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Since n is arbitrary, we have

3 fla—) —f(pe ) <de e

is proves the theorem. .
e Ipam ,c;ra.teful to Dr. P. C. Bhakta for his kind help and suggestions

in the preparation of the paper.
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by

Gustay Hensel and Hilary Putnam (Cambridge, Mass.)

It is known ([2], theorem 35, p. 394) that every axiomatizable, con-
sistent, first-order theory has a model in X, ~ I7,. Putnam [5] has shown
that such theories, based on a finite number of predicates, have models
n 27, where XY denotes the field of predicates generated by the recursively
enumerable predicates.

The purpose of this paper is to extend this result to the case of an
axiomatizable, consistent, first-order theory with identity built on a finite
number of predicates. More precisely, we shall show that such a theory,
if it possesses an infinite normal model, has a normal model in Z¥. The
model exhibited will be the simplest possible, in the sense that it will
contain Ramsey indiscernibles and only those extra elements needed
for completion. This answers completely the open question of Mostowski
in [4], p. 39.

§1. The theory 7, and the main theorem. As mentioned
previously, we shall employ the symbol XZ¥ to stand for the smallest
tield of number-theoretic predicates (of all orders, 1-ary, 2-ary, ete.)
which includes the recursively enumerable predicates and is closed under
the truth functions (e.g. closed under ] (not) and v(or)).

Let T, stand for an axiomatizable, consistent, first-order theory
with equality which is based on the predicates P}, ..., PX™, Here the
superscripts denote the order of the predicate symbol, and we shall usually
omit them. P, will be taken to be the equality symbol. All models of 7,
are hence of the form (4; Ry, ..., Rm) where 4 5= @ and R, C A", It R,
is the identity relation on 4, then the model is said to be normal.

TrzorEM 1.1. (MAIN TerorEM). If T, has an infinite normal model,
then Ty also has a normal model Q= (N; Qy, ..., Om) where N is the se
of natural mumbers and Qye Z¥ for all j=1, ..., m.

To prove this theorem it will be necessary to work with models of
theories stronger than T,. But before defining these new theories we shall
need a result due to Ramsey.
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§2. A lemma due to Ramsey. In Ramsey [6], theorem A,
p. 82, is proved an interesting combinatorial theorem, a corollary of
which will be useful in the sequel.

THEOREM 2.1‘(Ramsey). Iet I be an infinite set and m,n positive
integers; and let all those subsets of I" which have exactly m members (the
n-subsets) be partitioned in any manner into m mutually exclusive classes Oy,
i=1,..,m. Then, assuming the awiom of choice, I must contain an infinite
subset A such that all the n-subsets of A belong to the same Ci.

The eorollary’ will - be stited in considerably less generality than
possible. Before stating it let us introduce the following definition.

DEFINTTION 2.2. Two n-tuples of natural numbers (@, ..., an) and
(Byy .y bn) Will De called similar ((ay, ..., an)~(by, ..., by)) iff, for all 4, j,
@ < 67, Q5= a3, 4= a; OT &z > a; according as by < by, by == b; or b; > b;
respectively. [For example, (3, 7, 3, 18, 4)~(5, 14, 5, 17, 9).]

It is easy to check that similarity is an equivalence relation. Also
it is obvious that there are only a finite number of equivalence classes.
Let ~[ay, -.., @,] stand for the class determined by (ay, ..., @)

COROLLARY 2.3. Let Ry, ..., £a) be an n-ary predicate on an infinite
subset A of the natural numbers. Then there exists am infinile subset AC A
such that, for -all n-tuplets (ay, ..., an), (by, ..., ba) e A%, i (@, ..., Gu}
~(byy vuey bn) then R{ay, ..., an) = R(by, ..., ba).

Proof. Let ~[ay, ..., #»] = D, be the first class in some enumeration,
Dyy oy Dy, of the finite number of similarity classes over A. To any
(4, .., @u) € Dy associate the set {u,, ..., uy} of distinct elements in the
n-tuple (%, ..., %n). 2’ <n and »' is well-defined for the class D;. Also
this association is a (1-1) correspondence between D, and the set of
n'-subsets of A.

In theorem 2.1 take m = 2 and n = »' and put {u,, ..., Uy} in ¢y if
R(@1y ..., 24) 18 true orin O, if R(wy, ..., x,) is false, where (@, ..., @n) iy
associated with {u,, ..., ux} as described above. Then theorem 2.1 gives
us an infinite subset 4, C A such that for all (zy, ..., ), (Y1, ..-) Yn) € Dy
~ A?: R(@1y ey 2a) = R(Yrs ey Yn)-

Exactly the same argnment can be repeated, replacing 4 by 4,
and D; by D, ~ 41, to get an infinite set 4, C 4, such that, for all (w,, ..., a),
U1y s Yn) € Do ~ A2, R(@y, ..., @n) = R(yy, ..., ¥n). And, since Ay C AT,
we still have R(z, ..., @) = R(yy, ..., ¥a) for all (@, ..., 2n), (Y1, -y Yn) &
e D, ~ A7. Repeating this argument for all classes, D,, ..., Dy, we shall

eventually obtain a set 4 (= 4,) with the property mentioned in the
theorem.

This set 4 will be called a set of indiscernibles for R.
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§ 3. Indiscernibles and the theory 7, Let Mt= (¥, D, ...
...y Mu} be a normal model for T, where N is the set of natural numbers.
Applying corollary 2.3 to M, over N we get a set, say 4, of indiscernibles
for 9. Repeating 2.3 for M, over 4,, we get a set, say 4,, which is-a set:
of indiscernibles, simultaneously, for both 9%, and Mt,. Hence applying 2.3
in this fashion m 41 times, we get a set 4 (= 4,) which is a set of in-
discernibles for all of the relations M, ..., Mom, simultaneously.

On the basis of this remark the theory T, ean be consistently extended
by adding an infinite list of new constants, e, ..., @a, ..., and the following
new axioms: S

TV Pylas, as) | for all 4, with i # jj
‘ Pyl ...y tiy) = Prlay,, ..., ajmk))_' for all &k, 0 <k <m, and for
all ('L.l, ey ";n(k)), (jU ---;jn(k)) such that (1.'17 ey in(k))’\’(ju "'7jﬂ(k))‘

It is obvious that I discussed above would be a model for this new
theory if a; were taken to be the 1th member of 4, according to ordinary <.
This new consistent, axiomatizable theory will be called T,.

§ 4. e-terms, the theory 7, and more indiscernibility.
The theory 7, will now be strengthened, as to its naming power, by the
addition of the e-terms and the e-axiom schema ([1]; pp. 9-18). That
is, for every e-wifA (2), which does not contain any variable in both
free and bound occurrences, we add the axiom r—C*[acA(ac)Z)A.(ea,A(ac))—‘.
[It is convenient to think of individual variables divided into two classes,
the free variables and the bound variables.]

By the second e-theorem ([1]; pp. 130-149) this augmented theory
is also a consistent, axiomatizable theory. We shall denote it by T,. It
is well known by the upward Skolem-Liwenheim theorem ([3]; pp. 64-67)
that the set of constant terms of T, call it T, forms the universe of a non-
normal model for a certain complete, consistent extension of T,. Let us
call this new model

N = (T; RNoy ...y Nmj gy oy Gy o)

In N the constants, a,, ..., ds, ..., form a set of indiscernibles for
Ry, - Nm, simultaneously. Obviously (cf. § 3) what is meant here and
elgewhere is indiscernibility with respect to the subscripts. This indis-
cernibility, however, is not strong enough for our purposes. What we
desire ig the following more general type of indiscernibility. If A (ay, ..., &)
is an e-wif of 7T, with no occurrences of the constants, ag, ..., ta, ...,
and oceurrences of exactly the distincet free variables zy, ..., y (taken in
increasing subscript order) then this e-wif determines a k-ary predicate
over . And we would like to have indiscernibility over this predicate
algo. 'We ghall use the same symbol 4 to stand for the k-ary predicate
over I.
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Of course we can again apply corollary 2.3 to 4 over N, which is the
got of subscripts of the a's, to get an infinite gubset A C N sufzh that
{as: 1 e} is a set of indiscernibles for N, ..., Nm and A. Certainly for
any finite number of - witslike 4 above we cou'ld apply the same procec.hu‘e.
That is, if 4;, ..., 4p are any ¢-wifs, each having at lea:st one free variable
and satistying the conditions as 4 above, then there exists a subset 4, C ¥
such that {as: 7 € Ay} is a set of indiscernibles for 9, ..., ‘Jtm., Ay ooy Ay,
where again A4; is also used to stand for the agsociated predicate over .

§5. The theory 7,. Using the notation of the previous section,
leb {a:: 4 4y} be a set of indiscernibles for RNy, ..., Ny 4y, ..y Ap. Since
the ¢-terms provide names for the Skolem functions needed to satisfy
the axioms of T, it is easy to see by the downward Skolem-Lé&wenheim
theorem that N’ = (T'; N, ..., Ny) is also a model for T,, where T’ is
the collection of all constant terms of 7', which contain no occurrences
of constants as for ¢ ¢ 4, and where R} is the restriction of N to the sub-
set T,

But now from the foregoing, we see that the theory 7, can be con-
sistently extended by adding the following extra axioms: (where the
above wifs, 4, ..., 4p, are of orders m(1), ..., m(p), respectively)

T Ay wory Bigy) = Ar(asgy -y Ury) | Jor all &y 1<% <p and for

all (%1, aey im(k)), (jl, ...,jm(k)) such that (1.1, ey i?‘n{k))’\"(jly ey jm(k))-

It is obvious that M’ is a model for this augmented theory if a; is
taken to be the {th member of A, in the ordinary increasing order of
subseripts.

Now, however, since 4, ..., Ap were arbitrary «-wifs, we see by the
compactness property of first-order theories that the theory T, can be
consistently extended to a new theory T, by the addition of all formulas
of the form:

'—A(afl, ey aik) E=] A(a,jl, ey a;k)j,

where A(z,...,2z) 8 an e-wif containing oecurrences of exactly the
distinet free variables @y, ,.., a4, listed in increasing subscript order, and
no oceurences of the constants a;, and where (iy, ..., tx) ~ (41, ..., ji)-

The new theory T, is certainly still axiomatizable. Also it might
be remarked that the condition, that A (z, ..., ;) contain exactly the
distinet free variables ;,...,ux, is only for motational precision and
could have been replaced by other conventions. Finally, as will be realized
later, we could have restricted our additional axioms by demanding
that A be an atomic e-wif.

§6. The model P, eharacterizations of I, ~ I, and X%,
and the ideal numbers. By the upward Skolem-Liwenheim theorem
we can complete Ty to get a model B = (T; Bo, .., B gy oor, Gmy ~or)

icm°®
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of T, where again T is the set of all constant terms of 7. The most im-

portant property of P, resulting from the fact that P is a model of T,

is the following indiscernibility property:

() If A(zy, ..., 1) 38 an e- Wi containing ocourrences of exactly the distinct
free variables m,, ..., @y, listed in increasing subscript order, and no
occurrences of the constants a; and if (iyy ..., ix)~(y -, Jr), then

g A (e ey an) = Ay, o, ag).

The use of the semantical symbol ¢ |=g” is justified here, since T contains
all the e-terms needed for interpretation of an e-wif.

The model B can be turned into a numerical model over N by
first arithmetizing T in a standard, effective way. Listing the elements
of T in the order of their Godel numbers, say o, ..., tn, ..., we define
o = {(n, ts): n € N}. For technical reasons which will appear latter, we use
the standard listing ¢ to define another listing, 6, as follows:

6(2) = the first t, in the list o such that, for all j, 0 < j < i,
tn % 0(4), and t, of the form as, if i is odd;
= the first t, in the list o such that for all j, 0 <j < i,
tn 5= 0(4), ©f © is even .
Obviously 6 is also an effective listing of T. From now on we shall con-
sider 0 as an identification between N and T; and, using §, we can change P
into an isomorphic numerical model (i.e. with universe N). We shall
still use P = (N; By, ..., Bj @y ovvy dny -..) a8 notation for the numerical
model. Finally, we shall assume that T, has been arithmetized in such
a way that

(%) (1) if ©<j, then 67 (@) < 6 (), and
(ii) if b is an e-term and a; occurs in b, then 0™ (a;) < 67'(b).

Certainly ¢ would have properties (%) for most standard arithmetizations
and, in passing from ¢ to 0, these properties are, if anything, accentuated.

It is well known from Kleene ([2]; pp. 394, 395) that if P is obtained
by one of the standard completion procedures, then the predicates of P
(under either of the identifications, ¢ or 6) are in X, ~ IT,.

Putnam ([5], theorems 1 and 2, pp. 51, 52) provides the following
alternate characterizations of the classes X, ~ I7, and Z}. These cha-
racterizations will be used from now on in changing P into a model in Z¥F.

TuEOREM 6.1. A number-theoretic predicate R(my, ..., wn) € Zp ~ I, iff
there ewists a recursive (n--1)-ary characleristic Junction f(zy,y .oy @n,y Y)
(i.e. f takes only the values 0, 1) such that, for all (wy, ..., %),

(i) imf(ay, ..., 20, y) exists and

Y—>00

(i) Ry, ooy @) 98 true off Hmf(w,, ..., oo, y) = 1.
Y->00

Fundamenta Mathematicae, T. LXIV 16
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THEOREM 6.2. A number-theoretic predicate R(wyy ..., ¥n) € Z¥ iff there
ewists a recursive (m+1)-ary characteristic function F(@1y ooy @nyy) and
a natural number & such that, for all (g, ..., ¥n)y

(i) there are at most & integers y such that f(@yy ..y Tny y) # (@15 vy 2,
y+1) and

(i) R{wy, ooy &n) 18 true iff I}i}:::f(aol, very By ) = 1.

DEFINITION 6.3. If Re 5, n IT, (ZF) and f has the properties men-
tioned in theorem 6.1 (6.2), then f will be called a (k-) trial and error
function for R. And, for each i e N, any number m with the property:
for all @, ..., n, ¥ € N, if y=>m and @, ..., 7 <1, then f(ay, ..., @, y)
= f(&1, wrr ¥, m): will be called an (f, 7)-modulus of convergence.

In giving the next definition we shall use r, to stand for the maximum
order of the predicate symbols P, ..., Pm. That is, using our previous
notation, 7, = max{n(0), ..., n(m)]. Also from now on let fo, .., fn be
trial and error functions for the predicates Py, ..., Pm, respectively. That
these functions exist follows from theorem 6.1 and the previously mentioned
fact that Pie 2y, ~ I, for ¢ =0, ..., m

DEFINITION 6.4. A number of the form 2°3' is said to be an ideal

number if
(i) s (i.e. 6(s)) is an e-term,

(ii) ¢ is the smallest integer which is simultaneously an (fi, s +2r,)-
modulus of convergence for i =0, ..., m, and

(iii) for all j <8, fy(j,8,1) = 0.

Let us remark that if 2% is ideal then $By(j, 8) is false for all j such
that § is a constant a;. If j < s, then this is what is given as condition (iii)
of (6.4) (even if j is not an a;). Now suppose that there is a j; > s where j,
is a constant a; such that Py(j;, s) is true. Pick j, # j; such that j, > s
and j, is a constant a;. Then by (%) of this section, 7, and j, would both
be greater than any a's in the e-term s. Hence it is easy to see by (I)
of this section that

PBaldry 8) = PolJas 8) -

Therefore, since P, is an equivalence relation and PBq(j,, 8) is’ supposed
true, Pylji, J») would also be true. But, since P is a model of T, and
T1%o(0(50), 6(42) " is an axiom of Ty, Py(js, j») Would be false. This con-
tradiction shows that (7, s) is false for all j such that j is a constant a.

§ 7. The injection ¢ and the induced model 2 .We define
a function n: NN as follows:

=(i) is the ith, natural number n, in the usual ordering, such that n
8 a constant ax (i.e. such that 6(n) = ax for some k).

[
o
-1
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And the function ¢: NN is defined as follows:

(28 =s if 2% is an ideal number

@(j) = n(j—k) if § is not an ideal number
" and there are k ideal numbers less than j .

Obviously z is recursive and injective and ¢ is injective. Also it
follows from definition 6.4 and its accompanying remark and the dis-
tinctness of the constants a; (cf. theory 7, in § 3) that in every equivalence
class of IV under P, there is an element of the form ¢(i) for exactly one
natural number %. .

A new structure Q = (N; Qo, ..., Qm) can be induced using N and
the injection g. For arbitrary i= 0, ..., m and an arbitrary n(7)-tuplet
(Myy ooy Muyy) of natural numbers we define

Rulmyy ..y Mngy)) = 5B¢(q7(m1), ey ‘P(mn(i))) .

By the fact that P, is compatible with P, ..., Pm (by the equality axioms)
and the fact that the range of p represents all classes of N/PB, we see that Q -
is also a model of T,. And, since ¢ picks out exactly one member from
each class of N/P,, the model Q i3 normal, i.e. Q, is identity.

In conjunction with the above definition of {Q, there is one more
indiscernibility property of P that will be essential in § 8. Suppose that
A(wy, ..., &) is @ wif with no e-terms and no constants a;, where &, ..., o
are the distinet free variables occuring in A. Leb (uy, ..., ux) be a k- tuplet
of elements of N and let py, ..., pr be an enumeration of all those places
in the tuplet where the term occurring is a constant a; which is greater
than any ¢-term of the tuplet. Let (vy, ..., %) be another k-tuplet from ¥
such that (i) py, ..., pr is still an enumeration for this tuplet also of all
those places where the term occurring is a constant a; which is gfeater
than any e-term of the tuplet, (ii) u: = ov; for all i ¢ [py, .., pr], and (iii)
(tepyy wvny thp,) ~(Vpy s wev s Vpy)-

By examining carvefully the %-tuples (%, ..., ux) and (v, ..., o) and
the general indiscernibility property (I) of § 6, it can be seen that

=pd (0(%), ..., B(uz)) = A(6(0r), ..y O(wE)) -

In § 8 this latter fact is used in the special case that 4 is an atomic wif
of the form Py, ..., ¥ns)- Then we get the result that, for (uy, ..., %ns),
(D15 vy Ungay) Telated as above, Piltyy ..o, Unp) = PulV1y «ovy Vui):

§8 Qis in Z¥. We end the proof of the main theorem (1.1) by‘
showing that Q¢ e Z¥ for all ¢ = 1, ..., m. Actually it can be shown that Qs
has an n(i)-trial and error function. Rather than enter into details of

16%
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formalization, we shall use Church’s Thesis and definition 6.2 to show
that to decide 9 for a given m(i)-tuplet of natural numbers we have
an effective, but non-terminating, procedure which eventually will give
us the correct answer (and keep repeating it) after at most n (%) “changes
of mind”’. Of course, we shall never be in a position to know if our ““latest
answer” is the correct answer, unless the procedure has already changed
its mind »(7) times, cf. [5], p. 49.

Let i be arbitrary, such that 1 <i<m, and let (my, ..., Mnw) be an
arbitrary n(4)-tuplet of natural nambers. Tt might happen that none of
the m’s is of the form 2°3%. Tn this case all of the my's are as’s, Le. @(m;)
is an a;. Now, since ¢ is not necessarily recursive, we might never know
the exact value of ¢(my); bub this is not important since obviously, by
definition of @, (My, e, Ma) ~ (@ (M) 5 vy @ (Mci) - That B8 (M ooy Mng)
already gives us the similarity class of {p(my), ..., <p(mn(.,-,)). Hence, since Py
is well determined on the similarity classes by property (I) of §6 and
since there are only & finite number of similarity classes, we can determine
PBelp (M) ey (M) and hence Qi(my, .., M) It can be assumed,
. of course, that we are given, at the outset of our procedure, the value
of PB; on each of the finite number of similarity classes.

If there is an my in (Mg, ..., M) Which is of the form 2%34, then
among such my’s we pick that one such that s; iy the largest, and if there
are several such then that one with the largest ¢;. It is provisionally
assumed that this m; is ideal. The procedure now splits into two main
parts. Half of the time, VERT (verification time), we check on m; to see
if it is really ideal. In VERT we simply check conditions (i), (ii), (ili) of
definition 6.4. Conditions (i) and (iil) are checked effectively, since the
functions 6 and f, are recursive. The word “smallest” in condition (i)
is obviously checked effectively. But to verify that #; is an (fi, s;+27)-
modulus of convergence for each ¢ = 0, ..., m, is a process which, although
it obviously proceeds effectively, will never terminate unless there does
exist an 4= 0, ..., m such that ¢; is not an (fi, 85 + 27y)-modulus of con-
vergence. In other words, if m; is in fact ideal, then. VERT will proceed
effectively forever; whereas if m; is not ideal, then VERT will eventually
discover this, report the fact and stop.

The other half of the time, CAT (construct and answer time), we
use m; in its guise of ideal number to locate the other ideal numbers,
m = 2°3%, such that m < m; (in which case, since m; is considered ideal,
s <8 and 1 <t). Obviously by the definition of ideal number and the
agsumption that m; is ideal, these numbers m < my can be found effectively.
Hence, due to the effectiveness of 8 and n, we can effectively calculate ¢ (n)
for all » < my. Therefore, since m; > 2s; and all 0dd numbers v are such
that ¢(v) is an a;, we can actually do the following:
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(f) (i) effectively calculate g(my) for all my <my in (my, ..., M),
(ii) effectively decide which of the terms in (p(my), ..., @(mny)) are
e-terms and which are a¢'s,
(iii) effectively pick out those terms in (p(m,), ..., ¢ () which
are a;'s larger than the e-term s (i.e., larger in terms of the iden-
tification 0).

Let us suppose that p,, ..., pr i3 an enumeration of those places in
(plma)y ey @(My)) where the term oceurring is a constant a, which is
greater than the e-term s;. As mentioned above, as longs as my; is being
retained as an ideal number in VERT, we can effectivel§ determine
this enumeration. By definition of r, (= max[n(0),...,n(m)]) we see
that r < r,. Hence, since there are at least r distinet odd numbers » such
that & < v < 8 +2r, and since v is an a; for odd v (cf. definition of 6),
we can effectively pick a new n(i)-tuplet (v, ..., ¥nw) such that

(1) P1y«ery pr 18 still an enumeration for this tuplet also of all those
places where the term occurring is a constant a; which is greater than s;,

(i) @(mq) = vy for all i ¢[py, ..., Drl,

(i) (s, ey () ~ O3y, vry V), a0d finally

(iV) 87 < Vpyy veey Vp, < 85127 .

Now by the indiscernibility discussion in § 7, (%) in § 6, and (f) (iii)
above, we see that

Pl (1) 5 +ery P (M) = BilV1 vevy Vun) -

And, since 0 < vy, ..., Unpy < 8 +27,, we can use f; and the (fi, sy +27)-
modulus # to give us effectively the value of Pu(vy, ..., vny) (i.6. T oxr F
according as fi(vy, ..., V), 1) = 1 or 0 respectively). Hence we effectively
obtain the value of Qu(my, ..., Macy)-

If it happens above that r = 0, that is that any as in (p(my), ..
<oy @(Mneiy)) are less than the e-term sy, then of course we simply evaluate
Pl (1), «ory @ (mny)) directly as Flo(m)y eeey @ (min) ti)' Since 0 < ¢(m,),
(M) < 8 < 8-+2r,, we thus get the correct answer for
Qu(My, wey Migsy), assuming as always that ms is ideal.

All of this work in CAT is effective and terminates with the correct
answer for Qu(my, ..., Mam)—or rather keeps repeating the answer—on
the assumption that my = 2%3% ig actually ideal. If in reality m; is not
ideal, then sooner or later VERT will tell us that. In such a case, we
stop CAT and begin our work all over again, this time realizing that my
is not an ideal number, or equivalently that ¢(my) is a constant a;. That
is, among the remaining possible ideal numbers we again pick the largest
as before and, assuming that it is ideal and letting VERT check it, we
again find another n(f)-tuplet (v, ..., ¥n) in OAT such that 0 <wy, ...
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ey oty < 85 4+ 20 and Pulp(my), ..y @ (M) = Pal®y, .ov, Vugsy). Thus, under
the changed circumstances, we find another, possibly different, answer
to the value of Qi(my, ..., Mpe).

If we think of our procedure as assigning the value 7 to Qi(m,, ... 2 M)
at the outset and only changing its mind when CAT terminates in a value
different from the previously accepted value, then, since different CAT
answers result only from rejections in VERT of supposed ideal numbers,
we see that there can be at most #(¢) changes of mind for the value of
Qulmyy ..., Mus). Tn other words, our effective procedure will eventually
give us the correct answer (and keep repeating it) at some generally
unknown time with at most n(s) intervening changes of mind. Hence
R e 27 for each 4= 1, ..., m. This ends the proof of the main theorem 1.1.

In closing, it should be remarked that the proof of theorem 1.1 goes
through with practically no changes if 7, contains an at most denumerable
number of individual constants. Also it is obvious from the actual use
made of property (I) that T, could have been taken to be T, augmented
only by the extra indiscernibility axioms provided by atomic e-wifs.
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On equational classes of abstract algebras
defined by regular equations

by
J. Plonka (Wroclaw)

0. Introduction. In [1], theorem I it was shown that the operation
of the sum of a direct system of algebras of the same similarity class
preserves all regular equations and only such equations are preserved
by it. (For the definitions of these notions, see below.)

It follows that if the algebras A; belong to an equational class Kgp
defined by the set ¥ of equations, then the sum of any direct system
of algebras consisting of the algebras 9; belongs to the equational class Kz
defined by the set R(H) of all equations which are consequences of the
set F and are regular. The question can be asked whether the converse
is true, i.e. whether every algebra of the class Kg@ can be represented
a8 a sum of a direct system of algebras from Kz. It turns out (see below),
that in many important cases, e.g. for lattices, Boolean algebras and
groups this is the case, but in general the answer is negative. However,
below we shall give a full description of algebras from Kgg using the
class Kg.

At first we shall recall some definitions and results from [1], for
convenience of the reader.

Let

‘ = I, WUdiery Pipdijerisi)

be a direct system of similar algebras, without nullary fundamental
operations, indexed by a poset I with the least upper bound property.
Let (Hier be the set of fundamental operations of the algebras in £,
and let 4; be the carrier of ;. The sum of the system 4 is an algebra S()
= {4d; (Fy)rery where 4 is the disjoint sum of the carriers 4; (¢ e I), and
the fundamental operations F; are defined by

Fyay, ..y n) = Ft(gailto(a’l); ey ‘Pinio(an))

where a;e 4, and 4, is the least upper bound of 4, ..., .
An equation f= g where f and g are terms in an algebra we shall
call regular if on both sides of it the same free variables occur.
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