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Proof. Let f: P—P be a compact mapping. Let ¢ be a compact
subset of P containing f(P). Then there is a finite subpolyhedron P’
of P containing C. As before let fp.: P'—P’ denote the restriction of f.
It is well known that fp is a Lefschetz map. Thus by Corollary (3.3) (b),
f is also a Lefschetz map. .

(5.2) ComorLARY. Hvery (metric) absolute neighborhood retract X
is a A-space. . .

Proof. For each open cover o of X there is a polyhedron P, (with
the Whitehead topology) and mappings ¢.: X P, and he P,—X such
that kq o g. i a-homotopic to 1x (see [4], p. 138). In particular, h, o g, 1y
and kg o g, and 1x are a-near. Then by Theorem (4.2), X is a A -space.

6. Note that the theorems of § 3 and §4 also hold for Lefschetz
spaces in the sense that  A-space” can be replaced by “Lefschetz space’
throughout. When this is done the compactness eonditions on the mappings
can be dropped.
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On choosing subsets of n-element sets
by
M. M. Zuckerman* (New York)

1. Introduction. Let n be a positive integer. Mostowski ([6]) and
others have studied the axioms of choice for finite sets, [n], in which
an element is chosen from each set of an arbitrary set of x-element sets.
We wish to introduce some new axioms which are concerned with the
choice of a subset or of a partition, rather than a single element, from
each element of an arbitrary set of n-element sets. We shall discuss the
interdependence of these axioms and their relationship to the axioms [n].

2. Notation. We shall operate within a set theory of the Godel-
Bernays type (see the proof of theorem 7); our logical framework will
be the first-order predicate caleculus with identity. For statements
Uy Gy ooy On, We& Write oy—>ay—...—>ay in lien of (o) & (a—>a,) &...
... & (ap-1—>05); & similar remark applies t0 o > ay<s..<>an.

By the (nonnegative) iniegers we mean the von Neumann integers—o0
(the empty set), 1= {0}, 2=10u {1}, 3=2 u {2}, ete. A set is finite
iff every nonempty set of subsets of X has a maximal element with
respect to set inclusion. If there exists a'function which maps the set X
one-one onto the positive n, then X is called an n-element set and we say
that the number of elements of X is n; in this case we let n(X) denote the
unique integer n for which such a mapping exists.

For each integer n, let I, be the set of integers > u, let J, be the
relative complement of In.yin I, I,)\In41, and let K, = J,\{1}. Let IT re-
present the set of prime numbers and let Il = IT A I,.

For any set X let 7(X) designate the power set of X, let T*(X;
= F(XN1, let g (X) be the set of finite subsets of X, and let g¥x( X
== S IN\L.

* This research formed part of the author’s Ph. D. thesis (Yeshiva University,
1987) under the supervision of Professor Martin Davis of New York University. The
work was supported by a National Science Foundation (U.8.A.) Science Faculty Fellow-
ship. We note that Professor Conway’s announcement that [3] & [5] & [13]-> [15] as well
as his other independence results, which were mentioned in the thesis, have recently
been retracted.
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Furthermore, let X, be the set of n-element subsets of elements
of X, nel,. )

Throughout this paper, we shall let %(n) be the greatiest integer less
than or equal to n/2, for nel,.

DermNrTioN 1. Let n e I, and let N be a nonempty subset of J,_,.
Let (n; SN) denote the statement: “For every set X of n-element sets
there is a function f on X such that for all A e X, f(4) is a subset of 4
such that n(f(A)) e N.” We shall refer to these functions f as multiple
choice functions on X.

We write §(n) in place of §(n; Jn—y); thus §(n) simply says that f(4)
is a nonempty proper subset of 4, for each 4 e X. If % eJ,—,, then if
N, = {k} and if ¥, is the set of integers between % and n—% (inclusive),
write S(n; k) for S(n; N;) and 8*(n; k) for §(n; N,). Such multiple choice
functions f will be specified as k-ary (k*-ary) choice functions. If for
rely, Z = {ny, Ny, ..., Ny}, then §(Z; 1) will denote 8(n,; 1) & S(ny; 1) &...
v & 8(ny; 1), Let H(n) = 8(n; h(n)).

Clearly, for all n e I, S{n; 1) iff [#] and 8*(n; 1) iff S(n). Moreover,
for any nonempty subset N of J,—1, 8(n; N) iff S(n; M), where n' e M
iff n’ € ¥ or n —n' ¢ N; in particular, for all & € 5y, S(n; k) iff S(n; n—k),
8*n; k) itf 8*(n; n—k), and for n odd, H(n) iff S(n; h(n)-+1). We shall
find it expedient to assume, henceforth, that the number of elements
of the “chosen” subset is in Jum.

DeriNiTION 2. Let n eI, and let A be an n-element set. By a de-
composition D of 4 is meant a set D satisfying

(i) U D=4,

(ii) ce D—>c # 0,

(i) (6,05 € D & €y # 65) >0, N 6, = 0.

The elements of a decomposition D of 4 will be called the cells of D;
in particular, a k-element cell will be referred to as a k-cell. If &, < k,
<. <k, and if ly, b, ..., Iy are any positive integers, then a decomposi-
tion D of A which consists of I, ,-cells, I, %,-cells, ..., and I, &-cells
will be ecalled an (I, ky; b, ks; ...; Ir, &) -type decomposition.

Let n € I,. Let Dy(n) be the statement: “For every set X of n-element
sets there is a function f on X such that for all 4 X, f(4) is a- decomposi-
tion of A satisfying ((i), (i), (iii), above, as well as)

(iv) n(f(4)) > 2,
(¥) ¢ ef(A)>n(e) > 2.7
Let n € Ly. Let Dy(n) be the statement: “For every set X of n-element

sets there is a funetion f on X such that for all 4 ¢ X, f(4) is a decomposi-
tion of 4 satisfying ((i), (ii), (iii)) (iv) as well as

"
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(v') there is some ¢ e f(A) such that n(c) = 2.”

Let n € L;. Let Dy(n) be the statement: “For every set X of n-element
sets there is a function f on X such that for all 4 € X, f(4) is a decomposi-
tion of 4 satisfying ((i), (i), (iii)) (iv), (v*), and ~(v).”

Functions f effecting these decompositions on the elements of X
will be called Dy(n)-functions on X, ie3 and n e I,.

If in each of the statements of definitions 1 and 2 the sets 4 ¢ X
are assumed to be pairwise-disjoint, the modified statement is equivalent
to the original one. The proofs of these equivalences are similar to the
proof of that of the so-called “principle of choice” with the axiom of
choice ([7], pp. 93-95). When it suits our convenience to do so, we shall
assume pairwise-disjointness.

3. Positive results.

THEOREM 1. (Vn € L)(8(n) < Dyn)).

Proof. Assume 7 > 3 and let X be a nonempty set of n-element
sets.

8(n)-+Dy(n): Let f be a multiple choice function on X. Then for
A e X, if n{f(4)) = 1, Iet g(4d) = {f(4), ANF(A)}; if n(f(4)) > 1, let g(4)

= {{a}: @ ef(4)} U {A\F(A)}.

Dyn)—+8(n): Let @ be a D,(n)-function on X. Then for 4 ¢ X, G(4)
contains at least one 1-cell and at least one k- cell for some % > 2. Let 4’
be the union of all the 1-cells of G(A). Define F(4) to he A’ if n(4")
< h(n); otherwise, let F(d)= A\4".

THEOREM 2. (a). (V1 e I)(Vk € Eum) (8*(n3 k) Dy(n) —Dyfn)).

k
(V1 € L)(VE € Enw) (S*(n; k) —=8*(n; k—1)) .
(¢} (VP e II)(Do(p)—>8(p))-
(@) (Vp e IL,)(Dy(p)—8(p))-

(e) (VileIz)(VkeL)(S(kn; Zy—-8M)} if Z is any subsel of Jypm
which contains no muliiple of n.

(b) (Vnel)(Vk eka)(S(("); 1)~+S(n; k) —8*n; k)—»S(n)»D,(n)).

(1) Suppose that k and 1 are nonnegative inlegers which are not both 0.
Then

(Vm e I)(Vn e I,,,)((S(km—;vln; 1) & 8(m +n; m))—~>8(m +ni 1)) .
(8) (Vp ID)(Vk e R(p))(Vn ¢ L) (8(p; k)~ 8(np)).

(h) (Vp e IN(Vn e L) (S{np —1; 1) D(np)).

(i) (Vn32)(8(2"—2; 1)->8(n).
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Proof. (a) and (b). Let X be a nonempty set of n-element sets.

8*(n; k)—>Dy(n) for k € Kym: Let f by a k-ary choice function on X,
The function F defined on X by F(4) = {f(4), A\f(A)} is a Dyn)-fune-
tion on X.

8(n)->Dy(n): If ¢ is a multiple choice function on X, then G(4)
= {g(4), A\g(4)} defines a D;(n)-function on X.

The other implications of (a) and (b) follow direetly from definitions’1
and 2.

(¢) Let X be a nonempty set of p-element sets and let f be a Dyfp)-
function on X. For each 4 ¢ X, not all of the cells of f(4) have the same

number of elements; let g(4) be the union of all the cells with the minimal

number of elements. Let F(4) be g(4) if n(g(4)) e Jnm and let F(A4)
= A\g(4), otherwise,
(d) 8(p)~>Dy(p), by (b).

Dy(p)->8(p): Let X be a nonempty set of p-element sets and let J

be a Dy(p)-function on X. If for 4 ¢ X, f(4) satisfies (v) of definition 2,
then p > 5, and we can define F(4) as in (c). If f(A) satisfies ~(v), then
J{4) is a Dy(n)-decomposition of A, and hence, we can define F (4) as
in theorem 1.

Examples in which D¢(n) does not imply §(n) for n composite,
+=0,1, will be given in theorem 12.

(e) is a generalization of [6], lemma 13 ([7], p. 99, theovem 2).
Let X be a nonempty set of n-element sets. For A e X, let A’ be the
set of ordered pairs <a, 43, where a ¢ A and ¢ ¢ Jx. Let X' be the collection
of all A’ corresponding to 4 ¢ X. By the axiom of substitution, X' is
a set; each element of X' is a kn-element set. Let f be a multiple choice
function on X'. Then for each A’ < X' ', not all the elements a e A appear
the same number of times as first coordinates of members of f(4’). Let
g(4) be either the collection of elements of 4 which appear the minimal
number of times, or else the complement of this collection with respeci
to 4.

(f) is an extension of [6], lemma 14, Let X be a nonempty set of
(m +n)-element sets and let f be any m-ary choice function defined on X.
Then for ¥ ¢ X the sets f(¥) and I\S(Y) satisty the hypothesis of fe1,

lemma 14; hence there is a function g on X such that ¢(X¥)e X for all
YeX.

(g) is a generalization of [6], lemma 15. Let X be a nonempty sel .

of pairwise-disjoint np : element sets. Then Xy is & set of p-element sets;
let f be a k-ary choice function on X@p. For each A «X and for each
aed, denote by n,, the number of ¥ € X for which a ¢ f(y). Then

-’:\J Nala € 4) = & <’Z’)

icm
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is mot divisible by np, whereas n({ng: aed})=n(d)= np. Thus not
all the n, are identical. Let g(4) be the set of those a ¢ A for which Mg
is minimal (or else the complement of this set with respect to A).

(h) is a restatement of [6], lemma 16.

(i) There are 2" —2 nonempty proper subsets of an #-element set;
either.the chosen subset or its complement can be used to satisfy the
requirements of S(n).

THEOREM 3. (a) Let nel,, let ke Jnmy_q, and let N C Tamp\Jx. For
each such n, k, and N, let

My={m: (@l i) (m=1—i&leN&ick+1)},
let
i}{z = Jh(n—k) ]

and let M = M, ~ M,. Then 8(n; N)—=8(n—k; HM).
(b) Let nel, and let k (e I;) be such that k-1 < 2k < n-—3. Then

8*(n; k+1)—>(Vm e I ~ T_z) S(m) .

(c) Let n eI, and let k and 1 be integers such that k-+1 < 2k < = and
k1<l < h(n). Let Z = Jt ) Imax(2,l—k)~ Then

(8(2; 1) & 8(n; V) >S(n—Fk; 1)

Proof. (a) Suppose S(n; ¥N) and let X be a nonempty set of
(n —Fk)-element sets. To each 4 ¢ X, add % new elements—for definiteness,
say, the first % positive integers which are not in A. The new sets A*
will each have n elements. We let X* be the collection of 4* corresponding
to A ¢ X. By the axiom of substitution, X* is a set; let f be a muiltiple
choice function on X* such that for each A* ¢ X*, n{f(4*) ¢ N. Moreover,
4 ~ f(A*) is a nonempty subset of A for each 4 ¢ X. Let gd)=A n
~f(4%) it n(d ~f(4%) <k(n—k) and let g(4) = A\f(4*), otherwise.
Then g is & multiple choice function defined on X having the property
that g(A) e NV for each A4 ¢ X.

(b) follows from (a).

() If ¥={l} in (a), then n(g(4d)) eJ=2Z v {1} for all A eX.
Let X be the subset of X consisting of all A for which n(g(A)) =7, jed.
Define G(4) = g(4) for 4 X, and for 2 Z, define G(4)=F.-g(4d),
4 ¢ X;, where ¥, is any (l-ary) choice function on X,. Then @ is the
required (1-ary) choice function on X.

THEOREM 4. (V2 e I,)({Dy(n +1) & §(n)) - Dyn +1)—=>8(n)).

Proof. Suppose Dy(n-+1)& S(n). Let ¥ be a nonempty set of
n +1-element sets and let f be a Dy(n-+1)-function on Y. Let ¥, be the
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subset of ¥ consisting of all sets A for which there are no 1-cells in f(4);
let ¥, be the subset of ¥ consisting of all sets A for which there are ag
least two 1-cells in f(A); let X, be the subset of ¥ consisting of all sets 4
for which there is exactly one 1-cell in f(4). At least one of the sets
Y,, ¥,, ¥; is nonempty; the nonempty sets ¥; are pairwise-disjoint
and their union is ¥. For 4 ¢ Y, let g(4d) = f(4); for A ¢ Y, let

g(Ad)y={cef(4): nle) =2} v | {eef(d): n(c)==1}.

Let Y, be the set of all 4’ = A\{ca}, where 4 ¢ ¥; and ¢4 is the unique
I-cellin f(4). Then ¥, is a set of n-element sets; let I be a multiple choice
function on ¥,. For A e¥; let g(4d)={F(4") v {ea}, A\F(4')}. Since
in every case each cell of g(A4) has at least two elements, ¢ is a Dy(n +1)-
function on Y.

Suppose Dy(n +1). Let X be a nonempty set of n-element sets.
As in the the proof of theorem 3, let X* be the set of all 4 © {a4}, where
A eX and a4 is some definite set which is not in 4. Then X*, as a set
of (n+1)-element sets, has a Dy(n +1)-function f defined on it. Suppose
F(A*) = {e:: © en +1}; let 4, be the index of the cell containing ay. Then
if g(A) = e;\{aa} for 4 X, g is a multiple choice function on X.

We note that the converse of the second implication is false; D, (5) is
independent of §(4), as will be shown in theorem 12.

THEOREM 5. (a) (Vn ¢ I,) (H (2n)—H (20 —1)).

(b) (Vn e L)((8(n; 1) & H(n —1)) >H (m)).

Proof. (a) follows from theorem 3 (a).

(We note that there are odd integers, 2n +1, for which H(2n) is
independent of H(2n+1); for example,  H(4) is independent of H (8)
a8 will be shown in theorem 12.)

(b) If X is a nonempty set of n-element sets, let f be a (1-ary) choice
function on X. Let X' = {A\f(4): 4 ¢ X}, and let g be an h{n—1)-ary
choice function on X’. We define an h(n)-ary choice function F on X as
follows: for A eX, let F(4) = g(A\f(4)), if n is odd, and let F(4)
= f(d) v g(A\f(A)), if n is even.

TEEOREM 6. (3) (Vn e L)8(n; 1)—(Va e L) (VE ¢ Hpy) S (m3 &),

(b) (An e IL){(Vr e Kn)8(r; 1)~ (Vm e Kn}(VE € Tim) 8 (m; ).

(¢) For j eI, let gy be the j-th prime (in order of magnitude) and let ¢y
be the set consisting of the first § primes. Then

(Vi e 1) (V€ 1) ((8(@s5 1) (Vm e Ku) (T € Tngmy) 8 (m; B))}rn € Hoppym) -
(d) (V1eEr)8(; 1) is independent of
(Vm € Ku) (VE € Jum) S(m; k),  whenever I NIy # 0.
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Proof. (a), (b): A k-ary choice function is obtained by composing k
(1-ary) choice functions.

(c) follows from (b) together with [9], lemama 10.

(d) follows from (b) together with [6], theorem VIII.

4. Negative results. We now generalize theorem IIT of [6],
Mostowski’s main result concerning necessary conditions for the implica-
tion 8(Z; 1)—8(n; 1) (in our notation), in order to obtain the independence
of certain of our axioms from §(Z; 1). Subsequently, we shall be concerned
with the independence of S(Z; 1) from some of our axioms.

For any group ® let G° denote the group whose elements are those
infinite sequence g = <g;, 0,, --.» Whose terms belong to & and which
are such that almost all of the g, are equal to the unity of &; multip-
lication is defined in the obvious way, i.e., by term-wise multiplication
in G.

We shall write “ge ®” in case ® is the group <X, ) and geX.

DeFINITION 3. Let n €I, and let &, be the symmetric group on =
letters.

I 9eCSy and if D= {14, T, ..., Tr} is a decomposition of J,, then

(i) if Ti= {t{l, Tigy ery i{m{}, i GJy, let -

B(Ls) = {@(tn), P(lta) -y DP(tims)}s

(ii) let @(D) = {@(T1), D(Ts), -y P(T1)}.

If ® is a subgroup of &, and if N is a nonempty subset of J,, then ®
leaves N fixed if ®(N) = N for every @ ¢ 6; if D is a decomposition of Jy,.
then ® leaves D fixed if &(D)= D for every & ¢ 6.

& satisfies condition (C,) if it leaves no nonempty proper subset
of J, fixed.

Let L be a nonempty proper subset of Jay. & satisfies condition (Cy)
with respect to L if it leaves fixed no subset of J, the number of whose
elements is in L.

® satisfies condition (C,) if it leaves fixed no decomposition D of Jp
which satisfies conditions (iv) and (v) of definition 2.

® satisfies condition (C,) it it leaves fixed no decomposition D of J
which satisfies (iv) and (v’) of definition 2.

For iedy, Z(e g% (I,)) and » (e I,) satisfy condition (Ky) if for every
subgroup & of S, which satisfies condition (C¢), there is a group $C G
and a finite number » of (not necessarily different) proper subgroups
K, Ky ooy & of H such that

D'Ind §/RKliedv) e Z .
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TarorEM 7. (2) (K,) is necessary for the implication 8(Z; 1)—8(n).

(b) (K,) is necessary for the implication S8(Z; 1)—~>8(n; L).

(¢) (K,) is necessary for the implication 8(Z; 1) —Dy(n).

(d) (K,) is necessary for the implication S(Z;1)—>Dy(n).

Proof. The model for set theory which Mostowski uses in [6], in
order to indicate the necessity of his condition (K) for the implication
S(Z; 1)~8(n; 1), will suffice for our purpose as well in each of our cages.
We shall consider only case (a); the other cases follows along the same
lines with only mintr medifieations. -

Let o be the set theory of [5]; this version. of set theory permlts the
existence of urelements (objects, other than the empty set, which are in
the domain but not the range of the e-relation) and it does not include
the axiom of choice among its axioms. Let o* be o together with the
axiom of choice and an axiom asserting the existence of a denumerable
number of urelements. We shall assume that o* is consistent; this is
equivalent to the assumption that o (or Godel’s system A, B, O of [3))
is consistent, () (See [4], pp. 478-479.) Thus we can look for a model
within o*.

Suppose Z and = fail to satisfy condition (K,). Then there is a sub-
group & of S, which leaves no proper, nonempty subset of J, fixed
and which is such that for any subgroup $ of G“ and any proper sub-
groups K, K, ..., & of 9,

D Ind $/Ke(iedn) ¢ 2.
Let Ng = Jen\Jk-1ms ¥ € I,. For any ¥ e G, let
P(k—1)n+i) = (k—L)n+P(E), iedn.

We define a set J; for each ordinal number & () and a meaning
of ¥(x) for each V= (¥, ¥,,...>) ¢ " and each e X; by transfinite
induction.

Let Ko = | Vi (k € I); for @ € XK, let ¥(w) = Pi(z) when # ¢ Nx, ke I;.

Assume that & > 0 and that for all 5 < &, sets X, and the meaning
of &(x) for ¢ | J K, (7 en-+1) have been defined. Let

= (U Ky(n <)) .

For 2 e Moe\ U K, (n€&), let D(z) = {B(y): v ¢ x}. Let X; be the sel
of z e My which satisfy the invariance condition:

(*) The consistency of ¢ is tacitly assumed in all of our metamathematical
statements.

(%) By an ordinal number is meant a transitive set which is ordered by the e-relation.
{Regularity is included among the axioms of g.)
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(1) there is am integer 1 such that if ¥ = (¥, ¥,, ..., ¢ ®” and if
V=W¥=..=¥1=1, then ¥(z)= 2.

The urelements of the model will be the elements of X, and the sets
of the model will be the elements of the X, & > 0. (The reader is referred
to sections 13-16 of [6] for a verification that certain of the axioms of o are
true in the model as well as for properties of the model.) We proceed
to show that S(n) is false in the model; our argument follows that of
section 17 of [6].

Let # = {Nu 1 el,}; since ¥(x) = o for every ¥ e %", = is a set of
the model. Suppose that y contains exactly one nonempty proper subset Ri
of each Ng. We claim that y must fail to satisfy the invariance condition (1),
and thus must be disqualified for admission as a set of the model.

Using the axiom of choice (in o*), for each % e I, we select a permuta-
tion ¥i e ® such that Pi(Ri) 5= Rx. For any I let ¥, be the sequence
whose (I-+1)st term is ¥y, and all of whose other terms are the identity
(of &y). Thus @, = D, = ...=P;=1; yet D(y) #*y.

The argument of [6], section 18 serves to establish the validity of
8(Z; 1) in the model.

THEOREM 8. Let p € I1, let r e I, and let Z be any finite set of positive
integers which contains no multiple of p. Then S(p7) is independent of
8(Z; 1).

Proof. Take ® to be the cyclic group on p” letters; G leaves no proper
subgroup of J, fixed. Moreover, each group $ C G” has the property
that for any proper subgroup & of &, Ind($H/K) is a multiple of p. Hence,
for any number of proper subgroups &, K, ..., &m of 9,

N Ind($/R0)(i € Jm) ¢ Z -

Thus Z and n fail to satisfy condition (K,).

CoroLLARY. Let p, Z and r be as in theorem 8.
(a) For each 1 and %k satisfying

1<I<k<hpr+l) <pr,

8*(pr +1; k) is independent of 8(Z; 1).

(b) For all n eI, let pp(n) be the greatest prime power less than and
relatively prime o n. Then for k e TnmN\Tn—ppm, S*(n; k) is independent
of 8(n;1).

(¢) For p eI, Dyp) is independent of 8(Z;1).

() For p e II;, Dy(p) is independent of 8(Z;1).

(e) For r eI,, 8(p) is independent of Dy(p7).
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Proof. (a) follows from theorems 3(b) and 8.

(b) reduces to (a), with pp(#) playing the role of pr.

{c) follows from theorems 2(c) and 8.

(d) follows from theorems 2(d) and 8.

(e) follows from theorems 2(h) and 8. Let i be a model for & &
& 8(pr—1; 1) & ~8(p7). Then Dy(p7) is true in M.

Other independence results can be obtained by taking theorem %
and its corollaries together with previous implicational results.

The above argument cannot be extended to show the independence
of Dy(p7) from §(Z; 1) when 7 ¢ I,. For, let D be the decomposition of Jor
in which each cell contains a residue class, mod p. Then for each permu-
tation @ of the eyclic group on pr letters, (D) = D.

DEFINITION 4. Z (e T¥(I,)) and n (e I,) satisfy condition (M) if for
any decomposition of n into a sum of (not necessarily distinet) primes

=Py P+ +Ps
there are nonnegative integers s, r,, ..., r; such that
1Py 1oy oo +TsPs € Z .

Mostowski, [6], theorem IV, shows that condition (M) is a conse-
quence of condition (K) (see definition 4 and theorem 7, above), and thus

(2) (M) is a necessary condition for the implication S(Z; 1)—->8(n; 1).

He also shows (M) to be sufficjent for this implication in certain
specific cases; in particular ([6], theorem IX),

() (M) ds a sufficient condition for the implication - §(Z; 1)—8(n; 1)
for arbitrary Z and for n e IT w J\{15}. (3)

TeEOREM 9. (a) Let nel,, let N € T(Tne), let m be the number of
subsels y of an n-element set such that n(y) ¢ N, » and let s (e 1) be such that {m}
and 8 fail to satisfy condition (M). Then § (85 1) is independent of 8(n; N).

(b) Let mye I, let ny, my € I, and for i€ 3 let Dy be the set of all types
of Duni)-decompositions. For any i e T(Dy) Tet m(wi) de the number of
Dy(ns)-decompositions whose type 13 in . Let (@) (e I,) be such that for
some o€ X Da), {m ()} and s(xy) fail to satisfy condition (M). Then
8{s(®); 1) is independent of Dilna); moreover, 8 (s(w,); 1} ds independent
of 8(my).

a () For other cases in which (M) is sufficient for this implication, see [9], Section 4
and [10].
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Proof. (a) With each set X of n-element sets A we associate the
set X', where A’ e X' iff there is an 4 e X such that A’ is the seb of all
subsets 4’" of A such that n(4"”) ¢ N. Since {m} and s fail to satisfy con-
dition (M), we can take a model i for b&S(m; 1) & ~8(s; 1). Now
for each A ¢ X, the selection of a unit subset of A’ yields a subset 4*
of A with n(4* ¢ N. Thus 8(n; N) is true in SH.

(b) Utilizes the implications §(m(zs); 1)—>Dy(ni), i €2, and follows
along the same lines as (a). We note that for each # eI, and for each
i3, there are only a finite number of types of Dg(n)- decompositions.
Moreover, theorem 1 enables us to apply information about Dy(n) to the
study of S(n).

COROLLARY 1. Assume the same notation as in theorem 9. Let pell,
let rel,, and let | and &k satisfy 1 <1<k < h(p’+1) < p". Then

(a) if p does not divide m, each of the following axioms is independent
of 8(n; N):

(i) S(p"),

(i) 8%(pm-+1; k),

(iii) Do(p), if p € II,,

(iv) Dy(p), if p e IL;.

Also, if m eI, if pp(m) is as in corollary (b) of theorem 8, and if
t € Jum\Sm—ppemy, then 8*(m; 1) is independent of 8(nm; N).

(b) For ie3 if p does not divide m () for some m; € I%(Dy), then each
of the axioms (i), (ii), (iii), and (iv) of (a) is independent of Di(ng). Moreover,
if in addition m(x¢) € I, and if t is an integer satisfying m(w;) ——pp(m(m;))
<t <h(m(z)), then S*(m(ws);1) is independent of Dyns). In particular,
if p does mot divide m(w,) for some @, ¢ T*(Dy), then each of the azioms (i),
(i), (iii), and (iv) of (a) is independent of 8(ny); further, if m(z.) = 4 and
if tis as above (with i = 2), then S*(m(x,); 1) is independent of §(n,).

Proof. This follows from theorem 9 together with theorem 1 and
theorem 8 and its corollary. In the proof of theorem 9 it is shown that
8(m; 1)—>8(n; N), m,n, N as indicated.

CoROLLARY 2. For each prime p, 8(p; 1) is independent of Hy,.
Proof. » ‘r(if'); the result follows from (a) of the theorem.

For the purpose of proving our next theorem, we now defire the
multiple choice axioms of M. N. Bleicher ([1] and [2]).

DEeFINITION 4. For me I, If‘Sﬁ will denote the following statement.
“For any nonempty set X of nonempty finite sets there is a function f
defined on X such that for each 4 ¢ X, f(A4) € T%(4) and.(n(f(A)), m) =1

12+
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THEOREM 10. For m (£ 4) composite, S(m; 1) is independent of S(m
Proof. Theorem 5 of [11] asserts that

(4) for composites m > 6, §(m; 1) is independent of FSE.
But for these values of m,
FSE—+(VA,X e W)((4 « X—>n(d) =m) > F8p(X))->8(m) .

(Here U, is the universal class.) Thus the implication §(m)-»8(m; 1)
would yield a contradiction of (4).

For m = 6: By condition (M), there is a model &M for ¢ & 8(2; 1) &)
& ~8(3; 1). Thus S(6; 1) is false in M, since §(6; 1) iff §(2; 1) & §(3; 1
([7], p- 101, theorem 4). Let p =2, k=1, and # = 3 in theorem 2(g);
then §(6) is true in M.

TeroREM 11. (2) For all n which are not divisible by 6 and for all
subsets N C Iy, S(n; N) is independent of o. In particular, for such n,
8(n) is independent of o.

(b) For nel, and for k e Jnmy, S(n; k) is independent of o.

(¢) For nel, and for N e T*(Knw), S(n; N) is independent of o.

Proof. Let n >3 be an odd integer and let ® be the cyclic group
on n letters. Then for every group & C G” and for every proper subgroup &
of §, Ind$H/K > 3. Let Z = {2} and apply theorem 7(a) and (b). Then
for any (proper or improper) nonempty subset N of Jpwmy, S(n; N) is
independent of §(2;1), Le., (o0& §(2;1))48(n; N). It follows that
8(n; N) is independent of o.

Let n be a positive integer which is not divisible by 3; we repeat
the above argument with Z = {3}. Again, Ind §/R ¢ Z;, and we conclude
that 8(n; N) is independent of o.

The above two paragraphs together yield (a).

For each mel,, 8(m;1) is relatively consistent with o, since, in
fact, stronger forms of the axiom of choice have this property. Let n > 2
and let p be any prime which is not a factor of n. Then (o & 8(p; 1))
-+ 8(n; 1), by (2). Hence §(n; 1) is independent of o.

If ¥ is any nonempty subset of Knyy, let My = {m: m e Nvm-+1e¢ N},
and let M = M, if # is odd and M = M,\{k(n)} if n is even. Suppose
that §(n; N) is a theorem of . Then by theorem 3(a), so is §(n—1; M).
By (a), above, this would mean that 6 divides both # and n—1. This
contradiction together with the results of the preceding paragraph esta-
blish both (b) and (c).

5. The interdependence of the axioms for ¢ K,.

TeroREM 12. The following “‘matric” indicates the interdependence
among the various azioms for 2 <n <6. In listing these amioms we take

icm°®
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the following into consideration:
(3) S(2)e>8(2; 1)«>8(4; 1).
(b) 8(3)«>8(3; 1)«>D(3)«> Dy{4).
(c) 8(8)«>D,(B)«>Dy6).
(d) H(5)«+Dy(5).

Proof. (a). §(2; 1)«8(4; 1) is demonstrated in [7], pp. 98-99.

(b). 8(3; 1)—>Dy(4), by theorem 2(h).

Dy(4)—+8(3;1): Let X be a nonempty set of 3-element sets, and
let X’ be the set of all 4’ = 4 u {a4}, A ¢ X, where a, is the first positive
integer not in 4. Let f be a Dy(4)-function on X'; then for each A’ ¢ X',
f(4') consists of two 2-cells. For each 4 ¢ X defme g(4) to be the unique
element of A which shares a cell with ay4.

(e). 8(B)«»Dy(5) follows from theorem 2(b) and (d). Dy(6)—>S8(5)
by theorem 4; the converse implication was demonstrated by J. H. Conway
(to be published).

(d). H(5)—D,(5) by theorem 2(a); the converse implication follows
from the observation that every D,(5)-function effects only (1,2;3,1)-
type decompositions.

In the “matrix” an even number indicates that the left-hand axiom
implies the upper axiom; (*) and odd number indicates that the upper
axiom is independent of the left-hand one. The particular integer employed
is the key to the explanation, below. (A blank space indicates an open
question.) -

0. I'—1TI.

1. by (2).

2. by (8).

3. by (a), (b), above, and theorem 2(b) and 8.

4. by (e), above, and theorem 2(a).

5. by (a), (b), above, and corollary (a) of theorem 8.

6. by (a), above, and theorem 2(b).

7. by (a), (b), (d), above, and corollary (c) of theorem 8.

8. by (a), (b), above, and theorem 2(g).

9. by (a), (b), above, and theorem 9(a). We let n, N, and m be as

in theoremQ

If n=4 and N = {1, 2}, then m = 10; if n= 4 and N = {2}, then
m=6;ifn=>5and N ={1,2}, then m=15;if n=6and ¥N = {1, 2, 3},
then m = 41; if n = 6 and N = {2}, then m = 15; if n = 6 and N = {2, 3},
then m = 35; if » = 6 and N = {3}, then m = 20.

(4) Several of the implications in our matrix were also obtained independently
by J. H. Conway.
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THE INTERDEPENDENCE OF THE AXIOMS FOR ne K,

= o .
& 8 3§ £ £ g8 5 8 g g & & g g
2z = = B & zn w KN ®w o =mw = A = §q
8(2) o 1 6 5 6 3 1 7 8 1 17 5 5 9
8(3) 1 0 3 3 22 3 1 5 8 117 5 5 22
8(4) 9 o0 17 6 17 17 W 9 17 17 17 24
H(4) 0 6 0 4 17 9 1T 2 17 17 1 22
Dy(4) 1 1 w17 0 17 1 nw 17 17w %
8(5) 9 13 13 17 0 17 9 17 13 24
8(5; 1) 1 1 3 5 6 0 5 1 17 5 22
H(5) 1 10 17 22 4 0 1 17 24
8(6) 9 9 18 17 2 177 9 17 0 18 17 17 17
8(6; 1) 2 2 99 14 2 3 1 7 6 0 17 5 5
8(6; 2)

8*(6; 2) 9 18 17 22 10 18 17 6 9 17 17 0

6
6
6 13 17 22 10 16 17 6 9 o 17 6 6
4
4
Dy(6) 1 1 17 17 17 17 17 nmn 17 1 w 0

9

H(6) 18 9 10 17 22 10 18 12 6 9 17T O 6
9
1

10. by (b), above, and theorem 3.

11. by (a), (b), (d), above, and theorem 9(b). For ¢ € 2 we let ns, Dy, 24,
and m(2;) be as in theorem 9: If n, = 4 then m(D,) = 13; if n, = 5, then
m(D,) = 10; if n, = 6, then m(D,) = 201; if n, =6 and 2, = (3,1; 1,3),
then m(x;) = 20.

12. by theorem 5(a).

13. by corollary 1 of theorem 9. The data of 9. applies here, as well;
also, if 7, = 5, then m(D,) = 40.

14. by the proof of theorem 9(a).

15. by theorem 10.

16. 8(6;2)—+8(3): Let X be a nonempty set of 3-element sets,
and for each A e X, let A’ be the set of all nonempty, proper subsets
of 4. Let X’ be the set of A’ corresponding to 4 ¢« X. Bach A’ e X’ has
6 elements; we choose two of these. If (exactly) one of these is a unit
subset of 4, we let f(4) be this subset; if both of the choices are unit
subsets of A we let f(4) be the third unit subset of 4; if both of the
choices are 2-element subsets of 4, we let f(4) be their intersection.

8(6; 2)—>8(5;1): Let Y be a nonempty set of 5-element sets and
let X' be the set obtained by adding one new element to each element of Y.
Choose a 2-element subset B of each B’ ¢ ¥’ (corresponding to B e X).
Then if B ~ B"” contains one element, let f(B) be this intersection; if
B~ B” contains 2 elements, use §(3) to choose an element from B\B".

7. {(© independent of £) & (F->I') 0 1ndependent of I} (O in-
dependent of 5) & (4-+0))—~4 independent of Z.
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18. H(6)—8(2), by theorem 2(e).

H(6)—8(b;1): Let ¥, ¥', B, B’ be as in the second paragraph
of 16. Choose a 3-element subset B’ of each B’ ¢ ¥'. Then either B ~ B’”
or else B\B'’ contains 2 elements; use H(6)—8(2).

8*(6; 2)->8(8; 1) now follows in this manner from the implications

6;2)—S8(5; 1) and H(6)—>8(5; 1).

20. 8(6)—Dy(4): Let X be a nonempty set of 4-element sets. For
A e X let A* be the set of 2-element subsets of A and let X* be the set
of A* corresponding to A4 « X. Let f be a multiple choice function on X*;
such a function exists for, by construction, X* is a set of 6-element sets.
For A ¢ X we define g(4) as follows: If n(f(4*)) = 1, let g(4) = {f(4%),
ANSf(A™)}. If n(f(A*)) = 2 and if the two elements of f(4*) are disjoint,
let g(4) = f(A*). In all other cases the elements of 4 do not all appear
the same number of times as elements of elements of f(4*). Let g(4)
= {4,, 4,}, where 4, is the set of elements of A which appear the maximum
number of times in this role and where 4, = A\A4,.

22. by the transitivity of implication.

24. these are the results of J. H. Conway (to be published).

6. A final example. An unsolved problem, which was posed by
Mostowski ([6], p. 168) is the status of the implication

(5) 8({3,5,13); 1)~8(15; 1) .

It is to be noted that {3, 5,13} and 15 satisfy (M) (of definition 4); thus
the question is of particular significance in view of Mostowski's con-
jecture about the sufficiency of condition (M) for an implication S(Z; 1)—
->8(m; 1). In this regard we reduce (5) to the problem of determining the
status of the implication in the hypothesis of

THEOREM 13. (S({3, 5, 18}; 1)=Dy(8)) (S ({3, 5, 13})>8(15; 1)).

Proof. We suppose that both S({3,5,13}; 1) and the implication
8({3,5,13})>D,(8) are valid, and we wish to show that S(15; 1) must
also be valid.

We first note that by (3), it follows that S§({3,13}; 1)—8(9; 1).

Let X be a nonempty set of 15-element sets. By theorem 2(g), there
exists a function f; on X such that for each 4 ¢ X, fi(4) is a subset of 4
such that n(f,(4)) = 2, where 1 <z < 7. Let fz be a (1-ary) choice function
on Xy, for k=3,5,9, and 13.

Let AeX. It n(f(d))=1, let g(4)=fi(4); i (fl(A)) =2, let
o(4) = fu(A\fl(A )s it n(fi(4) =3, leb g(d) = fufi(4); iF m(fi(4) =5,
let g(4) = fefi(4); i n(f1(A)) =6, let g(4) =fn(A\\f1(A))-
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Suppose n(f;(4)) = 4. By theorem 2(h), there is a function F, defined
on X such that for BeXw, Fy(B)= {B,, B}, where B, and B, are
disjoint 2-element subsets of B. Now let ¥ be the set of all sefs of the
form (A\f,(4)) v B 4), i=1,2, where 4 ¢ X, n(f(d)) = 4, and F,f,(4)
= {B,(4), By(4)}. Then Y C Xy. To each 4¢X with n(fi(d)) = 4,
there corresponds one or two distinct elements of 4 of the form f,,((A\f’l(A))
v B¢(A)). In case there is just one such element a, let g(4) = {a}; in case a,
and a,(+ @,) are both of this form, let g(4) = fi(A\{a1, as}).

Suppose n(fy(4)) = 7. By our hypothesis, there iy a D,(8)-function #y
defined on Xg. Consider Fy{A\f(4)). If any element of Fy(A\fi(4))
is a unit set, the union of all such unit sets is a subset ¢ of A\f,(4) with
n(C) < 6, by (v') of definition 2; in this case the argument reduces to
one of the previous considerations. Otherwise, if any element 2 of
Fo(A\f,(4)) is such that n(z)= 2, we take the union of each such set
with f,(4), thereby obtaining a subset of X. If we procede as in the
preceding paragraph, we obtain a subset ¢’ of A for which n((") is at
most 4; again we have reduced the case to one of prior considerations.
Finally, if Fy(AN\fi(4)) = {Dy, D,}, where D, and D, are disjoint sets
with n(D,) = n(D,) =4, we can obtain another decomposition of
A\f(4) into {E.,E,, F,, E,} in which the F; are pairwise-disjoint
sets such that each n(E;) =2, and each E; is an element of F,(Dy),
j=1,2.

Remark. We have chosen to work with D,(8) because theorem 8
and its corollary yield the independence from 8({3,5,13}; 1) of each
of the following axioms: S(7), 8(8), Dy(7), and Dy(T7).
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