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ey oty < 85 4+ 20 and Pulp(my), ..y @ (M) = Pal®y, .ov, Vugsy). Thus, under
the changed circumstances, we find another, possibly different, answer
to the value of Qi(my, ..., Mpe).

If we think of our procedure as assigning the value 7 to Qi(m,, ... 2 M)
at the outset and only changing its mind when CAT terminates in a value
different from the previously accepted value, then, since different CAT
answers result only from rejections in VERT of supposed ideal numbers,
we see that there can be at most #(¢) changes of mind for the value of
Qulmyy ..., Mus). Tn other words, our effective procedure will eventually
give us the correct answer (and keep repeating it) at some generally
unknown time with at most n(s) intervening changes of mind. Hence
R e 27 for each 4= 1, ..., m. This ends the proof of the main theorem 1.1.

In closing, it should be remarked that the proof of theorem 1.1 goes
through with practically no changes if 7, contains an at most denumerable
number of individual constants. Also it is obvious from the actual use
made of property (I) that T, could have been taken to be T, augmented
only by the extra indiscernibility axioms provided by atomic e-wifs.
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On equational classes of abstract algebras
defined by regular equations

by
J. Plonka (Wroclaw)

0. Introduction. In [1], theorem I it was shown that the operation
of the sum of a direct system of algebras of the same similarity class
preserves all regular equations and only such equations are preserved
by it. (For the definitions of these notions, see below.)

It follows that if the algebras A; belong to an equational class Kgp
defined by the set ¥ of equations, then the sum of any direct system
of algebras consisting of the algebras 9; belongs to the equational class Kz
defined by the set R(H) of all equations which are consequences of the
set F and are regular. The question can be asked whether the converse
is true, i.e. whether every algebra of the class Kg@ can be represented
a8 a sum of a direct system of algebras from Kz. It turns out (see below),
that in many important cases, e.g. for lattices, Boolean algebras and
groups this is the case, but in general the answer is negative. However,
below we shall give a full description of algebras from Kgg using the
class Kg.

At first we shall recall some definitions and results from [1], for
convenience of the reader.

Let

‘ = I, WUdiery Pipdijerisi)

be a direct system of similar algebras, without nullary fundamental
operations, indexed by a poset I with the least upper bound property.
Let (Hier be the set of fundamental operations of the algebras in £,
and let 4; be the carrier of ;. The sum of the system 4 is an algebra S()
= {4d; (Fy)rery where 4 is the disjoint sum of the carriers 4; (¢ e I), and
the fundamental operations F; are defined by

Fyay, ..y n) = Ft(gailto(a’l); ey ‘Pinio(an))

where a;e 4, and 4, is the least upper bound of 4, ..., .
An equation f= g where f and g are terms in an algebra we shall
call regular if on both sides of it the same free variables occur.
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{i) ((11, theorem I). If #£ is @ non-trivial direct system of algel.wag
(i.e. I contains at least two elemenis), then in 8(#4) all regular equatu{m
satisfied in all algebras of the system are true, whereas every other equation
8 false.

Let A = (4; Fipeer) be an algebra without n'u%lary fun.damental
operations. A function f: A*—~A will be called a partition fu.nafwn for %,
or shortly, a P-function, if the following equalities are satisfied:

(0.1) flf(@,9),2) = fl@,fly,2);

(0.2) , fle, ) =a,

(0.3) fle, fly, 2)) = fle, fle, ),

(0.4) FIE@ry ooy @) Y) = Felf (@1, 9)5 oory [ (20, ) 5
(0.5) T Bd@ry oy ) = Fly, Flf (4, 02) s F@5 @)
(0.6) F(Fdmy, oy @), 22) = Fel@yy ooy @) (B=1,2,..,m),
(0.7) T, Py, ) =yv.

The following result forms a part of theorem II of [1]:

{ii) To every P-function for an algebra U there corresponds a representa-
tion of A as a sum of a direct system of its subalgebras Mi. Two elements a, b
of the carrier of U belong to the carrier of the same algebra Wy if and only
if fla, b)=a and f(b, a)=b.

1. Let Kz be the equational class of algebras of the type 7, defined
by the set E of equations. By R(F) we shall denote the set of all equations
which are consequences of # and which are regular, and by C(Z) we shall
denote the set of all consequences of &. Clearly E(E) = R{((B)) = C(R(B)).
If E is the void set, then R(E) = F by definition. In the sequel we shall
consider exclusively algebras without nullary fundamental operations and
we shall not repeat this assumption.

LeMmA. For every set B of equations, one of the following possibilities
holds:

(1) ECR(E).

(2) The equation 2=y belongs to C(H).

(3) An equation of the form

(a) fla,y) ==

(where f(x,y) is a term in two variables) belongs to C (&).
(4) An equation of the form

() gla) = h(y)
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(where g and h are terms on one variable) belongs to C(E) and, moreover,
all algebras of the class Ky are unary.

(8) An equation of the form
(¢) f(@,9) = f(=z, ®)
(where f is a term in two variables) belongs to C(E).

Proof. If B C R(H), then we have case (1). Assume thus that E
contains a non-regular equation, say F = @, and let @, be a free variable
oceuring in F but not in @& Pubt now @, =y, 21 = @ (¢ # 1) and consider
the resulting equation. It must have one of the following forms:

y=fw), fy)==, fle,9)=9@®, g@ =h=.

In the first two cases the equation # = y belongs to C(F), and so we have
case (2). In the third case we get f(x,s) = g(x) and f(z,y) = f(z, 2),
hence we geti (5) or (3). In the last case assume first that all algebras of Kz
are unary. This implies (4). Finally, if in the last case p(w, ¥) is a term
of two variables (which exists in every non-unary algebra), then we obtain
g(p(@,y)) = h(e), which implies in turn

J(p(@,2)) =h(a) and g¢(p(z,9) = g(p(s,a),

ie. an an equation of the form (c).

TeeoREM I. If B ds a set of equations, % = (X; (Fper> belongs
to Krm and one of cases (1), (2), (3) of the lemma holds. then the algebra X
can be represented as the sum of a divect system of algebras from the class Kj.

Proof. In case (1) the assertion is trivial, just consider the trivial
direct system consisting of 9 alone.

In case (2) every equation of the form F(z) =z holds in %, and
80 U is a disjoint sum of one-element subalgebras. This implies in the
case of unary % the possibility of a well ordering of those subalgebras
(we assume of course the axiom of choice) which together with the mapp-
ings @gp(a) = b (for a < b) give the desired representation.

If A is not unary and F(@,, ..., ¥s) is a fundamental operation with
n > 1, then define f(z, y) = F(z, ¥, ..., y). Bquations (0.1)-(0.7) are in R(E)
as well as f(z,y) = f(y, ) and F(z,, ..., @) ~.=f(a:1,f(m2, wory f(Tn—1, a;,,)...)).
Hence f is a P-function and so by (ii) 4 can be represented as the sum of
a direct system of its subalgebras. Since in those subalgebras f(z, ¥) = =
holds, we obtain & = f(x, y) = f(y, #) = ¥, and so they belong to Kg.
‘ In case (3) consider the operation f(x, ) occuring in (a). Equations
(0.1)-(0.7) are in R(E), hence are fulfilled in the algebra U and so the
mapping f: X?~X induced by f(z,y) is a P-function for . It follows
from (ii) that 4 is the sum of a direct system of subalgebras in which
equation (a) is satisfied, In those subalgebras all regular equations from B
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are satisfied. Let F = @ be a non-regular equation from F, and let
@y, ..., ¥p be the free variables occuring in F but not in &, and similarly,
let 9, ..., ¥g be the free variables océuring in @ but not in F. The equation

f(F7f(f‘/17f(?/2a vy fWg-1, yq)"-)))zf((}’f(wlyf(wm ey f@p-1, fvp))))

belongs to R(E), and so is satisfied in the said subalgebras, but there
we have f(z,y) = x, and the equation F = @ follows, which shows that
our subalgebras belong to Kg.

TeeoreEM II. If B is a set of equations, U= <X; (Fier> belongs
to Kpugy and case (4) of the lemma holds, then A is a disjoint sum of its sub-
algebras, belonging to Kg.

Proof. We shall show that every a¢X is contained in a unique
maximal subalgebra of % belonging fo Kz. As U is unary, this will imply
the theorem. Consider the set of all subalgebras of 2 belonging to K
and containing a. This set is non-void, as the subalgebra generated by a
belongs to it. In fact, every element of this subalgebra is of the form p(a),
where p(x) is a term in one free variable. If g(2) = h{y) is a non-regular
equation from E, then the regular equation g(py(@)) = & (py(x)) belongs
to R(E), hence is satisfied in 4 for every pair p,(x), p,(z) of terms in
one free variable. It results that in the subalgebra generated by a the
equation g(z)= h(y) is satisfied.

A straightforward application of Zorn’s lemma shows now the exi-
stence of a maximal gubalgebra with the properties needed. It remains
to prove its uniqueness.

Agsume thus that B, and B, are two distinet maximal subalgebras
of 4 containing & and belonging to Kgup. Let g(z) = kh(y) be an
arbifrary non-regular equation from E, and let b « B\B,, ¢« B)\B,. We
have ¢(b) = h(a) = g(a) = h(c), thus the equation g(z) = h(y) is satisfied
in B;U B, which is an algebra in view of the unarity of 9 and
belongs to K. This contradicts the maximality of B, and B,.

TemorEM ITI. If F is a set of equations, % —= X5 {Fiyiery belongs
to Kpmy and condition (5) of the lemma is satisfied, then A is a semilattice
of algebras from Kg, i.e. there ewists a semilattice I and o family of sub-
algebras of W indexed by I, with mutually disjoint carriers, such that if a,
belongs to the subalgebra indewed by i;eI for J=1,2,..,k then for
all ieT, Filay, ..., an) belongs to the subalgebra indexed by i=lu.b.
(CTRNIRIAN

Proof. For shortness let us denote the operation f(,y) occuring
in (¢) by @y, so (e) takes the form

(e Ty = a.
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In the set X we introduce a relation § by putting «8b if and only if
ab = a?. Observe that xSz. We prove now that S is also transitive. As
N e Kpmy, we may in the proofs use all regular consequences of (¢).

If now ab = a2, b¢ = b? then ac = a(ac) = a(a%c) = a[(ab)c] = ala(be)]
= a(ab?) = a(ab) = ab = a? proving thus the transitivity.

Now we define another relation by means of a@b if and only if aSb
and bSa. It is clear that @ is an equivalence, and we shall prove that it
is a congruence in . In fact, for every t ¢ T, az@Qbx (k= 1,2, ..., n) implies

Fil@yy ooy @) Te(byy ooy bu) = Filny ovoy Gn) Fe(@10q, ..y Cnbn)
= Ty, ooy an) T2, o.cy O) = (Felay, ooy an))

thus Fiay, ...y an) SFe(by, ..., by). Similarly one gets Fy(by, ..., bn)Sl?‘;(a.i,
<y @), It follows that @ is a congruence in U. Let us denote by A: (i e I)
the classes (mod@) in 9. Observe that each A; is a subalgebra of %, as
from a,, ..., an € 4; follows

2

Fol@yy ey ) Oy = (Filay, .., On))
and , .
2 2
Iy, oy On) = G Fa, a0, 0104, ..., 6,0,) = @, Fy(ay, ..., a1) = a1

We show now that 4; e Kg. Clearly every regular equation from ¥ is.
satisfied in 4. Let

F(@1y cony By Yoy ooy Yo) = G{Bry ooy Tny 215 o005 20)
be an arbitrary non-regular equation from H. We may freely assume

that p 5% 0. et @y, ..., Gny Byy ooy bpy Gy -y 6g € A andleb & e an arbitrary
element of A;. We have then .

2

F(ay, ovvy Bny byy ey bp) = Py, ooy Gy B2y ey Bp )
= (g ey Any 01y ..oy bpd) = F(au..., Ay Abyy ooy dby)
Py, oy Oy @2y 0, ey B2 = GGy ey Gy @y oy )

= Gy, very Guy A0y, A0y, oony dog) = G{@yy ey Uny 618, ey Co )
m= Gy ery Gny Gy very O) = F@yy ovy ny Oy ey Cg)-

In the set I of indices we define the relation < in the following szyy:
1, < 1, if for some a € A4, b e Ay, one has bSa. It is clear that this .defmlmo‘n
does not depend on the choice of @ and b. Moreover, the set I is by this
definition turned into a semilattice (I, <. Clearly, I is a poset. Let
aedy, be Ay, abe Ay. We prove that 4= l.u.b.('ll,'iz). We have (ab)a
= (ab)?, hence iy 4,, and similarly the inequality 4= % follows. Let
j>4,1 and ced;. Then

¢(ab) = ¢[(ca)(ch)] = ¢(c%*) = ¢*, Thence =1
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Finally from aped; (k=1, 2wy )y f= Lwb. (g, oy @) and
Fyay, ... ,an) € A5 follows

Fy(ayy ooy tn)Or = (Ft(au ey %))2 ’
thus j > 4,, and on the other hand from ¢ e A, follows
Py, oy ) = o(Filcay, ., can)) = cFi(e?, ..., &) = &%,

hence 4, > j, thus j = 4,, proving all assertions of the theorem.

Now we show that case (5) is essentially more general than the
cage (3), i.e. that not every semilattice of algebras from Kp is & sum of
a direct system of algebras from Kg.

Let E consist of the following two equations:

(1.1) By = a*,
(1.2) =,
where the abbreviation #** is defined by induction:

on—1

22" = ¥ on—1

r? = 2w, 2%

Let U be the free algebra with 2 free generators «, y in the class Kg,
and let B be the free algebra with two free generators «, y in the class K.
Clearly the elements of 9 are =, «?,#%,¥,%* and ¥4 and similarly, the
elements of B are z, a?, 2%, ¥, 4%, ¥, 2y, (2y)?, yo and (yx)i

‘We shall show that the algebra B cannot be represented as the sum
of a direct system of algebras from the class Ky. Let

B, = {a;; o, 9’4}1 B,= {yy 7, T}, By = {my, (m?/)z}: B, = {'yw: (ym)z}“

Clearly there are only two possible decompositions of 8 into the disjoint
sum of subalgebras from Kz, namely

ByvB,wuByuB, and B uB,u(ByvB,).

If the subalgebras B (i =1, 2,3, 4) would form a direct system, then
we would have B, < B; and B, < B,, but from (2y)(yz) = (2y)? e By and
(yz) (zy) = (y=2)? e B, it would follow B; < B, and B, < B;, a contradiction.
If the subalgebras B,, B, and B, v B, would form a direct system, then
B, < Byu B,, B, <B;u B,, and the algebras B, and B, would be in-
comparable. But in this case a trivial checking of all possibilities shows
that it is impossible to define the homomorphisms of the direct system.

From theorems 1-3 and (i) we get the following corollaries:

CoroLLARY 1. Every algebra of Kgg, is decomposable into a disjoint
sum of subalgebras belonging fo Kg.

COROLLARY 2. If Ky is idempotent, i.e. for all fundamental opera-
tions Fy one has Fyz, @, ..., ) = 2, or either if O(E) contains an equation
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of the form f(x,y) = x, then the sums of direct systems of algebras from Kg
form an equational class, namely Kga,.

CoROLLARY 3. The sums of direct systems of Boolean algebras, lattices,
or groups form equational classes.

(This follows from corollary 2, if one defines those algebras using
the equation # + a2y = @ in the first two cases, and the equation zyy—* =
in the case of groups, and not using algebraic constants.

ExamprLe 1. An algebra A= (X; 4, -)is a sum of a direct system
of lattices if and only if the fundamental operations - and - are idem-
potent, commutative, associative and, moreover, the following equations
are satisfied:

@ +ay = u(@+Y),
@+y (@ +y) (w+0) = 2 +y +ou--20+Yyu+yv,
my (wy +uv) = zy (@ +u)(@+0) (Y +u)(y +0) .

ExAMPLE 2. If we define a group as an algebra (X; -, -1) in which the
following equations are satisfied:
(my)e=w(y?), yyo=0=uayy™,
then from our theorems we obtain that the algebra (X; -, -') is & sum of
a direct system of groups if and only if the following equations are

satisfied:

1,,—1

(oy)e=alys), (ay)" =970, (@) wow Tt =a,

and

=,

y~lyw = ayy=t.
The proof of those facts follows from (i) and (ii). In the first example

the operation #--zy and in the second example the operation wyy- are

the P-functions needed.
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