icm°®

s,-categoricity of linear orderings

by
Joseph G. Rosenstein (Minneapolis, Minn.)

Let M be an interpretation of a particular first-order language.
The theory of M, T(M), is the set of all statements in this language which
are true in M. We say that M is 8,-categorical if T (M) is ,-categorical,
i.e., every countable model of T(M) is isomorphic to M.

Engeler [1], Ryll-Nardzewski [4], and Svenonius [5] gave a char-
acterization of §,-categorical theories by taking a close look at certain
Boolean algebras associated with a theory 7. More specifically, if 7' is
a theory we define F,(T) to be the set of well-formed formulas whose
free variables are among &, ..., Z». In Fp(T) we introduce an equivalence
relation by defining ¢~y if bz (#,)...(#s)(p = ). The equivalence classes
then form a Boolean algebra with respect to the connectives A, v, 71; this
Boolean algebra is denoted by Ba(T). The theorem referred to above
states that T is 8,-categorical iff B,(T) is finite for each =.

In this note we shall improve this result in the case that 7' is an
extension of the theory of linear orderings, and at the same time give
a characterization of those countable linear orderings which are x,-cat-
egorical. More specifically, we define, similarly to Erdos and Hajnal [2]
or Lauchli and Leonard [3], a set 4G of countable linear order types for
which the following theorem holds: )

TaEoREM. The following are equivalent:

(i) [M] e A,

(il) M 18 ,-categorical,

(iil) Bu(T'(BM)) 4s fimite.

Let M be a linear ordering; we will also use M to mean the underlying
set of M. The order relation on M will be denoted by < (since there will
be no danger of confusion.) A subset M, of M is called a segment if from
aeMy, belfy, and o< ¢ < b it follows that ¢ e M;. An ordered set N
is a splitting of M if N is a set of segments of M which partitions M and
it M, <y M, iff a <b whenever a ¢ M; and b ¢ M,. The elements of N
are called the parts of M (relative to N.) If N and N* are splittings of M,
then N is called a refinement of N* if every part of M relative to N* is
contained in some part of M relative to N.
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Let F be a finite non-empty set of order types. Suppose that there
ig a splitting of M of type # (the rationals) such that each part of the
splitting has :bs order type in F' and such that between any two parts
there are paits having each of the order types in . In this case we note
that the order type of M is determined by the set F; it is denoted by oF
(o for “shuffle”).

Let > be the smallest set of linear order types confaining 1 and
closed under - and o. The theorem stated above refers to this set.

Proof of the Theorem..

(i) = (ii). We show by induction on the construction of . that
if [M]e A then M is n,-categorical.
I. [M]= 1. Since M is finite, it is ,-categorical.

IL. [M]= [M,]+[M,] where M, and M, are &,-categorical by in-’

" duction hypothesis. Extend the language of linear orderings by adding
two one-place relation symbols R, and R,. Let T* consist of the following
statements of this language:

1)y T,
(2) (@) (Bu(®) v Ro(®)),
(3) (@) 1(By(@) A Ry(®))},
(4) (@) (@) Bu@)ARaly) =2 <y),
(3) {p™ | ¢ T(M)},
©6) @™ ¢ T(M)},
where, as usual, q:R is ¢ with all quantifiers relativized to R. Then 7™ is

clearly consistent and ,-categorical. Hence B,(T*) is finite for each n.

We want to conclude that B,(T(M)) is finite for each n. But if ¢,

wan(T(M)) and ke (@1)...(%n)(p =) then, since T'(M) is_complete,

we must have Fran (@)... (@) (p = v). It follows that Bu(T (M ) is finite
for each n.

IIL. [M]= oF where F = {{M,],[M,],..,[Mz]} consists of order
types of w,-categorical linear orderings M,, M,,..., M. Extend the
language of linear orderings by adding % one-place relation symbols
Ry, Ry, ..., Ri. Let T* consist of the following statements of this language:

1 M),

(2) (@) (Ry(2) VR(@) V...V R(w)) ,

@ @,V _ B@rB@),
@ @Wle<yr@o<z<yr V_{(RBATI(BIN W)=

. 14;:: (Be)(w <z < yARi(2))],
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5) U @) (Bi=) = ¢%)| ¢ e T(My)},

1<k
where it is understood that the variable x does not occur in ¢ and ¢°=
is the relativization of ¢ to ¢y (y):

[w < YA 1</¢\<k (Ri(m) = (2)[2 <2<y = Rifz) )]v
V[w >z=9A 14\@ (Ri(a) = (R)z=2>y = R;(z)))] .

Then T* is clearly consistent and s,-categorical. Hence B,(T*) is
finite for all n. As we saw above this implies that B.(T(M )} is finite for
all n. ‘

(ii) = (iii). This follows from the theorem quoted earlier.

(iii) = (i). Let M be a linear ordering for which BZ(T (M )), and
hence Bl(T(M )), ig finite: We shall, intuitively speaking, define a sequence
of splittings of G, each a refinement of the previous one, such that each
part of each splitting has its order type in s and such that the final
splitting will be of order type 1. From this we deduce that [M] e AG.

More precisely, we define for each n a wif Ou(z, y), which is satisfied
by & pair a < b of elements of M iff they are in the same part of the nth
splitting, and a set X" of wifs with one free variable (such that each
element of M satisfies exactly one element of X™) which encode the splitting:
history of elements of M.

Stage 0: ) ¢ = o,

={%, ¥P'=0, 60=¢g IX=puPiue,
Col@, y): 0=y

‘Stage m-1: Let X™ = {X*, X2, ...,
t=(ly, tay -y te, 8 = 2, of elements of {1, 2,

g @) ( Ewl)(E.wa...(Ew,)[(lg/i\qwf <o) A[ Y o=a)r( A Ti@)r

X’"} For each finite sequence
., r} define a wif ¢* " (z) by:

Ao <y <z = Y (Cnlo, 9V Only, @) ATV - On (@ @42)) A
A(z)(z<m1A "]Om(z,wl) (Bw) (z<w<w1A’]G',,,z w)/\ ‘TGm('w wl)]l\

A(2) (w, < 2 A7) Om(@s, 2). = .(Bw) (s < w < 277 O (55 WYA ) O, z)))]

For each subset {f;, 5, ..., s} Of {1,2, ..., 7} define a wif vf"*'(z) by:

W) By @< o<y <w<z= V Xi@w)A
A @[y <e< d <z 10mlo, d)
A (Bo)(e<v<dA T 0nlc, )A T a,,. (0, /\X'"('v)))]

1<i<s
1*
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Let
@™ = {g(w)| for some a e M, M|= ot ey},
P it ()] for some @ e M, M =" (a)} -
Note that these sets are finite.
For each j, 1 <j<r, define a wit 67 (z) by
0 m): Xy@)A (T V. e@)A (T V. p@) .
pe@m+l pewmtl
Let
O™ = {0+ (z)| for some a ¢ M, M |=67""(a)}
and let

m+1 m+1 m+1 m1,
X =& [On"4 ) @ H

then X™'' is a finite set of wifs.
Finally define Cmia(®,y) to be

wzyr V @p<e<y =),
lpExm+1

Each of the following is then eagy to verify:
(i) Buery element of M satisfies exactly one wff of xm.
(ii) 8% = {b| Cm(a,b)vOulb, a)} is a segment of M for each a.
(i) Cm = {S¥| a e M} is a splitting of M which refines Cpn—1 (m > 0).
(iv) For each a e M, [85] € .
(v) If a; and a, satisfy the same element of X™ then Sg, =~ Sg,.
Now since B,{T(M))is finite, there must be an N such that for n > N,
M = 71(Ba) (By)(Cule, 9) A 71 Cnsa(@, ) -
Consider Cx; suppose that 8 < 8Y and that for no b <M we have
Sﬁ <8 < Sf:: Let § be a maximal discrete segment of Cy; certainly §

cannot be infinite, for otherwise the following infinite set of wifs are
pairwise inequivalent in' B,(T(M)):

(v=2) (Ewl)(Emg)...(Em,,)[w =0 << < By = 'y/\1</\<”"'ION(M, Bip1) A
A (w‘)((m <w<y = 1<\'i/<17 (Onl@s, w)A Oxlw, mi)))] .

On the other hand if § is finite then at the next stage they will be combined.
Hence we conclude that Cy has dense order type.
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To complete the proof we need only show that the order type of Cx
is 1, because together with (iv) this implies that [M]e 4. But by (v)
the splitting Cx has only finitely many distinct parts; hence, if Cy is not
of order type 1, the lemma below gives a segment of Cy which would
be combined into one part of Cxy4;. This is impossible by assumption.

LeMMA. If an interval I of the rational line is partitioned into k sets
Ry, Ry, ..., Ry, then there is « subinterval I* C T and a subset {iy, iy, ..., is}
of {1,2,..,k} such that if (z,y) C I* then for each j, 1<j <38, (#,¥) n
~ Rn;, = @.

Proof. By induction on k. There is nothing to prove for & = 1. So
assume it is true for k—1. Let 4, be such that for some (a, b) C I, (a, b) n
~ R;, = @; if none such exist then I and {1,2,..., %} satisfy the con-
clusion of the lemma. But now (a, b) is partitioned into %k--1 sets so the
induction hypothesis proves the resulf.

Note added in proof: H. Lauchli has shown independently that, for a linear
ordering M, [M] <M if and only if J(M) is N,-categorical and finitely axiomatizable.
By the proof above, for a linear ordering, finite axiomatizability follows from xp-ca-
‘tegority.
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