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Expansive homeomorphisms on homogeneous spaces

by
Erik Hemmingsen (Syracuse) and William Reddy (Albany, N.Y.)

1. In [2] Murray Eisenberg has shown how an expansive homeo-
morphism may be constructed from a positively expansive map. In this
note we show that a positively expansive map on a compact connected
manifold must be a covering map of the manifold on itself, and that
a manifold admitting such a map cannot be simply connected. Further-
more, if the manifold is triangulable, its Euler characteristic must be
zero. Next, positively expansive maps of various manifolds are exhibited;
and using Eisenberg’s technique, we infer:

A, In every finite dimension greater than one there is a compact
connected space, fibered over a manifold by the Cantor set, which admits
an expansive homeomorphism and which is not an abelian group space.
In every finite dimension greater than 2 there are countably many
different such spaces.

Finally we prove:

B. In every finite dimension greater than 3 there is a compact,
connected manifold, not an abelian group space which admits an ex-
pansive homeomorphism. ‘

In previous examples of expansive homeomorphisms on compact,
perfect, homogeneous spaces, the space has been a group space nad the
homeomorphism conjugate (in the homeomorphism group) to an auto-
morphism of the topological group carried by the space ([2], [3], [7], [9]).
T. S. Wu [10] has shown that compact connected finite dimensional
topological groups which admit expansive automorphisms are abelian.
Tt follows that the expansive homeomorphisms construeted here cannot
be conjugate to an automorphism of a topological group.

2. Tet X be a metric (d) space. A map f of X onto itself is called
ezpansive provided that there exists a positive constant ¢ such that to
each pair (z,y) of distinet points of X there corresponds an integer n
with d[f"(®), f"(y)] > ¢. The number ¢ is called the expansive constant.
The distance d[f"(x),f™y)] is to be interpreted as the usual distance
between sets. If, to each pair (z, y) of distinet points of X, there corresponds
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204 E. Hemmingsen and W. Reddy
a positive integer with the required property, it will be said that f is
possitively ewpansive. o

The set of points at which f fails to be a local homeomorphism i
denoted by By. It By is empty and each point of X has. exactly & counter-
images, f is said to be a k-lo-one covering map. If f(U) is open wl%enever U
is, f is called open. If f~'(z) is totally disconnected for each # in X, f is
called light. If 7 is light and open, and if X —f(By) is connected, and the
restriction of f to (X —By) is a k-to-one covering map, we say fis a pseudo-
covering map.

Throughout this note, f will denote a map of the compact metrie (d)
space X onto itself. M will denote a compact connected manifold.

Consider the inverse limit sequence in which each Xy is a canonically
chosen copy of X and each bonding map the corresponding copy of f.
Call the resulting space X*. If f is a k-to-one covering map, k> 1, it
is eagy to see that X* is fibered by the Cantor set over X. If X is compact
and connected, so is X*. If f is positively expansive, the map ¥ XX
given by f*(@, 1, @y, --) = (F[%], @, @y, -..) i3 known o be an expansive
homeomorphism of X* onto itself ([2], Theorem 3).

3. In this paragraph we will prove

TarorEM 1. If X is a compact, connected manifold and f is positively
expansive, then f is a k-to-1 covering map, with k > 1.

Proof. First we observe that B;=@. For if a e By, then there
are pairs (z,y) of distinet points of X arbitrarily close to a with f(x)
= f(y). But then f is not positively expansive. Next we observe that f
i light. Indeed, there exists a positive integer N such that no point
in X has more than N counterimages. For if not, since X is totally bounded,
we can find pairs (z,y) of distinet points arbitrarily near each other
with f(x) = f(y), contrary to the hypothesis that f is positively expansive.
It now follows by a theorem of Church and Hemmingsen ([1], 2.4) that f
is a pseudo-covering map. Since Br= @, f is a covering map. If f were
one-to-one, it would have a pair of positively asymptotic points ([4], 10.36).
Then we could find pairs (z,y) of distinet points arbitrarily near each
other with d[f"(«), f"(y)] arbitrarily small for all n > 0, a situation which
cannot oceur for a positively expansive map. Hence f is a k-to-one covering
map with % >1. .

‘We remark that, in case tiwo isometric copies of M can be triangulated
so that f is represented as a simplicial map, it follows from Tucker’s
formulas [8] that the Buler characteristic of M is zero. This will restrict
considerations to toruses and Klein bottles in the two dimensional case.

I M is a manifold, trianguable or not, it follows from [1], 6.5, that

(M) # 0. Hence, in particular, § is the only sphere admitting a positively
expansive map.
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Not every covering map with ¥ > 1 is positively expansive. To see
this, let X be the product of two circles and let f be the product of a 2-to-1
covering: map and the identity.

4. TEHEOREM 2: Let 91 ¥ —X be a covering map of ¥ onto X, where ¥
is a meiric space with metric g. Suppose that there exists a number n > 0
such that whenever ¢(y,) = ¢(¥s), then o(yy.y,) > n. Let g be a map of ¥
onto Y such that g = fp. Then g is positively expansive if and only if f is
positively expansive.

Proof. Minor modifications of [5], 3.4, case 1, and 3.6 suffice.

Now let Y be the cylinder in E,; given by r =1 in cylindrieal co-
ordinates (r, 0, k). By identifying points which differ in & by an integer
and in 6 not at all, we induce a covering map onto the torus. By identifying
(r, 0, k) to (r, —0, h +1) we induce a covering map onto the Klein bottle.
Both these covering maps commute with the map g: ¥—¥ given by
g(r,0,h) = (r,20,3h) which is clearly positively expansive. Therefore
there exist positively expansive maps on the torus and Klein bottle,
call the one on the Klein bottle f. The associated inverse limit systems
therefore admit expansive homeomorphisms. Let (K, ) denote the ex-
pansive homeomorphism induced by the mapping on the Klein bottle.
It can be seen by Theorem 1 that K is the inverse limit space of a sequence
of Klein bottles with binding maps f. It follows from the continuity of
Cech theory that Hy(K, R) is a copy of the reals R. Suppose that K admits
an abelian topological group structure such that y is conjugate to a group
automorphism 6. By a theorem of Kodaira and Abe [6]. K is an inverse
limit space over tori with each binding map a finite-to-one covering map.
Hence, K has the Cech homology of the torus. Then H,(K, R) is RXR,
a contradiction.

It is easy to see that the mapping 626 is a positively expansive
mapping of the circle, and that the product of finitely many positively
expansive maps is positively expansive on the corresponding product
space. Therefore, by taking positively expansive maps on the product
of a finite collection of Klein bottles and circles, one can find a space X
of any finite dimension greater than one and an expansive homeomorphism
g: X—X where the Kiinneth formula shows that X is not an abelian
group space.

5, In this section we consider spaces having dimension greater than 2.
In dimension two the restriction of attention to manifolds having Euler
characteristicezero is a serious inconvenience. In higher dimensions, of
course, there is much more freedom. Since it is easy to construct positively
expansive maps of the 3-torus on itself, it is natural to attempt to con-
struct such maps on other three-dimensional nilmanifolds. We follow
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the construction in [0], pp. 46-48. We consider the topological group T,
represented by all real matrices of the form

1z 9
01 =
001

‘We may consider the underlying space to be H,. For each k= 1,2,3, ..
we consider the uniform, discrete, non normal subgroup D (%) of T con-
gisting of all matrices of the form

1 a ab+celk
01 b
oo 1

where a, b, and ¢ are integers. It is easy to check that the positively ex-
pansive map f(z,y,#) = (22, 2y, 4¢) respects the right cosets of D(k)
and so induces a positively expansive map of the compact manifold
To/D(k) = M(k) onto itself. It follows that the shift on the corresponding
inverse limit space, M*(k) is an expansive homeomorphism. Now by the
Hurewicz homomorphism, (M (k)) = D(k) ([0], p. 47). No D (k) is abelian,
and no M*(k) has the Uech. homology of the 3 torus. So M*(%) is not an
abelian group space. D(k') is isomorphic to D(k) if and only if k= ¥,
so that no two M (k). k=1, 2,3, ... are homeomorphic. If » is a positive
integer, it is easy to see that the product of the factor space Ty/D(k)
with # - circles is an (n +3)-manifold admitting a positively expansive map.

6. Let B Dbe the total space of a fiber bundle with fiber ¥, base
space X, a family {V;} of coordinate neighborhoods, and corresponding
coordinate functions ¢;: Vyx ¥—p-Y(V;). Suppose that fis a homeomor-
phism of ¥ that commutes with elements of the structure group and that g
is 2 homeomorphism of X such that for each point = in X there is at least
one coordinate neighborhood containing both # and g(x). To define
a homeomorphism h: B--B, let b € B, let V; be a coordinate neighborhood
containing both p(d) and gp(b), and let h(b) be defined by

B(b) = g1 (g0 (b), foizm(D)) -

The commutativity of f with the elements of the structure group guarantees
that h(b) is independent of the choice of V;. If the action of the structure
group is uniformly equicontinuous and the covering {V;} has a positive
Lebesgue number, then % is expansive when both f and ¢ are expansive.

Consider T X (T'm X I) where Ty is the n-torus, » > 2am > 1, and I
is the unit interval. Identify the points (p, ¢, 0) and ((p), ¢, 1) where v is
a group automorphism reversing the orientation of an odd number of
factor circles in T,. The resulting manifold is fibered by an n-torus over
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an (m-1)-torus. It can be represented as having two coordinate neigh-
borhoods and structure group {¢°, p} where ¢° is the identity and ¢ is the
homeomorphism Idazy: VixTp—p~YV;). Any automorphism of 7, com-
mutes with ¢, and the coordinate neighborhoods are large enough to
satisfy the condition above. Therefore this (n--m -+1)-manifold admits
an ewpansive homeomorphism. It hag elements in its fundamental group
which do not commute, namely: an element generated by a copy of
any factor circle in the representation of T, whose orientation is reversed
by v and an element generated by one of those copies of I whose ends
were identified. Hence, this manifold is not an H-space and therefore,
a fortiori, not an abelian group space.

Added in proof: Professor Michael Shub has kindly shown the authors some
related work done by him and by Epstein and Shub. David Epstein and Michael
Shub have shown that every flat manifold admits an expanding endomorphism. Each
such endomorphism is positively expansive.
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