A-spaces and fixed point theorems bx # J. W. Jaworowski* and M. J. Powers (Bloomington, Ind.) 1. A Lefschetz space is defined in [2] to be a space X such that, for every continuous map $f\colon X\to X$, the Lefschetz number $\Lambda(f)=\sum_{n=0}^\infty (-1)^n \mathrm{tr}(f_{\bullet n})$ is well-defined and when $\Lambda(f)\neq 0$, f has a fixed point $(f_{\bullet n})$ is the induced homomorphism of singular homology groups with rational coefficients). In particular, this implies that the homology of X is of finite type. Since the appearance of Leray-Schauder fixed point results there has been interest in considering more general spaces and compact self-mappings of these spaces. The purpose of this note is to generalize fixed point theorems to " Λ -spaces." A Λ -space is a space X such that, for every compact map $f\colon X\to X$, the Lefschetz number is defined and the Lefschetz theorem holds. We show that spaces which are, in a certain way, dominated by Λ -spaces are again Λ -spaces; and that every polyhedron with the Whitehead topology is a Λ -space. As a corollary of these results we find that (metric) absolute neighborhood retracts are Λ -spaces. This fact has been proved also by Λ . Granas [3]. A weaker result along these same lines was obtained by Γ . E. Browder in [2], Theorem 3. 2. For the purpose of this note, the nature of a homology theory under consideration is important only to the extent that the homology groups be vector spaces; that they agree with the usual homology groups with rational coefficients for compact polyhedra; and that they constitute a functor H_* satisfying the homotopy axiom and the dimension axiom for the category of topological spaces under consideration. Thus H_* may be the singular homology, the Cech homology or any other functor satisfying the above requirements. The homomorphism induced by a map $f\colon X\to Y$ will be denoted, as usual, by $f_{*n}\colon H_n(X)\to H_n(Y)$. Let V be a finite dimensional vector space over a field C (in our case, C=Q, the field of rational numbers), let V^* be the dual of V and let ^{*} Supported by NSF Grant GP 6015. End $(V) = \operatorname{Hom}(V,V)$ be the vector space of endomorphisms $V \to V$. Then we have a canonical linear form $\tau \colon V^* \otimes V \to C$ and a canonical isomorphism $\theta \colon V^* \times V \stackrel{\cong}{\to} \operatorname{End}(V)$. The trace, try, is the canonical linear form $$\operatorname{tr}_{V} = \tau \circ \theta^{-1} \colon \operatorname{End}(V) \to C$$. When no confusion can arise, we write $tr_{\nu} = tr$. PROPOSITION. (see [1], page 112). If V and W are finite dimensional vector spaces and $g\colon V\to W$, $h\colon W\to V$ are linear maps then $\operatorname{tr}_V(h\circ g)=\operatorname{tr}_W(g\circ h)$. Let W be a subspace of a vector space V and let $$\operatorname{End}(V; W) = \{ f \in \operatorname{End}(V) \colon f(V) \subset W \}$$. Let $i\colon W\sim V$ be the inclusion map and let $i_*\colon \operatorname{Hom}(V,W)\to \operatorname{End}(V;W)$ and $i^*\colon \operatorname{Hom}(V,W)\to \operatorname{End}(W)$ be the maps $f\to i\circ f$ and $f\to f\circ i$, respectively. We have the inclusion $\operatorname{End}(V;W)\subset \operatorname{End}(V)$ and a natural map $a\colon \operatorname{End}(V;W)\to \operatorname{Hom}(V,W)$ such that $i_*\circ a=1_{\operatorname{End}(V;W)}$. Let $\beta=i^*\circ a\colon \operatorname{End}(V;W)\to \operatorname{End}(W)$. (2.1) LEMMA. If V is finite dimensional then $$\operatorname{tr}_{W} \circ \beta = \operatorname{tr}_{V} | \operatorname{End}(V; W) \colon \operatorname{End}(V; W) \to C.$$ Proof. Let $f \in \text{End}(V; W)$. If g = a(f) then $i \circ g = f$ and $g \circ i = \beta(f)$. By the Proposition quoted above, $\text{tr}_W(g \circ i) = \text{tr}_V(f)$. (2.2) LEMMA. Let X be a vector space and $f \in \text{End}(X)$ be such that $f^n(X)$ is finite dimensional for some integer n. Let V be a finite dimensional subspace of X such that $f^n(X) \subset V$ and $f(V) \subset f^n(X)$. Then if $f' \colon V \to V$ and $f'' \colon f^n(X) \to f^n(X)$ are defined by the restriction of f, we have $\operatorname{tr}(f') = \operatorname{tr}(f'')$. Proof. Apply (2.1) to V, $W = f^n(X)$, and $f' \in \text{End}(V; W)$. (2.3) DEFINITION. Let X be a vector space and $f \in \operatorname{End}(X)$. Suppose that there exists an integer n such that $V = f^n(X)$ is finite dimensional. Let $f' \colon f^n(X) \to f^n(X)$ be defined by the restriction of f. Define the trace of f by $\operatorname{tr}(f) = \operatorname{tr}_V(f')$. By (2.2), $\operatorname{tr}(f)$ is well-defined. By saying "tr(f) is defined" we shall mean that the assumptions of (2.3) are fulfilled. (2.4) LEMMA. Let X, Y be vector spaces and let $g\colon X\to Y$, $h\colon Y\to X$ be linear maps such that $\operatorname{tr}(h\circ g)$ is defined. Then $\operatorname{tr}(g\circ h)$ is defined and $\operatorname{tr}(h\circ g)=\operatorname{tr}(g\circ h)$. Proof. Since $\operatorname{tr}(h \circ g)$ is defined, there exists an integer n such that $(h \circ g)^n(X)$ is finite dimensional. Then $(g \circ h)^{n+1}(Y) \subset g((h \circ g)^n(X))$ and $(g \circ h)^{n+1}(Y)$ is finite dimensional. Thus $\operatorname{tr}(g \circ h)$ is defined. Let $V=(h\circ g)^{n+1}(X)$ and $W=g((h\circ g)^n(X));$ then V and W are finite dimensional subspaces of X and Y, respectively, and $g(V)\subset W$, $h(W)\subset V$. Let $g'\colon V\to W$ and $h'\colon W\to V$ be the maps defined by the restrictions of g and h, respectively. Let $e = h \circ g \in \operatorname{End}(X)$, $f = g \circ h \in \operatorname{End}(Y)$. Observe that $e(V) \subset V$, $f(W) \subset W$ and that the maps $e' \colon V \to V$, $f' \colon W \to W$ defined by the restrictions of e and f are $e' = h' \circ g'$ and $f' = g' \circ h'$. By definition, $\operatorname{tr}(h \circ g) = \operatorname{tr}(e')$. Moreover, $(g \circ h)^{n+1}(Y) \subset W$ and again by (2.2), $\operatorname{tr}(g \circ h) = \operatorname{tr}(f')$. Thus $\operatorname{tr}(h \circ g) = \operatorname{tr}(e') = \operatorname{tr}(h' \circ g')$ and $\operatorname{tr}(g \circ h) = \operatorname{tr}(f') = \operatorname{tr}(g' \circ h')$. Since V and W are finite dimensional, in view of the Proposition we have $\operatorname{tr}(h' \circ g') = \operatorname{tr}(g' \circ h')$. - (2.5) DEFINITION. Let X be a topological space and $f\colon X\to X$ a continuous map. Then f is said to be a Lefschetz map if $\Lambda(f)=\sum\limits_{n=0}^{\infty}(-1)^n\mathrm{tr}(f_{n})$ is well-defined and $\Lambda(f)\neq 0$ implies that f has a fixed point (in particular this implies that $\mathrm{tr}(f_{n})$ is defined). - (2.6) DEFINITION. A topological space X is said to be a A-space if each compact map $f: X \rightarrow X$ is a Lefschetz map. (A map f is compact if there is a compact subset of X which contains f(X).) - 3. For simplicity, when writing the induced homomorphisms, the dimension subscript will be omitted. - (3.1) THEOREM. Let X be any space and let $f: X \rightarrow X$ be a compact map. Suppose that there exists a Λ -space Y and maps $g: X \rightarrow Y$ and $h: Y \rightarrow X$ such that h is compact and $h \circ g = f$. Then f is a Lefschetz map. Proof. The mapping $g \circ h$: $Y \to Y$ is compact and hence is a Lefschetz map. Considering the induced homomorphisms on the homology groups, we have $f_* = h_* \circ g_*$ at each dimension. We have g_* : $H_n(X) \to H_n(Y)$ and h_* : $H_n(Y) \to H_n(X)$ linear maps of vector spaces such that $\operatorname{tr}(g_*h_*)$ is defined (since $\Lambda(gh)$ exists). By Lemma 2.4, $\operatorname{tr}(h_*g_*)$ is defined and $\operatorname{tr}(h_*g_*) = \operatorname{tr}(g_*h_*)$. Then since $f_* = h_*g_*$, $\operatorname{tr}(f_*) = \operatorname{tr}(g_*h_*)$. Hence $\Lambda(f)$ is defined and $\Lambda(f) = \Lambda(gh)$. Suppose $\Lambda(f) \neq 0$. Then there is a point $g \in Y$ such that gh(g) = g Let $x = h(y) \in X$. Then f(x) = x. Q.E.D. 161 Let $f: X \to X$ be a compact map. For any compact set K containing f(X), let $f_K: K \to K$ denote the restriction defined by f. Clearly, f has a fixed point iff f_K has a fixed point. The following theorem is along this line and is a useful tool in the study of compact maps. The proof is omitted since it follows very closely the proof of theorem (3.1). - (3.2) THEOREM. Let $f: X \to X$ be a compact mapping. - (a) If $\Lambda(f)$ exists, then $\Lambda(f_K)$ exists for all compact K containing f(X) and $\Lambda(f) = \Lambda(f_K)$. - (b) If $\Lambda(f_K)$ exists for some compact K containing f(X), then $\Lambda(f)$ exists and $\Lambda(f) = \Lambda(f_K)$. In particular, we have - (3.3) COROLLARY. Let $f: X \rightarrow X$ be a compact mapping. - (a) If f is a Lefschetz map, then f_K is a Lefschetz map for all compact K containing f(X). - (b) If f_K is a Lefschetz map for some compact K containing f(X), then f is a Lefschetz map. - (3.4) COROLLARY. If X is a topological space and $f: X \rightarrow X$ can be factored through a Lefschetz space, then f is a Lefschetz map. - (3.5) THEOREM. Let X be a topological space such that there is a Λ -space Y and mappings $g\colon X\to Y$ and $h\colon Y\to X$ with $h\circ g=1_X$ $(1_X=identity\ map\ on\ X)$. Then X is a Λ -space. Proof. Let $f\colon X\to X$ be a compact mapping. Then $f\circ h\colon Y\to Y$ is a compact mapping and $f=(f\circ h)\circ g$. Then by Theorem (3.1), f is a Lefschetz map. Q.E.D. - (3.6) Corollary. A retract of a A-space is again a A-space. - 4. An essential fact in the proof of Theorem (3.1) was that $f_* = h_* \circ g_*$. The condition that $f = h \circ g$ is certainly not necessary. By placing a suitable restriction on the space X, Theorem (3.1) can be generalized as follows. - (4.1) THEOREM. Let X be a regular, T_1 space (i.e., T_3 space) and $f\colon X{\to}X$ a compact mapping. Suppose that for each open cover a of X, there is a Λ -space Y_a and mappings $g_a\colon X{\to}Y_a$ and $h_a\colon Y_a{\to}X$ satisfying - (a) ha is compact, - (b) $h_{\alpha} \circ g_{\alpha} \simeq f$, and - (c) $h_a \circ g_a$ and f are a-near (i.e., for each $x \in X$, there is an element U of a containing both $h_a g_a(x)$ and f(x)). Then f is a Lefschetz map. Proof. Given an open cover α of X, let Y_{α} , g_{α} , and h_{α} satisfy the conditions of the theorem. Then $g_{\alpha} \circ h_{\alpha}$: $Y_{\alpha} \to Y_{\alpha}$ is a compact mapping and hence is a Lefschetz map. Since $h_{\alpha} \circ g_{\alpha} \sim f$, for the induced homo- morphisms on the homology groups we have $f_* = h_{a^*} \circ g_{a^*}$ at each dimension. Following exactly the proof of Theorem (3.1), we find that $\Lambda(f)$ is defined and that $\Lambda(f) = \Lambda(g_a \circ h_a)$. This is true for every open cover a of X. Suppose $A(f) \neq 0$. Then for each open cover a of X, there is a point $y_a \in Y_a$ such that $g_a \circ h_a(y_a) = y_a$. Let $x_a = h_a(y_a) \in X$. Choose some compact set K containing f(X). Then $f(x_a) \in K$ for each a. Now $C = \operatorname{Cov}(X)$, the set of all open covers of X, is directed by the refinement relation: if $a, a' \in C$, a < a' means that a' is a refinement of a; and $a \mapsto f(x_a)$ defines a net $\varphi \colon C \to K$ in K. Since K is compact, there is a directed set D and a cofinal map $\lambda \colon D \to C$ such that the subnet $\varphi \circ \lambda \colon D \to K$ converges to a point $x_0 \parallel K$. Consider the net $\varphi \colon D \to X$ defined by $\beta \mapsto x_{\lambda(\beta)}$. It suffices to show that φ converges to x_0 . For then by the continuity of f we have $f(x_0) = x_0$. First note that since $x_a = h_a \circ g_a(x_a)$, x_a and $f(x_a)$ are both contained in an element of a; thus we can choose a map $U: C \to \bigcup_{a \in C} a$, $a \mapsto U_a$, such that $U_a \in a$ and U_a contains both x_a and $f(x_a)$. Let V be any open neighborhood of x_0 . Then there is an open neighborhood W of x_0 such that $\overline{W} \subset V$. Let $a_0 = \{V, X - \overline{W}\} \in C$. Since λ is cofinal, there exists an element $\beta_0 \in D$ such that for $\beta > \beta_0$ we have $\lambda(\beta) > a_0$; and since $\varphi \circ \lambda$ converges to x_0 , there exists an element $\beta_1 \in D$ such that for $\beta > \beta_1$ we have $f(x_{\lambda(\beta)}) \in W$ and also $f(x_{\lambda(\beta)})$, $x_{\lambda(\beta)} \in U_{\lambda(\beta)}$. Thus for $\beta > \beta_0$, β_1 we have $U_{\lambda(\beta)} \subset V$ and $x_{\lambda(\beta)} \in V$. This means that φ converges to x_0 . - (4.2) THEOREM. Let X be a regular, T_1 space. Suppose that for each open cover α of X there is a Λ -space Y_a and mappings $g_a\colon X{\to}Y_a$ and $h_a\colon Y_a{\to}X$ satisfying - (a) $h_a \circ g_a \simeq 1_X$ and - (b) $h_a \circ g_a$ and 1_X are a-near. Then X is a Λ -space. Proof. Let $f: X \to X$ be a compact mapping. Take an open cover α of X. Then $\beta = f^{-1}(\alpha) \in \operatorname{Cov}(X)$ and we have the corresponding Λ -space Y_{β} and mappings g_{β} , h_{β} . Then $f \circ h_{\beta} \colon Y_{\beta} \to X$ is compact, $f \circ h_{\beta} \circ g_{\beta} \simeq f$, and $f \circ h_{\beta} \circ g_{\beta}$ and f are α -near. Thus by Theorem (4.1), f is a Lefschetz map. Q.E.D. - 5. The two topologies usually considered on a polyhedron are the metric topology and the Whitehead topology ([4], p. 99). Unless the polyhedron is locally finite these topologies do not coincide. - (5.1) Theorem. Every polyhedron P with the Whitehead topology is a Λ -space. Proof. Let $f: P \rightarrow P$ be a compact mapping. Let C be a compact subset of P containing f(P). Then there is a finite subpolyhedron P' of P containing C. As before let $f_{P'}: P' \rightarrow P'$ denote the restriction of f. It is well known that $f_{P'}$ is a Lefschetz map. Thus by Corollary (3.3) (b), f is also a Lefschetz map. (5.2) COROLLARY. Every (metric) absolute neighborhood retract X is a Λ -space. Proof. For each open cover a of X there is a polyhedron P_a (with the Whitehead topology) and mappings $g_a\colon X\to P_a$ and $h_a\colon P_a\to X$ such that $h_a\circ g_a$ is a-homotopic to 1_X (see [4], p. 138). In particular, $h_a\circ g_a\simeq 1_X$ and $h_a\circ g_a$ and 1_X are a-near. Then by Theorem (4.2), X is a A-space. 6. Note that the theorems of $\S 3$ and $\S 4$ also hold for Lefschetz spaces in the sense that " Λ -space" can be replaced by "Lefschetz space" throughout. When this is done the compactness conditions on the mappings can be dropped. #### References - N. Bourbaki, Algèbre, Chapitre 2 (Algèbre Linéaire), Herman, Paris, 1962. F. E. Browder, Fixed point theorems on infinite dimensional manifolds, Trans. Amer. Math. Soc. 119 (1965), pp. 179-194. - [3] A. Granas, Generalizing the Hopf-Lefschetz fixed point theorem for non-compact ANR-s, Proc. Symp. on Infinite Dimensional Topology, Baton Rouge 1967. - [4] S. T. Hu, Theory of Retracts, Wayne State Univ. Press, Detroit, 1965. Reçu par la Rédaction le 1. 9. 1967 ## On choosing subsets of n-element sets by ### M. M. Zuckerman* (New York) - 1. Introduction. Let n be a positive integer. Mostowski ([6]) and others have studied the axioms of choice for finite sets, [n], in which an element is chosen from each set of an arbitrary set of n-element sets. We wish to introduce some new axioms which are concerned with the choice of a subset or of a partition, rather than a single element, from each element of an arbitrary set of n-element sets. We shall discuss the interdependence of these axioms and their relationship to the axioms [n]. - **2. Notation.** We shall operate within a set theory of the Gödel-Bernays type (see the proof of theorem 7); our logical framework will be the first-order predicate calculus with identity. For statements $a_1, a_2, ..., a_n$, we write $a_1 \rightarrow a_2 \rightarrow ... \rightarrow a_n$ in lieu of $(a_1 \rightarrow a_2) \& (a_2 \rightarrow a_3) \& ...$... & $(a_{n-1} \rightarrow a_n)$; a similar remark applies to $a_1 \leftrightarrow a_2 \leftrightarrow ... \leftrightarrow a_n$. By the (nonnegative) integers we mean the von Neumann integers—0 (the empty set), $1 = \{0\}$, $2 = 1 \cup \{1\}$, $3 = 2 \cup \{2\}$, etc. A set is finite iff every nonempty set of subsets of X has a maximal element with respect to set inclusion. If there exists a function which maps the set X one-one onto the positive n, then X is called an n-element set and we say that the number of elements of X is n; in this case we let n(X) denote the unique integer n for which such a mapping exists. For each integer n, let I_n be the set of integers $\geq n$, let J_n be the relative complement of I_{n+1} in I_1 , $I_1 \setminus I_{n+1}$, and let $K_n = J_n \setminus \{1\}$. Let II represent the set of prime numbers and let $II_n = II \cap I_n$. For any set X let $\mathfrak{I}(X)$ designate the power set of X, let $\mathfrak{I}^*(X) = \mathfrak{I}(X) \setminus 1$, let $\mathfrak{I}^{\#}(X)$ be the set of finite subsets of X, and let $\mathfrak{I}^{\#*}(X) = \mathfrak{I}^{\#}(X) \setminus 1$. ^{*} This research formed part of the author's Ph. D. thesis (Yeshiva University, 1967) under the supervision of Professor Martin Davis of New York University. The work was supported by a National Science Foundation (U.S.A.) Science Faculty Fellowship. We note that Professor Conway's announcement that [3] & [5] & [13] +> [15] as well as his other independence results, which were mentioned in the thesis, have recently been retracted.