Lefschetz map.

Proof. Given an open cover a of X, let Yo; go, and h, satisfy the

conditions of the theorem. Then Jao bt Y,—¥, is & compact mapping
and hence is a Lefschetz map. Since h, o ga ~, for the induced homo-
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morphisms on the homology groups we have f, = hue © g at each di-
mension.

Following exactly the proof of Theorem (3.1), we find that A(f)
is defined and that .1(f) == A(g, k). This is true for every open cover q
of X.

Suppose A(f) # 0. Then for each open cover « of ¥, there is a point
Ya € Yo 5uch that g, o ke(ya) = ¥a. Let o, = ha(y,) € X. Choose some compact
set K containing f(X). Then f(x.) ¢ K for each a. Now C = Cov(X), the
set of all open covers of X, is directed by the refinement relation: if
a,a’ €0, a< o means that a' is a refinement of a; and al» f(z,) defines
a net p: K in K. Since X is compaet, there is a directed set D and
a cofinal map A: D—C such that the subnet goi: DK converges to
a point %, || K. Consider the net y: D—X defined by f§ 1> ay,. It suffices
to show that  converges to @,. For then by the continuity of f we have
Slwg) = 2.

First note that since @, = ha ogo(2a), 7. and f(a,) are both eontained
in an element of o; thus we can choose a map U: 0—>Uca, al» U,, such

a€

that U, e« and U, contains both z, and f(z,).

Let V be any open neighborhood of x,. Then there is an open neigh-
borhood W of z, such that WCV. Let ay= {V, X —W}e C. Since 1 is
cofinal, there exists an element f,eD such that for g > p, we have
A(B) > ag; and since @ o 1 converges to @,, there exists an element B, e D
such that for §>f, we have f(zyp) e W and also fmg), @up e Uxg)-
Thus for g > fy, B, we have UysCV and @y e V. This means that v
converges to .

(4.2) TEEOREM. Let X be a regular, T, space. Suppose that for each
open cover a of X there is a A-space Y, and mappings ¢ XY, and
ho: Y,—X satisfying

(a) hooga~1x and

(D) heog. and 1x are a-near.

Then X is a A-space.

Proof. Let f: X—X be a compact mapping. Take an open cover a
of X. Then f = f(a) e Cov(X) and we have the corresponding A-space Yp
and mappings g, hs. Then fohy: ¥Yp—X is compact, fo hyo gp~f, and
fohgogs and f are a-near. Thus by Theorem (4.1), f is a Lefschetz map.
Q.E.D.

5. The two topologies usually considered on a polyhedron are the
metric topology and the Whitehead topology ([4], p. 99). Unless the
polyhedron is locally finite these topologies do not coincide.

(5.1) TEEOREM. Every polyhedron P with the Whilehead iopology
i8 a A-space.
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Proof. Let f: P—P be a compact mapping. Let ¢ be a compact
subset of P containing f(P). Then there is a finite subpolyhedron P’
of P containing C. As before let fp.: P'—P’ denote the restriction of f.
It is well known that fp is a Lefschetz map. Thus by Corollary (3.3) (b),
f is also a Lefschetz map. .

(5.2) ComorLARY. Hvery (metric) absolute neighborhood retract X
is a A-space. . .

Proof. For each open cover o of X there is a polyhedron P, (with
the Whitehead topology) and mappings ¢.: X P, and he P,—X such
that kq o g. i a-homotopic to 1x (see [4], p. 138). In particular, h, o g, 1y
and kg o g, and 1x are a-near. Then by Theorem (4.2), X is a A -space.

6. Note that the theorems of § 3 and §4 also hold for Lefschetz
spaces in the sense that  A-space” can be replaced by “Lefschetz space’
throughout. When this is done the compactness eonditions on the mappings
can be dropped.
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On choosing subsets of n-element sets
by
M. M. Zuckerman* (New York)

1. Introduction. Let n be a positive integer. Mostowski ([6]) and
others have studied the axioms of choice for finite sets, [n], in which
an element is chosen from each set of an arbitrary set of x-element sets.
We wish to introduce some new axioms which are concerned with the
choice of a subset or of a partition, rather than a single element, from
each element of an arbitrary set of n-element sets. We shall discuss the
interdependence of these axioms and their relationship to the axioms [n].

2. Notation. We shall operate within a set theory of the Godel-
Bernays type (see the proof of theorem 7); our logical framework will
be the first-order predicate caleculus with identity. For statements
Uy Gy ooy On, We& Write oy—>ay—...—>ay in lien of (o) & (a—>a,) &...
... & (ap-1—>05); & similar remark applies t0 o > ay<s..<>an.

By the (nonnegative) iniegers we mean the von Neumann integers—o0
(the empty set), 1= {0}, 2=10u {1}, 3=2 u {2}, ete. A set is finite
iff every nonempty set of subsets of X has a maximal element with
respect to set inclusion. If there exists a'function which maps the set X
one-one onto the positive n, then X is called an n-element set and we say
that the number of elements of X is n; in this case we let n(X) denote the
unique integer n for which such a mapping exists.

For each integer n, let I, be the set of integers > u, let J, be the
relative complement of In.yin I, I,)\In41, and let K, = J,\{1}. Let IT re-
present the set of prime numbers and let Il = IT A I,.

For any set X let 7(X) designate the power set of X, let T*(X;
= F(XN1, let g (X) be the set of finite subsets of X, and let g¥x( X
== S IN\L.

* This research formed part of the author’s Ph. D. thesis (Yeshiva University,
1987) under the supervision of Professor Martin Davis of New York University. The
work was supported by a National Science Foundation (U.8.A.) Science Faculty Fellow-
ship. We note that Professor Conway’s announcement that [3] & [5] & [13]-> [15] as well
as his other independence results, which were mentioned in the thesis, have recently
been retracted.
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