

Proof. Let $f: P \rightarrow P$ be a compact mapping. Let C be a compact subset of P containing f(P). Then there is a finite subpolyhedron P' of P containing C. As before let $f_{P'}: P' \rightarrow P'$ denote the restriction of f. It is well known that $f_{P'}$ is a Lefschetz map. Thus by Corollary (3.3) (b), f is also a Lefschetz map.

(5.2) COROLLARY. Every (metric) absolute neighborhood retract X is a Λ -space.

Proof. For each open cover a of X there is a polyhedron P_a (with the Whitehead topology) and mappings $g_a\colon X\to P_a$ and $h_a\colon P_a\to X$ such that $h_a\circ g_a$ is a-homotopic to 1_X (see [4], p. 138). In particular, $h_a\circ g_a\simeq 1_X$ and $h_a\circ g_a$ and 1_X are a-near. Then by Theorem (4.2), X is a A-space.

6. Note that the theorems of $\S 3$ and $\S 4$ also hold for Lefschetz spaces in the sense that " Λ -space" can be replaced by "Lefschetz space" throughout. When this is done the compactness conditions on the mappings can be dropped.

References

- N. Bourbaki, Algèbre, Chapitre 2 (Algèbre Linéaire), Herman, Paris, 1962.
 F. E. Browder, Fixed point theorems on infinite dimensional manifolds, Trans.
 Amer. Math. Soc. 119 (1965), pp. 179-194.
- [3] A. Granas, Generalizing the Hopf-Lefschetz fixed point theorem for non-compact ANR-s, Proc. Symp. on Infinite Dimensional Topology, Baton Rouge 1967.
 - [4] S. T. Hu, Theory of Retracts, Wayne State Univ. Press, Detroit, 1965.

Reçu par la Rédaction le 1. 9. 1967

On choosing subsets of n-element sets

by

M. M. Zuckerman* (New York)

- 1. Introduction. Let n be a positive integer. Mostowski ([6]) and others have studied the axioms of choice for finite sets, [n], in which an element is chosen from each set of an arbitrary set of n-element sets. We wish to introduce some new axioms which are concerned with the choice of a subset or of a partition, rather than a single element, from each element of an arbitrary set of n-element sets. We shall discuss the interdependence of these axioms and their relationship to the axioms [n].
- **2. Notation.** We shall operate within a set theory of the Gödel-Bernays type (see the proof of theorem 7); our logical framework will be the first-order predicate calculus with identity. For statements $a_1, a_2, ..., a_n$, we write $a_1 \rightarrow a_2 \rightarrow ... \rightarrow a_n$ in lieu of $(a_1 \rightarrow a_2) \& (a_2 \rightarrow a_3) \& ...$... & $(a_{n-1} \rightarrow a_n)$; a similar remark applies to $a_1 \leftrightarrow a_2 \leftrightarrow ... \leftrightarrow a_n$.

By the (nonnegative) integers we mean the von Neumann integers—0 (the empty set), $1 = \{0\}$, $2 = 1 \cup \{1\}$, $3 = 2 \cup \{2\}$, etc. A set is finite iff every nonempty set of subsets of X has a maximal element with respect to set inclusion. If there exists a function which maps the set X one-one onto the positive n, then X is called an n-element set and we say that the number of elements of X is n; in this case we let n(X) denote the unique integer n for which such a mapping exists.

For each integer n, let I_n be the set of integers $\geq n$, let J_n be the relative complement of I_{n+1} in I_1 , $I_1 \setminus I_{n+1}$, and let $K_n = J_n \setminus \{1\}$. Let II represent the set of prime numbers and let $II_n = II \cap I_n$.

For any set X let $\mathfrak{I}(X)$ designate the power set of X, let $\mathfrak{I}^*(X) = \mathfrak{I}(X) \setminus 1$, let $\mathfrak{I}^{\#}(X)$ be the set of finite subsets of X, and let $\mathfrak{I}^{\#*}(X) = \mathfrak{I}^{\#}(X) \setminus 1$.

^{*} This research formed part of the author's Ph. D. thesis (Yeshiva University, 1967) under the supervision of Professor Martin Davis of New York University. The work was supported by a National Science Foundation (U.S.A.) Science Faculty Fellowship. We note that Professor Conway's announcement that [3] & [5] & [13] -> [15] as well as his other independence results, which were mentioned in the thesis, have recently been retracted.

Furthermore, let $X_{(n)}$ be the set of *n*-element subsets of elements of X, $n \in I_1$.

Throughout this paper, we shall let h(n) be the greatest integer less than or equal to n/2, for $n \in I_1$.

DEFINITION 1. Let $n \in I_2$ and let N be a nonempty subset of J_{n-1} . Let (n; SN) denote the statement: "For every set X of n-element sets there is a function f on X such that for all $A \in X$, f(A) is a subset of A such that $n(f(A)) \in N$." We shall refer to these functions f as multiple choice functions on X.

We write S(n) in place of $S(n; J_{n-1})$; thus S(n) simply says that f(A) is a nonempty proper subset of A, for each $A \in X$. If $k \in J_{n-1}$, then if $N_1 = \{k\}$ and if N_2 is the set of integers between k and n-k (inclusive), write S(n; k) for $S(n; N_1)$ and $S^*(n; k)$ for $S(n; N_2)$. Such multiple choice functions f will be specified as k-ary (k^* -ary) choice functions. If for $r \in I_2$, $Z = \{n_1, n_2, \ldots, n_r\}$, then S(Z; 1) will denote $S(n_1; 1) \& S(n_2; 1) \& \ldots$ $\& S(n_r; 1)$. Let H(n) = S(n; h(n)).

Clearly, for all $n \in I_2$, S(n; 1) iff [n] and $S^*(n; 1)$ iff S(n). Moreover, for any nonempty subset N of J_{n-1} , S(n; N) iff S(n; M), where $n' \in M$ iff $n' \in N$ or $n-n' \in N$; in particular, for all $k \in J_{n-1}$, S(n; k) iff S(n; n-k), $S^*(n; k)$ iff $S^*(n; n-k)$, and for n odd, H(n) iff S(n; h(n)+1). We shall find it expedient to assume, henceforth, that the number of elements of the "chosen" subset is in $J_{h(n)}$.

DEFINITION 2. Let $n \in I_2$ and let A be an n-element set. By a decomposition D of A is meant a set D satisfying

- (i) | D = A.
- (ii) $c \in D \rightarrow c \neq 0$,
- (iii) $(c_1, c_2 \in D \& c_1 \neq c_2) \rightarrow c_1 \cap c_2 = 0$.

The elements of a decomposition D of A will be called the *cells* of D; in particular, a k-element cell will be referred to as a k-cell. If $k_1 < k_2 < ... < k_r$, and if $l_1, l_2, ..., l_r$ are any positive integers, then a decomposition D of A which consists of l_1 k_1 -cells, l_2 k_2 -cells, ..., and l_r k_r -cells will be called an $(l_1, k_1; l_2, k_2; ...; l_r, k_r)$ -type decomposition.

Let $n \in I_4$. Let $D_0(n)$ be the statement: "For every set X of n-element sets there is a function f on X such that for all $A \in X$, f(A) is a decomposition of A satisfying ((i), (ii), (iii), above, as well as)

- (iv) $n(f(A)) \geqslant 2$,
- $(\nabla) \ c \in f(A) \rightarrow n(c) \geqslant 2$.

Let $n \in L_3$. Let $D_1(n)$ be the statement: "For every set X of n-element sets there is a function f on X such that for all $A \in X$, f(A) is a decomposition of A satisfying ((i), (ii), (iii)) (iv) as well as

 (∇') there is some $c \in f(A)$ such that $n(c) \ge 2$."

Let $n \in L_2$. Let $D_2(n)$ be the statement: "For every set X of n-element sets there is a function f on X such that for all $A \in X$, f(A) is a decomposition of A satisfying ((i), (ii), (iii)) (iv), (v'), and \sim (v)."

Functions f effecting these decompositions on the elements of X will be called $D_i(n)$ -functions on X, $i \in 3$ and $n \in I_3$.

If in each of the statements of definitions 1 and 2 the sets $A \in X$ are assumed to be pairwise-disjoint, the modified statement is equivalent to the original one. The proofs of these equivalences are similar to the proof of that of the so-called "principle of choice" with the axiom of choice ([7], pp. 93-95). When it suits our convenience to do so, we shall assume pairwise-disjointness.

3. Positive results.

THEOREM 1. $(\nabla n \in I_3)(S(n) \longleftrightarrow D_2(n))$.

Proof. Assume $n \geqslant 3$ and let X be a nonempty set of n-element sets.

 $S(n) \rightarrow D_{\mathbf{z}}(n)$: Let f be a multiple choice function on X. Then for $A \in X$, if n(f(A)) = 1, let $g(A) = \{f(A), A \setminus f(A)\}$; if n(f(A)) > 1, let $g(A) = \{\{a\}: a \in f(A)\} \cup \{A \setminus f(A)\}$.

 $D_2(n) \to S(n)$: Let G be a $D_2(n)$ -function on X. Then for $A \in X$, G(A) contains at least one 1-cell and at least one k-cell for some $k \ge 2$. Let A' be the union of all the 1-cells of G(A). Define F(A) to be A' if $n(A') \le h(n)$; otherwise, let $F(A) = A \setminus A'$.

Theorem 2. (a). $(\forall n \in I_4)(\forall k \in K_{h(n)})(S^*(n; k) \rightarrow D_0(n) \rightarrow D_1(n))$.

- (b) $(\nabla n \in I_3)(\nabla k \in J_{h(n)})\Big(S\Big({n \choose k}; 1\Big) \to S(n; k) \to S^*(n; k) \to S(n) \to D_1(n)\Big).$ $(\nabla n \in I_4)(\nabla k \in K_{h(n)})(S^*(n; k) \to S^*(n; k-1)).$
- (c) $(\nabla p \in \Pi_5)(D_0(p) \rightarrow S(p))$.
- (d) $(\nabla p \in \Pi_3)(D_1(p) \leftrightarrow S(p))$.
- (e) $(\nabla n \in I_2)(\nabla k \in I_1)(S(kn; Z) \rightarrow S(n))$ if Z is any subset of $J_{h(kn)}$ which contains no multiple of n.
- (f) Suppose that k and l are nonnegative integers which are not both 0. Then

$$(\nabla m \in I_1)(\nabla n \in I_m)((S(km+ln; 1) \& S(m+n; m)) \rightarrow S(m+n; 1)).$$

- (g) $(\nabla p \in \Pi) (\nabla k \in h(p)) (\nabla n \in I_2) (S(p; k) \rightarrow S(np)).$
- (h) $(\nabla p \in \Pi)(\nabla n \in I_2)(S(np-1; 1) \rightarrow D_0(np)).$
- (i) $(\nabla n \geqslant 2)(S(2^n-2;1)\rightarrow S(n)).$

Proof. (a) and (b). Let X be a nonempty set of n-element sets. $S^*(n;k) \to D_0(n)$ for $k \in K_{h(n)}$: Let f by a k-ary choice function on X. The function F defined on X by $F(A) = \{f(A), A \setminus f(A)\}$ is a $D_0(n)$ -function on X.

 $S(n) \rightarrow D_1(n)$: If g is a multiple choice function on X, then $G(A) = \{g(A), A \setminus g(A)\}$ defines a $D_1(n)$ -function on X.

The other implications of (a) and (b) follow directly from definitions 1 and 2.

- (c) Let X be a nonempty set of p-element sets and let f be a $D_0(p)$ -function on X. For each $A \in X$, not all of the cells of f(A) have the same number of elements; let g(A) be the union of all the cells with the minimal number of elements. Let F(A) be g(A) if $n(g(A)) \in J_{h(p)}$ and let $F(A) = A \setminus g(A)$, otherwise.
 - (d) $S(p) \rightarrow D_1(p)$, by (b).

 $D_1(p) \rightarrow S(p)$: Let X be a nonempty set of p-element sets and let f be a $D_1(p)$ -function on X. If for $A \in X$, f(A) satisfies (v) of definition 2, then $p \geq 5$, and we can define F(A) as in (c). If f(A) satisfies $\sim (v)$, then f(A) is a $D_2(n)$ -decomposition of A, and hence, we can define F(A) as in theorem 1.

Examples in which $D_i(n)$ does not imply S(n) for n composite, i = 0, 1, will be given in theorem 12.

- (e) is a generalization of [6], lemma 13 ([7], p. 99, theorem 2). Let X be a nonempty set of n-element sets. For $A \in X$, let A' be the set of ordered pairs $\langle a,i \rangle$, where $a \in A$ and $i \in J_k$. Let X' be the collection of all A' corresponding to $A \in X$. By the axiom of substitution, X' is a set; each element of X' is a kn-element set. Let f be a multiple choice function on X'. Then for each $A' \in X'$, not all the elements $a \in A$ appear the same number of times as first coordinates of members of f(A'). Let g(A) be either the collection of elements of A which appear the minimal number of times, or else the complement of this collection with respect to A.
- (f) is an extension of [6], lemma 14. Let X be a nonempty set of (m+n)-element sets and let f be any m-ary choice function defined on X. Then for $Y \in X$ the sets f(Y) and $Y \setminus f(Y)$ satisfy the hypothesis of [6], lemma 14; hence there is a function g on X such that $g(Y) \in Y$ for all $Y \in X$.
- (g) is a generalization of [6], lemma 15. Let X be a nonempty set of pairwise-disjoint np-element sets. Then $X_{(p)}$ is a set of p-element sets; let f be a k-ary choice function on $X_{(p)}$. For each $A \in X$ and for each $a \in A$, denote by n_a , the number of $y \in X_{(p)}$ for which $a \in f(y)$. Then

$$\sum n_a(a \in A) = k \binom{np}{p}$$

is not divisible by np, whereas $n(\{n_q: a \in A\}) = n(A) = np$. Thus not all the n_a are identical. Let g(A) be the set of those $a \in A$ for which n_a is minimal (or else the complement of this set with respect to A).

- (h) is a restatement of [6], lemma 16.
- (i) There are 2^n-2 nonempty proper subsets of an *n*-element set; either the chosen subset or its complement can be used to satisfy the requirements of S(n).

THEOREM 3. (a) Let $n \in I_4$, let $k \in J_{h(n)-1}$, and let $N \subseteq J_{h(n)} \setminus J_k$. For each such n, k, and N, let

$$M_1 = \{m: (\mathfrak{A} l, i) (m = l - i \& l \in N \& i \in k + 1)\},$$

let

$$M_2 = J_{h(n-k)} ,$$

and let $M = M_1 \cap M_2$. Then $S(n; N) \rightarrow S(n-k; M)$.

(b) Let $n \in I_4$ and let $k \in I_1$ be such that $k+1 \le 2k \le n-2$. Then

$$S^*(n; k+1) \rightarrow (\nabla m \in J_n \cap I_{n-k}) S(m)$$
.

(c) Let $n \in I_4$ and let k and l be integers such that $k+1 \leq 2k < n$ and $k+1 \leq l \leq h(n)$. Let $Z = J_l \cap I_{\max(2,l-k)}$. Then

$$(S(Z; 1) & S(n; l)) \rightarrow S(n-k; 1)$$
.

Proof. (a) Suppose S(n; N) and let X be a nonempty set of (n-k)-element sets. To each $A \in X$, add k new elements—for definiteness, say, the first k positive integers which are not in A. The new sets A^* will each have n elements. We let X^* be the collection of A^* corresponding to $A \in X$. By the axiom of substitution, X^* is a set; let f be a multiple choice function on X^* such that for each $A^* \in X^*$, $n(f(A^*)) \in N$. Moreover, $A \cap f(A^*)$ is a nonempty subset of A for each $A \in X$. Let $g(A) = A \cap f(A^*)$ if $n(A \cap f(A^*)) \leq h(n-k)$ and let $g(A) = A \setminus f(A^*)$, otherwise. Then g is a multiple choice function defined on X having the property that $g(A) \in N$ for each $A \in X$.

- (b) follows from (a).
- (c) If $N = \{l\}$ in (a), then $n(g(A)) \in J = Z \cup \{1\}$ for all $A \in X$. Let X_j be the subset of X consisting of all A for which n(g(A)) = j, $j \in J$. Define G(A) = g(A) for $A \in X_1$, and for $z \in Z$, define $G(A) = F_z \cdot g(A)$, $A \in X_z$, where F_z is any (1-ary) choice function on X_z . Then G is the required (1-ary) choice function on X.

THEOREM 4.
$$(\nabla n \in I_3) \Big(D_1(n+1) \& S(n) \Big) \rightarrow D_0(n+1) \rightarrow S(n) \Big)$$
.

Proof. Suppose $D_1(n+1)$ & S(n). Let Y be a nonempty set of n+1-element sets and let f be a $D_1(n+1)$ -function on Y. Let Y_1 be the

subset of Y consisting of all sets A for which there are no 1-cells in f(A); let Y_2 be the subset of Y consisting of all sets A for which there are at least two 1-cells in f(A); let Y_3 be the subset of Y consisting of all sets A for which there is exactly one 1-cell in f(A). At least one of the sets Y_1, Y_2, Y_3 is nonempty; the nonempty sets Y_i are pairwise-disjoint and their union is Y. For $A \in Y_1$ let g(A) = f(A); for $A \in Y_2$ let

$$g(A) = \{c \in f(A) \colon \mathbf{n}(c) \geqslant 2\} \cup \bigcup \{c \in f(A) \colon \mathbf{n}(c) = 1\}.$$

Let Y_4 be the set of all $A' = A \setminus \{c_A\}$, where $A \in Y_3$ and c_A is the unique 1-cell in f(A). Then Y_4 is a set of n-element sets; let F be a multiple choice function on Y_4 . For $A \in Y_3$ let $g(A) = \{F(A') \cup \{c_A\}, A' \setminus F(A')\}$. Since in every case each cell of g(A) has at least two elements, g is a $D_0(n+1)$ -function on Y.

Suppose $D_0(n+1)$. Let X be a nonempty set of n-element sets. As in the the proof of theorem 3, let X^* be the set of all $A \cup \{a_A\}$, where $A \in X$ and a_A is some definite set which is not in A. Then X^* , as a set of (n+1)-element sets, has a $D_0(n+1)$ -function f defined on it. Suppose $f(A^*) = \{c_i : i \in n+1\}$; let i_0 be the index of the cell containing a_A . Then if $g(A) = c_{i_0} \setminus \{a_A\}$ for $A \in X$, g is a multiple choice function on X.

We note that the converse of the second implication is false; $D_0(5)$ is independent of S(4), as will be shown in theorem 12.

THEOREM 5. (a) $(\nabla n \in I_2)(H(2n) \rightarrow H(2n-1))$.

(b) $(\forall n \in I_3) ((S(n; 1) \& H(n-1)) \rightarrow H(n)).$

Proof. (a) follows from theorem 3 (a).

(We note that there are odd integers, 2n+1, for which H(2n) is independent of H(2n+1); for example, H(4) is independent of H(5) as will be shown in theorem 12.)

(b) If X is a nonempty set of n-element sets, let f be a (1-ary) choice function on X. Let $X' = \{A \setminus f(A) : A \in X\}$, and let g be an h(n-1)-ary choice function on X'. We define an h(n)-ary choice function F on X as follows: for $A \in X$, let $F(A) = g(A \setminus f(A))$, if n is odd, and let $F(A) = f(A) \cup g(A \setminus f(A))$, if n is even.

THEOREM 6. (a) $(\nabla n \in I_2) S(n; 1) \rightarrow (\nabla n \in I_2) (\nabla k \in K_{h(n)}) S(n; k)$.

- (b) $(An \in I_2)((\nabla r \in K_n)S(r; 1) \rightarrow (\nabla m \in K_n)(\nabla k \in J_{h(m)})S(m; k)).$
- (c) For $j \in I_1$ let q_j be the j-th prime (in order of magnitude) and let Q_j be the set consisting of the first j primes. Then

$$(\forall j \in I_1)(\forall n \in I_2)\big(\big(S(Q_j; 1) \to (\forall m \in K_n)(\forall k \in I_{h(m)})S(m; k)\big) \longleftrightarrow n \in K_{q_{j+1}-1}\big).$$

(d) $(\nabla l \in K_r) S(l; 1)$ is independent of

 $(\nabla m \in K_n)(\nabla k \in J_{h(m)})S(m; k)$, whenever $\Pi_{n+1}\backslash \Pi_{r+1} \neq 0$.

Proof. (a), (b): A k-ary choice function is obtained by composing k (1-ary) choice functions.

- (c) follows from (b) together with [9], lemma 10.
- (d) follows from (b) together with [6], theorem VIII.
- **4. Negative results.** We now generalize theorem III of [6], Mostowski's main result concerning necessary conditions for the implication $S(Z;1) \rightarrow S(n;1)$ (in our notation), in order to obtain the independence of certain of our axioms from S(Z;1). Subsequently, we shall be concerned with the independence of S(Z;1) from some of our axioms.

For any group \mathfrak{G} let \mathfrak{G}^{ω} denote the group whose elements are those infinite sequence $g = \langle g_1, g_2, ... \rangle$ whose terms belong to \mathfrak{G} and which are such that almost all of the g_n are equal to the unity of \mathfrak{G} ; multiplication is defined in the obvious way, i.e., by term-wise multiplication in \mathfrak{G} .

We shall write " $g \in \mathfrak{G}$ " in case \mathfrak{G} is the group $\langle X, \cdot \rangle$ and $g \in X$.

DEFINITION 3. Let $n \in I_2$ and let \mathfrak{S}_n be the symmetric group on n letters.

If $\Phi \in \mathfrak{S}_n$ and if $D = \{T_1, T_2, ..., T_r\}$ is a decomposition of J_n , then

(i) if
$$T_i = \{t_{i_1}, t_{i_2}, ..., t_{im_i}\}, i \in J_r$$
, let

$$\Phi(T_i) = \{\Phi(t_{i_1}), \Phi(t_{i_2}), ..., \Phi(t_{im_i})\};$$

(ii) let
$$\Phi(D) = {\Phi(T_1), \Phi(T_2), ..., \Phi(T_r)}.$$

If \mathfrak{G} is a subgroup of \mathfrak{S}_n and if N is a nonempty subset of J_n , then \mathfrak{G} leaves N fixed if $\Phi(N) = N$ for every $\Phi \in \mathfrak{G}$; if D is a decomposition of J_n , then \mathfrak{G} leaves D fixed if $\Phi(D) = D$ for every $\Phi \in \mathfrak{G}$.

 $\mathfrak G$ satisfies condition (C_1) if it leaves no nonempty proper subset of J_n fixed.

Let L be a nonempty proper subset of $J_{h(n)}$. \mathfrak{G} satisfies condition (C₂) with respect to L if it leaves fixed no subset of J_n the number of whose elements is in L.

 \mathfrak{G} satisfies condition (C_3) if it leaves fixed no decomposition D of J_n which satisfies conditions (iv) and (v) of definition 2.

 \mathfrak{G} satisfies condition (\mathfrak{C}_4) if it leaves fixed no decomposition D of J_n which satisfies (iv) and (v') of definition 2.

For $i \in J_4$, $Z(\in \mathfrak{I}^{\sharp}(I_2))$ and $n \in I_2$) satisfy condition (K_t) if for every subgroup \mathfrak{G} of \mathfrak{S}_n which satisfies condition (C_t) , there is a group $\mathfrak{H} \subset \mathfrak{G}^{\mathfrak{S}}$ and a finite number r of (not necessarily different) proper subgroups $\mathfrak{R}_1, \mathfrak{R}_2, \ldots, \mathfrak{R}_r$ of \mathfrak{H} such that

$$\sum \operatorname{Ind} \mathfrak{H}/\mathfrak{R}_i (i \in J_r) \in Z$$
.

THEOREM 7. (a) (K_1) is necessary for the implication $S(Z; 1) \rightarrow S(n)$.

- (b) (K_2) is necessary for the implication $S(Z; 1) \rightarrow S(n; L)$.
- (c) (\mathbb{K}_3) is necessary for the implication $S(Z; 1) \rightarrow D_0(n)$.
- (d) (K₄) is necessary for the implication $S(Z; 1) \rightarrow D_1(n)$.

Proof. The model for set theory which Mostowski uses in [6], in order to indicate the necessity of his condition (K) for the implication $S(Z;1) \rightarrow S(n;1)$, will suffice for our purpose as well in each of our cases. We shall consider only case (a); the other cases follows along the same lines with only minor modifications.

Let σ be the set theory of [5]; this version of set theory permits the existence of urelements (objects, other than the empty set, which are in the domain but not the range of the ϵ -relation) and it does not include the axiom of choice among its axioms. Let σ^* be σ together with the axiom of choice and an axiom asserting the existence of a denumerable number of urelements. We shall assume that σ^* is consistent; this is equivalent to the assumption that σ (or Gödel's system A, B, C of [3]) is consistent. (1) (See [4], pp. 478-479.) Thus we can look for a model within σ^* .

Suppose Z and n fail to satisfy condition (K_1) . Then there is a subgroup \mathfrak{G} of \mathfrak{S}_n which leaves no proper, nonempty subset of J_n fixed and which is such that for any subgroup \mathfrak{H} of \mathfrak{G}^{ω} and any proper subgroups $\mathfrak{R}_1, \mathfrak{R}_2, ..., \mathfrak{R}_r$ of \mathfrak{H} ,

$$\sum \operatorname{Ind} \mathfrak{H}/\Re (i \stackrel{.}{\epsilon} J_r) \notin Z$$
.

Let $N_k = J_{kn} \setminus J_{(k-1)n}$, $k \in I_1$. For any $\Psi \in \mathfrak{G}$, let

$$\Psi((k-1)n+i)=(k-1)n+\Psi(i)$$
, $i \in J_n$.

We define a set \mathcal{K}_{ξ} for each ordinal number ξ (2) and a meaning of $\Psi(x)$ for each $\Psi = \langle \Psi_1, \Psi_2, ... \rangle \epsilon$ (6° and each $x \in \mathcal{K}_{\xi}$ by transfinite induction.

Let $\mathcal{K}_0 = \bigcup N_k \ (k \in I_1)$; for $x \in \mathcal{K}_0$ let $\Psi(x) = \Psi_k(x)$ when $x \in N_k$, $k \in I_1$. Assume that $\xi > 0$ and that for all $\eta < \xi$, sets \mathcal{K}_{η} and the meaning of $\Phi(x)$ for $x \in \bigcup \mathcal{K}_{\eta'} \ (\eta' \in \eta + 1)$ have been defined. Let

$$\mathcal{M}_{\xi} = \mathcal{F} ig(\bigcup \mathcal{K}_{\eta}(\eta \; \epsilon \; \xi) ig) \; .$$

For $x \in \mathcal{M}_{\xi} \setminus \bigcup \mathcal{K}_{\eta}$ $(\eta \in \xi)$, let $\Phi(x) = \{\Phi(y): y \in x\}$. Let \mathcal{K}_{ξ} be the set of $x \in \mathcal{M}_{\xi}$ which satisfy the invariance condition:

(1) there is an integer l such that if $\Psi = \langle \Psi_1, \Psi_2, ... \rangle \in \mathfrak{G}^{\omega}$ and if $\Psi_1 = \Psi_2 = ... = \Psi_l = 1$, then $\Psi(x) = x$.

The urelements of the model will be the elements of \mathcal{K}_0 and the sets of the model will be the elements of the \mathcal{K}_ξ , $\xi>0$. (The reader is referred to sections 13-16 of [6] for a verification that certain of the axioms of σ are true in the model as well as for properties of the model.) We proceed to show that S(n) is false in the model; our argument follows that of section 17 of [6].

Let $x = \{N_i : i \in I_1\}$; since $\Psi(x) = x$ for every $\Psi \in \mathfrak{G}^\omega$, x is a set of the model. Suppose that y contains exactly one nonempty proper subset R_k of each N_k . We claim that y must fail to satisfy the invariance condition (1), and thus must be disqualified for admission as a set of the model.

Using the axiom of choice (in σ^*), for each $k \in I_1$ we select a permutation $\Psi_k \in \mathfrak{G}$ such that $\Psi_k(R_k) \neq R_k$. For any l let Ψ_{l+1} be the sequence whose (l+1)st term is Ψ_{l+1} and all of whose other terms are the identity (of \mathfrak{S}_n). Thus $\Phi_1 = \Phi_2 = ... = \Phi_l = 1$; yet $\Phi(y) \neq y$.

The argument of [6], section 18 serves to establish the validity of S(Z; 1) in the model.

THEOREM 8. Let $p \in \Pi$, let $r \in I_1$, and let Z be any finite set of positive integers which contains no multiple of p. Then $S(p^r)$ is independent of S(Z; 1).

Proof. Take 6 to be the cyclic group on p^r letters; 6 leaves no proper subgroup of J_n fixed. Moreover, each group $\mathfrak{H} \subset \mathfrak{G}^{\omega}$ has the property that for any proper subgroup \mathfrak{H} of \mathfrak{H} , $\mathrm{Ind}(\mathfrak{H}/\mathfrak{H})$ is a multiple of p. Hence, for any number of proper subgroups $\mathfrak{H}_1, \mathfrak{H}_2, \ldots, \mathfrak{H}_m$ of \mathfrak{H} ,

$$\sum \operatorname{Ind}(\mathfrak{H}/\mathfrak{R}_i)(i \in J_m) \notin Z.$$

Thus Z and n fail to satisfy condition (K_1) .

COROLLARY. Let p, Z and r be as in theorem 8.

(a) For each l and k satisfying

$$1 \leqslant l < k \leqslant h(p^r + l) < p^r,$$

 $S^*(p^r+l; k)$ is independent of S(Z; 1).

- (b) For all $n \in I_4$, let pp(n) be the greatest prime power less than and relatively prime to n. Then for $k \in J_{h(n)} \setminus J_{n-pp(n)}$, $S^*(n; k)$ is independent of S(n; 1).
 - (c) For $p \in \Pi_5$, $D_0(p)$ is independent of S(Z; 1).
 - (d) For $p \in \Pi_3$, $D_1(p)$ is independent of S(Z; 1).
 - (e) For $r \in I_2$, $S(p^r)$ is independent of $D_0(p^r)$.

⁽¹⁾ The consistency of σ is tacitly assumed in all of our metamathematical statements.

^(*) By an ordinal number is meant a transitive set which is ordered by the ϵ -relation (Regularity is included among the axioms of σ .)

Proof. (a) follows from theorems 3(b) and 8.

- (b) reduces to (a), with pp(n) playing the role of p^r .
- (c) follows from theorems 2(c) and 8.
- (d) follows from theorems 2(d) and 8.
- (e) follows from theorems 2(h) and 8. Let $\mathcal M$ be a model for σ & & $\mathcal S(p^r-1;\,1)$ & $\sim \mathcal S(p^r)$. Then $D_0(p^r)$ is true in $\mathcal M$.

Other independence results can be obtained by taking theorem 8 and its corollaries together with previous implicational results.

The above argument cannot be extended to show the independence of $D_0(p^r)$ from S(Z;1) when $r \in I_2$. For, let D be the decomposition of J_{p^r} in which each cell contains a residue class, mod p. Then for each permutation Φ of the cyclic group on p^r letters, $\Phi(D) = D$.

DEFINITION 4. Z ($\epsilon \, \mathfrak{I}^{\sharp \sharp}(I_1)$) and n ($\epsilon \, I_1$) satisfy condition (M) if for any decomposition of n into a sum of (not necessarily distinct) primes

$$n = p_1 + p_2 + ... + p_s ,$$

there are nonnegative integers $r_1, r_2, ..., r_s$ such that

$$r_1p_1+r_2p_2+...+r_sp_s\in Z$$
.

Mostowski, [6], theorem IV, shows that condition (M) is a consequence of condition (K) (see definition 4 and theorem 7, above), and thus

(2) (M) is a necessary condition for the implication $S(Z; 1) \rightarrow S(n; 1)$.

He also shows (M) to be sufficient for this implication in certain specific cases; in particular ([6], theorem IX),

(3) (M) is a sufficient condition for the implication $S(Z; 1) \rightarrow S(n; 1)$ for arbitrary Z and for $n \in \Pi \cup J_{19} \setminus \{15\}$. (3)

THEOREM 9. (a) Let $n \in I_2$, let $N \in \mathfrak{I}^*(J_{h(n)})$, let m be the number of subsets y of an n-element set such that $n(y) \in N$, and let $s \in I_2$ be such that $\{m\}$ and s fail to satisfy condition (M). Then S(s; 1) is independent of S(n; N).

(b) Let $n_0 \in I_4$, let $n_1, n_2 \in I_3$, and for $i \in 3$ let \mathfrak{D}_i be the set of all types of $D_i(n_i)$ -decompositions. For any $x_i \in \mathfrak{I}^*(\mathfrak{D}_i)$ let $m(x_i)$ be the number of $D_i(n_i)$ -decompositions whose type is in x_i . Let $s(x_i)$ ($\in I_2$) be such that for some $x_i \in \mathfrak{I}^*(\mathfrak{D}_i)$, $\{m(x_i)\}$ and $s(x_i)$ fail to satisfy condition (M). Then $S\{s(x_i); 1\}$ is independent of $D_i(n_i)$; moreover, $S\{s(x_2); 1\}$ is independent of $S(n_2)$.

Proof. (a) With each set X of n-element sets A we associate the set X', where $A' \in X'$ iff there is an $A \in X$ such that A' is the set of all subsets A'' of A such that $n(A'') \in N$. Since $\{m\}$ and s fail to satisfy condition (M), we can take a model \mathcal{M} for $\sigma \& \mathcal{B}(m; 1) \& \sim \mathcal{B}(s; 1)$. Now for each $A \in X$, the selection of a unit subset of A' yields a subset A^* of A with $n(A^*) \in N$. Thus S(n; N) is true in \mathcal{M} .

(b) Utilizes the implications $\mathcal{S}(m(x_i); 1) \to D_i(n_i)$, $i \in 2$, and follows along the same lines as (a). We note that for each $n \in I_2$ and for each $i \in 3$, there are only a finite number of types of $D_i(n)$ -decompositions. Moreover, theorem 1 enables us to apply information about $D_2(n)$ to the study of $\mathcal{S}(n)$.

COROLLARY 1. Assume the same notation as in theorem 9. Let $p \in \Pi$, let $r \in I_1$, and let l and k satisfy $1 \le l < k \le h(p^r + l) < p^r$. Then

- (a) if p does not divide m, each of the following axioms is independent of S(n; N):
 - (i) $S(p^r)$,
 - (ii) $S^*(p^r+l; k)$,
 - (iii) $D_0(p)$, if $p \in \Pi_5$,
 - (iv) $D_1(p)$, if $p \in \Pi_3$.

Also, if $m \in I_4$, if pp(m) is as in corollary (b) of theorem 8, and if $t \in J_{h(m)} \setminus J_{m-pp(m)}$, then $S^*(m;t)$ is independent of S(n;N).

(b) For $i \in 3$ if p does not divide $m(x_i)$ for some $x_i \in \mathbb{S}^*(\mathfrak{D}_i)$, then each of the axioms (i), (ii), (iii), and (iv) of (a) is independent of $D_t(n_t)$. Moreover, if in addition $m(x_i) \in I_4$ and if t is an integer satisfying $m(x_i) - \operatorname{pp}(m(x_i)) < t \leq h\left(m(x_i)\right)$, then $S^*(m(x_i);t)$ is independent of $D_t(n_t)$. In particular, if p does not divide $m(x_2)$ for some $x_2 \in \mathbb{S}^*(\mathfrak{D}_2)$, then each of the axioms (i), (ii), (iii), and (iv) of (a) is independent of $S(n_2)$; further, if $m(x_2) \geqslant 4$ and if t is as above (with t = 2), then $S^*(m(x_2);t)$ is independent of $S(n_2)$.

Proof. This follows from theorem 9 together with theorem 1 and theorem 8 and its corollary. In the proof of theorem 9 it is shown that $\dot{S}(m;1) \rightarrow S(n;N), \ m,n,N$ as indicated.

COROLLARY 2. For each prime p, S(p; 1) is independent of H_{2p} .

Proof. $p \neq \binom{2p}{n}$; the result follows from (a) of the theorem.

For the purpose of proving our next theorem, we now define the multiple choice axioms of M. N. Bleicher ([1] and [2]).

DEFINITION 4. For $m \in I_2$, $FS_m^{\#}$ will denote the following statement. "For any nonempty set X of nonempty finite sets there is a function f defined on X such that for each $A \in X$, $f(A) \in \mathbb{T}^*(A)$ and $\{n(f(A)), m\} = 1$."

^(*) For other cases in which (M) is sufficient for this implication, see [9], Section 4 and [10].

THEOREM 10. For $m \neq 4$ composite, S(m; 1) is independent of S(m). Proof. Theorem 5 of [11] asserts that

(4) for composites m > 6, S(m; 1) is independent of FS_m^{\sharp} .

But for these values of m,

$$FS_m^{\sharp} \rightarrow (\nabla A, X \in \mathbb{Q}) ((A \in X \rightarrow n(A) = m) \rightarrow FS_m(X)) \rightarrow S(m)$$
.

(Here \mathfrak{A} is the universal class.) Thus the implication $S(m) \to S(m; 1)$ would yield a contradiction of (4).

For m=6: By condition (M), there is a model \mathcal{M} for $\sigma \& S(2;1) \&$ & $\sim S(3;1)$. Thus S(6;1) is false in \mathcal{M} , since S(6;1) iff S(2;1) & S(3;1) ([7], p. 101, theorem 4). Let p=2, k=1, and n=3 in theorem 2(g); then S(6) is true in \mathcal{M} .

THEOREM 11. (a) For all n which are not divisible by 6 and for all subsets $N \subseteq J_{h(n)}$, S(n; N) is independent of σ . In particular, for such n, S(n) is independent of σ .

- (b) For $n \in I$, and for $k \in J_{h(n)}$, S(n; k) is independent of σ .
- (c) For $n \in I_2$ and for $N \in \mathcal{I}^*(K_{h(n)})$, S(n; N) is independent of σ .

Proof. Let $n \ge 3$ be an odd integer and let $\mathfrak G$ be the cyclic group on n letters. Then for every group $\mathfrak R \subset \mathfrak G^\omega$ and for every proper subgroup $\mathfrak R$ of $\mathfrak H$, Ind $\mathfrak H/\mathfrak R \ge 3$. Let $Z = \{2\}$ and apply theorem T(a) and (b). Then for any (proper or improper) nonempty subset N of $J_{h(n)}$, S(n; N) is independent of S(2; 1), i.e., $(\sigma \& S(2; 1)) \not \to S(n; N)$. It follows that S(n; N) is independent of σ .

Let n be a positive integer which is not divisible by 3; we repeat the above argument with $Z = \{3\}$. Again, Ind $\mathfrak{H}/\mathfrak{R} \notin Z_3$, and we conclude that S(n; N) is independent of σ .

The above two paragraphs together yield (a).

For each $m \in I_2$, S(m; 1) is relatively consistent with σ , since, in fact, stronger forms of the axiom of choice have this property. Let $n \ge 2$ and let p be any prime which is not a factor of n. Then $(\sigma \& S(p; 1)) \not\rightarrow S(n; 1)$, by (2). Hence S(n; 1) is independent of σ .

If N is any nonempty subset of $K_{h(n)}$, let $M_1 = \{m: m \in N \vee m + 1 \in N\}$, and let $M = M_1$ if n is odd and $M = M_1 \setminus \{h(n)\}$ if n is even. Suppose that S(n; N) is a theorem of σ . Then by theorem 3(a), so is S(n-1; M). By (a), above, this would mean that 6 divides both n and n-1. This contradiction together with the results of the preceding paragraph establish both (b) and (c).

5. The interdependence of the axioms for $n \in K_6$.

THEOREM 12. The following "matrix" indicates the interdependence among the various axioms for $2 \le n \le 6$. In listing these axioms we take

the following into consideration:

- (a) $S(2) \leftrightarrow S(2; 1) \leftrightarrow S(4; 1)$.
- (b) $S(3) \leftrightarrow S(3; 1) \leftrightarrow D_1(3) \leftrightarrow D_0(4)$.
- (c) $S(5) \leftrightarrow D_1(5) \leftrightarrow D_0(6)$.
- (d) $H(5) \longleftrightarrow D_0(5)$.

Proof. (a). $S(2; 1) \leftrightarrow S(4; 1)$ is demonstrated in [7], pp. 98-99.

(b). $S(3; 1) \rightarrow D_0(4)$, by theorem 2(h).

 $D_0(4) \rightarrow S(3;1)$: Let X be a nonempty set of 3-element sets, and let X' be the set of all $A' = A \cup \{a_A\}$, $A \in X$, where a_A is the first positive integer not in A. Let f be a $D_0(4)$ -function on X'; then for each $A' \in X'$, f(A') consists of two 2-cells. For each $A \in X$ define g(A) to be the unique element of A which shares a cell with a_A .

- (e). $S(5) \leftrightarrow D_1(5)$ follows from theorem 2(b) and (d). $D_0(6) \rightarrow S(5)$ by theorem 4; the converse implication was demonstrated by J. H. Conway (to be published).
- (d). $H(5) \rightarrow D_0(5)$ by theorem 2(a); the converse implication follows from the observation that every $D_0(5)$ -function effects only (1,2;3,1)-type decompositions.

In the "matrix" an even number indicates that the left-hand axiom implies the upper axiom; (4) and odd number indicates that the upper axiom is independent of the left-hand one. The particular integer employed is the key to the explanation, below. (A blank space indicates an open question.)

- 0. $\Gamma \rightarrow \Gamma$.
- 1. by (2).
- 2. by (3).
- 3. by (a), (b), above, and theorem 2(b) and 8.
- 4. by (c), above, and theorem 2(a).
- 5. by (a), (b), above, and corollary (a) of theorem 8.
- 6. by (a), above, and theorem 2(b).
- 7. by (a), (b), (d), above, and corollary (c) of theorem 8.
- 8. by (a), (b), above, and theorem 2(g).
- 9. by (a), (b), above, and theorem 9(a). We let n, N, and m be as in theorem 9.

If n=4 and $N=\{1,2\}$, then m=10; if n=4 and $N=\{2\}$, then m=6; if n=5 and $N=\{1,2\}$, then m=15; if n=6 and $N=\{1,2,3\}$, then m=41; if n=6 and $N=\{2\}$, then m=15; if n=6 and $N=\{2,3\}$, then m=35; if n=6 and $N=\{3\}$, then m=20.

⁽⁴⁾ Several of the implications in our matrix were also obtained independently by J. H. Conway.

THE INTERDEPENDENCE OF THE AXIOMS FOR n & K.

	S(2)	8(3)	S(4)	H(4)	$D_1(4)$	8(5)	8(5; 1)	H(5)	8(6)	8(6; 1)	8(6; 2)	H(6)	$S^*(6; 2)$	$D_1(6)$
8(2)	0	1	6	5	6	3	1	7	8	1	17	5	5	22
S(3)	1	0	3	3	22	3	1	5	8	1	17	5	5	22
S(4)		9	0	17	6	17	17	17		9	17	17	17	24
H(4)		10	6	0	4	17	9	17	22		17	17	17	22
$D_1(4)$	11	11	17	17	0	17	11	17		11	17	17	17	24
S(5)	9	13	13	17		0		17		9	17	13		24
S(5; 1)	1	1	3	5		6	0	5		1	17	5		22
H(5)		11	10	17	22	4		0		11	17			24
S(6)	9	9	13	17	20	17	9	17	0	15	17	17	17	6
$\mathcal{S}(6;1)$	2	2	22	14	22	3	1	7	6	0	17	5	5	6
S(6; 2)	9	16	13	17	22	10	16	17	6	9	0	17	6	6
H(6)	18	9	10	17	22	10	18	12	6	9	17	0	6	4
S*(6; 2)	9	9	13	17	22	10	18	17	6	9	17	17	0	4
$D_1(6)$	11	11	17	17		17	17	17		11	17	17	17	0

- 10. by (b), above, and theorem 3.
- 11. by (a), (b), (d), above, and theorem 9(b). For $i \in 2$ we let n_i , \mathfrak{D}_i , x_i , and $m(x_i)$ be as in theorem 9: If $n_1 = 4$ then $m(\mathfrak{D}_1) = 13$; if $n_0 = 5$, then $m(\mathfrak{D}_0) = 10$; if $n_1 = 6$, then $m(\mathfrak{D}_1) = 201$; if $n_1 = 6$ and $n_1 = (3,1;1,3)$, then $m(n_1) = 20$.
 - 12. by theorem 5(a).
- 13. by corollary 1 of theorem 9. The data of 9. applies here, as well; also, if $n_2 = 5$, then $m(\mathfrak{D}_2) = 40$.
 - 14. by the proof of theorem 9(a).
 - 15. by theorem 10.
- 16. $S(6; 2) \rightarrow S(3)$: Let X be a nonempty set of 3-element sets, and for each $A \in X$, let A' be the set of all nonempty, proper subsets of A. Let X' be the set of A' corresponding to $A \in X$. Each $A' \in X'$ has 6 elements; we choose two of these. If (exactly) one of these is a unit subset of A, we let f(A) be this subset; if both of the choices are unit subsets of A, we let f(A) be the third unit subset of A; if both of the choices are 2-element subsets of A, we let f(A) be their intersection.
- $S(6;2) \rightarrow S(5;1)$: Let Y be a nonempty set of 5-element sets and let Y' be the set obtained by adding one new element to each element of Y. Choose a 2-element subset B'' of each $B' \in Y'$ (corresponding to $B \in Y$). Then if $B \cap B''$ contains one element, let f(B) be this intersection; if $B \cap B''$ contains 2 elements, use S(3) to choose an element from $B \setminus B''$.
- 17. $((\Theta \text{ independent of } \mathcal{Z}) \& (\mathcal{Z} \rightarrow \mathcal{\Gamma})) \rightarrow \Theta$ independent of \mathcal{L} ; $((\Theta \text{ independent of } \mathcal{Z}) \& (\mathcal{L} \rightarrow \Theta)) \rightarrow \mathcal{L}$ independent of \mathcal{L} .

18. $H(6) \rightarrow S(2)$, by theorem 2(e).

 $H(6) \rightarrow S(5;1)$: Let Y, Y', B, B' be as in the second paragraph of 16. Choose a 3-element subset B''' of each $B' \in Y'$. Then either $B \cap B'''$ or else $B \setminus B'''$ contains 2 elements; use $H(6) \rightarrow S(2)$.

 $S^*(6; 2) \rightarrow S(5; 1)$ now follows in this manner from the implications $S(6; 2) \rightarrow S(5; 1)$ and $H(6) \rightarrow S(5; 1)$.

 $20. \ S(6) \rightarrow D_1(4)$: Let X be a nonempty set of 4-element sets. For $A \in X$ let A^* be the set of 2-element subsets of A and let X^* be the set of A^* corresponding to $A \in X$. Let f be a multiple choice function on X^* ; such a function exists for, by construction, X^* is a set of 6-element sets. For $A \in X$ we define g(A) as follows: If $n(f(A^*)) = 1$, let $g(A) = \{f(A^*), A \setminus f(A^*)\}$. If $n(f(A^*)) = 2$ and if the two elements of $f(A^*)$ are disjoint, let $g(A) = f(A^*)$. In all other cases the elements of A do not all appear the same number of times as elements of A which appear the maximum number of times in this role and where $A_2 = A \setminus A_1$.

- 22. by the transitivity of implication.
- 24. these are the results of J. H. Conway (to be published).

6. A final example. An unsolved problem, which was posed by Mostowski ([6], p. 168) is the status of the implication

(5)
$$S({3,5,13};1) \rightarrow S(15;1)$$
.

It is to be noted that $\{3,5,13\}$ and 15 satisfy (M) (of definition 4); thus the question is of particular significance in view of Mostowski's conjecture about the sufficiency of condition (M) for an implication $S(Z;1) \rightarrow S(n;1)$. In this regard we reduce (5) to the problem of determining the status of the implication in the hypothesis of

THEOREM 13.
$$(S(\{3,5,13\};1) \rightarrow D_1(8)) \rightarrow (S(\{3,5,13\}) \rightarrow S(15;1))$$
.

Proof. We suppose that both $S(\{3,5,13\};1)$ and the implication $S(\{3,5,13\}) \rightarrow D_1(8)$ are valid, and we wish to show that S(15;1) must also be valid.

We first note that by (3), it follows that $S(\{3,13\};1) \rightarrow S(9;1)$. Let X be a nonempty set of 15-element sets. By theorem 2(g), there exists a function f_1 on X such that for each $A \in X$, $f_1(A)$ is a subset of A such that $n(f_1(A)) = z$, where $1 \le z \le 7$. Let f_k be a (1-ary) choice function on $X_{(k)}$ for k = 3, 5, 9, and 13.

Let $A \in X$. If $n(f_1(A)) = 1$, let $g(A) = f_1(A)$; if $n(f_1(A)) = 2$, let $g(A) = f_{12}(A \setminus f_1(A))$; if $n(f_1(A)) = 3$, let $g(A) = f_2f_1(A)$; if $n(f_1(A)) = 5$, let $g(A) = f_2f_1(A)$; if $n(f_1(A)) = 6$, let $g(A) = f_2(A \setminus f_1(A))$.

Suppose $n(f_1(A)) = 4$. By theorem 2(h), there is a function F_4 defined on $X_{(4)}$ such that for $B \in X_{(4)}$, $F_4(B) = \{B_1, B_2\}$, where B_1 and B_2 are disjoint 2-element subsets of B. Now let Y be the set of all sets of the form $(A \setminus f_1(A)) \cup B_i(A)$, i = 1, 2, where $A \in X$, $n(f_1(A)) = 4$, and $F_4f_1(A) = \{B_1(A), B_2(A)\}$. Then $Y \subset X_{(9)}$. To each $A \in X$ with $n(f_1(A)) = 4$, there corresponds one or two distinct elements of A of the form $f_9(A \setminus f_1(A)) \cup B_i(A)$. In case there is just one such element a, let $g(A) = \{a\}$; in case a_1 and $a_2 \neq a_1$ are both of this form, let $g(A) = f_{13}(A \setminus \{a_1, a_2\})$.

Suppose $n(f_1(A)) = 7$. By our hypothesis, there is a $D_1(8)$ -function F_8 defined on $X_{(8)}$. Consider $F_8(A \setminus f_1(A))$. If any element of $F_8(A \setminus f_1(A))$ is a unit set, the union of all such unit sets is a subset C of $A \setminus f_1(A)$ with $n(C) \le 6$, by (∇') of definition 2; in this case the argument reduces to one of the previous considerations. Otherwise, if any element x of $F_8(A \setminus f_1(A))$ is such that n(x) = 2, we take the union of each such set with $f_1(A)$, thereby obtaining a subset of $X_{(9)}$. If we procede as in the preceding paragraph, we obtain a subset C' of A for which n(C') is at most 4; again we have reduced the case to one of prior considerations. Finally, if $F_8(A \setminus f_1(A)) = \{D_1, D_2\}$, where D_1 and D_2 are disjoint sets with $n(D_1) = n(D_2) = 4$, we can obtain another decomposition of $A \setminus f_1(A)$ into $\{E_1, E_2, E_3, E_4\}$ in which the E_4 are pairwise-disjoint sets such that each $n(E_1) = 2$, and each E_4 is an element of $F_4(D_1)$, j = 1, 2.

Remark. We have chosen to work with $D_1(8)$ because theorem 8 and its corollary yield the independence from $S(\{3,5,13\};1)$ of each of the following axioms: S(7), S(8), $D_0(7)$, and $D_1(7)$.

References

- M. N. Bleicher, Some theorems on vector spaces and the axiom of choice, Fund. Math. 54 (1964), pp. 95-107.
- [2] Multiple choice axioms and the axiom of choice for finite sets, ibid. 57 (1965), pp. 247-252.
- [3] K. Gödel, The consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory, 6th ed., Annals of Math. studies 3, Princeton Univ. Press, Princeton, 1964.
 - [4] A. Levy, Axioms of multiple choice, Fund. Math. 50 (1962), pp. 475-483.
- [5] A. Mostowski, Über die Unabhängigkeit des Wohlordnungssatzes vom Ordnungsprinzip, ibid. 32 (1939), pp. 201-252.
 - [6] Axiom of choice for finite sets, ibid. 33 (1945), pp. 137-168.
- [7] W. Sierpiński, Cardinal and ordinal numbers, 1st ed., Monografie Matematyczne, 34, Warszawa, 1958.

- [8] M. M. Zuckerman, Finite versions of the axiom of choice, Ph. D. Thesis, Dept. of Math., Yeshiva University, New York (1967).
- [9] Number theoretic results relating to the axioms of choice for finite sets (to appear in Illinois J. Math.).
- [10] Some theorems on the axioms of choice for finite sets (to appear in Z. Math. Logik Grundlagen Math.).
- [11] Multiple choice axioms (to appear in (Axiomatic Set Theory) Proc. Sympos. Pure Math. 13 (1969)).

Reçu par la Rédaction le 6. 9. 1967