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Mittelgerade besitzt. Sei 4 ¢ @ (4 # 0). Das Lot zu a dureh A schneide b
in O (Fig. 6), das Lot zu b durch schneide a in B. Dann ist k= F40,8.0.
Da F Euklidisch ist, gilt nach Theorem 2 nicht v (43 0, B), also gilt gemis
Voraussetzung ' (0; 4, B). Nach dem Lemma besitzt damit {a, b} eine
Mittelgerade.

Sind umgekehrt 0, 4, B kollineare Punkte und gilt y/(4; 0, B) nicht,
5o ist fiir beliebiges O F4;0,p;c Buklidisch. Da diese Relation nach Voraus-
setzung kommensurabel ist, gilt auf Grund des Lemmas offenbar
Y(0; 4, B). Aus Symmetriegriinden gilt auch y/(B; 0,4), womit Theorem
4 bewiesen ist.

Regu par la Rédaction 3. 10. 1967

Periodic homeomorphisms on chainable continua
by
Beverly L. Brechner (New Orleans, La.))

1. Preliminaries.

Tntroduction. In this paper we begin a study of the periodie
homeomorphisms on chainable continua. It is well known that an arc
admits period two homeomorphisms, but does not admit homeomorphisms
of finite order n, n > 2. We will show that this result does not generalize
to chainable continua. We first define regularly chainable continua and
show that every regularly chainable continuum admits a period two
homeomorphism. The arc and pseudo-arc are examples of such continua.
We then use these results to construct a chainable continuum which
admits period four homeomorphisms.

‘We note that in [5] F. B. Jones shows, by & proof similar to the
one in this paper, that the pseudo-arc admits period two homeomorphisms.

Oonvention. Al spaces are separable metric.

Basic definitions. Most of the following definitions are well-
known, but are included for completeness.

DEFINITION 1.1. A homeomorphism k7 e of a continuum X onto
itgelf is called periodic provided that there exists an integer # > 1 such
that %* is the identity. If A" = ¢, but B* = ¢ for 0 < k < m, then h is said
to be of period n or order n.

DErFINITION 1.2. A chain is 2
Us: Ty, Uy ..., Un such that

1) Uin T30 iff i—jl <1,

2) Uin T;#0 iff li—j| <1 and

(3) Us ¢ U; for any pair i, j.
aU* denotes the union of the elements of U. W is a chain from p to ¢ it W
is a chain, p ¢ U;—U,, and ¢ € Un—Un-1. It W: Ty, Uyy -, Un I8 o chain,
then h(U) denotes the chain whose elements are k(Uy), k(Us); -y h(Un)-

DEFINITION 1.3. A chain U is a refinement of the chain ‘U provided
that each element of < is a subset of some element of W. U is called
a dlosed refinement of W iff the closure of each element of U is & subset,
of some element of U.

finite collection of open sets
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DerrxrrioN 1.4, If A is a chain of open sets, then mesh of W, denoted
by u(W), is the diameter of the largest element of U.

DrrINIFoN 1.5. X is a chainable comtinuum iff for every ¢>0,

there exists a chain cover U of X such that pu(W) <& If X = p A%t

B =1
where U, is 2 chain cover of X of mesh < 1/i and Ui is a closed refinement
of U for all 4, ther {Usi)i is called a defining sequence of chains. for X.

2. Period two homeomorphisms. In this section we show that
the pseudo-arc and certain other chainable continua admit period two
homeomorphisms.

DrrrrTios 2.1. Let W: Uy, Uy, ..oy Un be a chain. Then the chain
s Vi, Vay ey Va, Where Vi= Un_is1, is called the reverse chain of U.

DeFrvTioN 2.2. (As in {1].) Let W Uy, Uy ooy Un DE B chain, and
let V: ¥y, Vs, o, Vi b6 @ refinement of . If the ith element of U is
a subseb of the z¢th element of U, then U is said to follow the pattern
(1, 1), (25 %)y vy (M0 Tm) In Ws. )

We note that if some element of U is a subset of two elements of U,
then at least two patterns exist for U in W. Thus, a pattern may not
be unique.

DrrrNITION 2.3. Let Us'be a chain and let U be a refinement of U.
Q is said to be regular in AU iff there is a pattern for U in W which is
also a pattern for the reverse chain of U in the reverse chain of .

DeriNiTION 2.4. Let {U;} be a sequence of chaing such that Uy,
is regular in Wi, Then {U} is called a regular sequence of chains. T X
is a continuum and {U} is a regular sequence of chains covering X such
that

(W) p(U) < 1,

(2) Usyy is & closed refinement of Uy, and

3) X =0 W,
i=1

then {U} is called a regular defining sequence of chains for X.

DEF_INITIOX 2.5. A continunm X is called regularly chainable itf
there ex1s?s a regular defining sequence of chains for X. X is called reg-
ularly chainable from p to g iff each of the chains in some regular defining
sequence runs from p to ¢.

" Note. For the definitions of crooked chains and the pseudo-arc,
see 1], [2].

) TEEORE}M 2.1, Let X be a regularly chainable continuwm. Then there
ewists a period two homeomorphism h of X onto itself, keeping exactly one

point of X fized. If X is regularly chainable from p 1o g, then h may be chosen
s0 that p and g are interchanged.

icm°®
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Proof. Let {W:} be a regular defining sequence of chains for X.
Let {Us} be the sequence of reverse chains of {Usg}; that is, if Vi;e Vs
then Viy= Uin—gs1 € Wi, where n; is the number of elements in Us.
Clearly {VU} is also a regular defining sequence of chains for X. Let
gi: Ug—>V; be defined by gi{Uss) = Viy. For each xeX, there exists

©
a sequenee{ Uiy, }ies such that @ e Uy, € Usi. Then M Vs, is a point. Let
o © =1
[ N Vi
i=1

h{w) = Ql 9 Uige) =
That % is 2 homeomorphism follows from the proof of Theorem 11 of [1].
Tt is clear from the construction that h is of period two and that h keeps
exactly one point fixed. In addition, if {2} is'a sequence of chains from p
to ¢, then h interchanges p and g¢.

CoROLLARY 2.1.1. Let X = M xN where M and N are continua
and M is reqularly chainable. Then X admits a period two homeomorphism.

Proof. By Theorem 2.1, M admits a period two homeomorphism h.
Define g: XX by g(m,n)= (h(m), n) Then g is a period two homeo-
morphism of X onto itsel.

Exampre 2.1. The “sin(l/z) continuum” with limit segment is
not regularly chainable and does not admit period two homeomorphisms
(since the limit segment must go onto itself).

Bxamrre 2.2. Let M, be a pseudo-arc and M, be an arc. Let
M = M, v M, at a common endpoint. Then M is not regularly chainable,
but does admit period two homeomorphisms. (See Lemma 3.1.)

BxAMPLE 2.3. The following is another example of a chainable
continuum which is not regularly chainable. Let {mi}i=1 be the sequence
of points 1/2* converging to 0 onthe z- axis. For 4 0dd, let 4; be the straight
line segment from @; t0 @i1. For i even, let 4; be a pseudo-arc of di-

ameter < 1/2°%. Let A = (D Ay) © {0}. Then 4 is a chainable continwum
i1

which is not regularly chainable. We note that if h is any homeomorphism
of A onto itself, b must carry {0} v {m}7, onto itself by the identity.

DErrNITION 2.6. Let 8 be a rectangle in the plane which is the
union of a chain of rectangles 8: 8y, 8, .-) 8», such that 8~ Sp 18
a common arc. Let T be a polygonal region bounded by a simple closed
curve such that

(1) T is the unmion of a chain of rectangles G: Ty, Ty, -
Ty A Tiqq == COMMON ATC,

(2) © is a closed refinement of 8,

(3) G is crooked in S, and

(4) G is regular in S.

oy T, with
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Then § is called a standard chain and G is said to be & standard refinement
of 8.

Lmoia 2.1. Let 8 be a reciangle in the plane such thal 8 s the wwion
of @ chain of rectangles, §: 81, 85y ooy Su. Then there exists a standard
refinement G of 8.

Proof. For o = 5, we may obtain a regular crooked refinement as
in [2]. Clearly this construetion may be carried out for any positive
integer 2, in an inductive manuer, by induction on #.

THEOREM 2.2.

Proof. Let p and g be two points in E?andlet Uy: Uiy, Ussy oony Usg,
be » standard chain from p to ¢. Let Wy Uy, Usz, oy Usm, be a chain
in F® from p to ¢ such that W, is a standard refinement of ‘U, We also
require that u(U,) < §. Let h: EP>E* be a homeomorphism which
carries the chain U, to a standard chain G, in E* and which is the identity
outside some disk neighborhood of U . This can be done by the Schoen-
flies Theorem. Then k7' is uniformly continuous, sinee it is supported
on & compact set. Therefore there is a & > 0 such that if 4 is a seb of
diameter < 6, then hy'(4) is of diameter < }. Let D, be a standard refine-
ment of €, from hyp) to ky(g) such that u(Ds) < 6. Let Wy = By (Dy).
Then U, is a chain of mesh < } from p to ¢, and is a regular, erooked,
closed refinement of Us,.

We proceed in this manner inductively. Assume that we have
Wyy Uy oy Uom, With Uy, being a regular, crooked, closed refinement
of Uy, 4 =1, 2, ...,n—1, and such that u(VUx) < 1/i. Let h,_, be a homeo-
morphism of B onto B* which is the identity outside some disk neigh-
horhood of U, and which carries U, to a standard chain G, in E? This
can be' domne by the Schoenflies Theorem. Then h; 2, is uniformly continuous,
since it is supported on a compact set. Therefore there exists dy—; > 0
such that if 4 is of diameter < &y, then hy4(4) is of diameter < 1/(n -+-1).
Let Dpyq be a standard refinement of G, from 5" (p) to " *(q) such that
2#(Dnyy) < Opr. Lt Uspgq = ;_11(20,.“). Then Uypyq is a 1'egulé.1‘, crooked,
closed reﬁgement of Uy and p(Unis) < 1f(n -+1). We may make the links
overlap slightly, so that we have a tower of chains in the usual senge.

The pseudo-are is regularly chainable.

[o o J—
Let M = [} U}. Then M is a pseudo-arc by [1], and the sequence

=1

{Us} is & regular defining sequence for M. It foll :
- N1/ N 1] ows that th —Are
is regularly chainable. ws that the pseudo-arc

CoBOLLARY 2.1.1. The ps .
21.1. The pseudo-are admits uncountably mang
o homeomorphisms. Y vy period

y Proof. Let M be a pseudo-arc and let & be a period two homeomorp-
ism of M onto itself. Let ¢ be any homeomorphism of M onto itself
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such that ¢  h and ¢ # e. Then p~*hy is also of period two. Since M is
homogeneous [1], there are uncountably many such homeomorphisms ¢.
Thus there are uncountably many period two homeomorphisms of M
onto itself.

QUESTION 1. Let g, h be two period two homeomorphisms of the pseudo-
are. Does there exist a homeomorphism @ of the pseudo-are onto itself such
that g = @~ the? :

QUESTION 2. Same as Question (1) for any regularly chainable con-
tHnuwm.

QuusTiON 3. Do there exist period two homeomorphisms of the pseudo-
arc onto itself keeping more than one point fized?

QUESTION 4. Does evample 2.3 admit period two homeomorphisms?

3. An example. In this section we construct an example of a chain-
able continuum which admits a period four homeomorphism.

TEsora 3.1. Let 3 be the union of two chainable continud M, and M,
intersecting at a common endpoint p, where 2, is a pseudo-arc. Then there
caists a homeomorphism h: M->M such that h is of order two and KM,
is the identity.

Proof. Let g be any period two homeomorphism of M, onto itself.
Since M, is chainable, there is a point &, M, such that g(a,) = 2. See [3].
Since M, is homogeneous [1], there exists a homeomorphism ¢: M;—>M,;
such that g(p) = @,. Then p~igp is a period two homeomorphism of M,
onto itself keeping p fixed. Define h: M->>M by kM, = g~igp and R M,
is the identity. Then h is the desired homeomorphism.

TuEorEM 3.1. There ewists a chainable continuum which admils
a period four homeomorphism.

Proof. Let M, be a pseudo-arc in F?, with an endpoint p on the
y-axis, but otherwise lying in the left-hand half plane. Let f: B*>E°
be a reflection through the y-axis, and let M, = f(M,). Let M = M, v M,.
Clearly M is chainable. Let g = flM. By Lemma 3.1, there is a homeo-
morphism »: M—>M such that b is of period two and h|M, is the identity.
Then it is easy to see that gh is of period four on M.

QuesTioN. Does the pseudo-arc admit period n homeomorphisms
for n > 2%
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Expansive homeomorphisms on homogeneous spaces

by
Erik Hemmingsen (Syracuse) and William Reddy (Albany, N.Y.)

1. In [2] Murray Eisenberg has shown how an expansive homeo-
morphism may be constructed from a positively expansive map. In this
note we show that a positively expansive map on a compact connected
manifold must be a covering map of the manifold on itself, and that
a manifold admitting such a map cannot be simply connected. Further-
more, if the manifold is triangulable, its Euler characteristic must be
zero. Next, positively expansive maps of various manifolds are exhibited;
and using Eisenberg’s technique, we infer:

A, In every finite dimension greater than one there is a compact
connected space, fibered over a manifold by the Cantor set, which admits
an expansive homeomorphism and which is not an abelian group space.
In every finite dimension greater than 2 there are countably many
different such spaces.

Finally we prove:

B. In every finite dimension greater than 3 there is a compact,
connected manifold, not an abelian group space which admits an ex-
pansive homeomorphism. ‘

In previous examples of expansive homeomorphisms on compact,
perfect, homogeneous spaces, the space has been a group space nad the
homeomorphism conjugate (in the homeomorphism group) to an auto-
morphism of the topological group carried by the space ([2], [3], [7], [9]).
T. S. Wu [10] has shown that compact connected finite dimensional
topological groups which admit expansive automorphisms are abelian.
Tt follows that the expansive homeomorphisms construeted here cannot
be conjugate to an automorphism of a topological group.

2. Tet X be a metric (d) space. A map f of X onto itself is called
ezpansive provided that there exists a positive constant ¢ such that to
each pair (z,y) of distinet points of X there corresponds an integer n
with d[f"(®), f"(y)] > ¢. The number ¢ is called the expansive constant.
The distance d[f"(x),f™y)] is to be interpreted as the usual distance
between sets. If, to each pair (z, y) of distinet points of X, there corresponds
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