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Some remarks on Hausdorff measure
by

R. B. Darst (Lafayette, Ind.)

Let us begin with some notation and terminology. Denote by F
the class of non-decreasing functions k on (0, oo) with Iim h(¢) = 0. If
>0

% eF and E CI=7[0,1], then the h- Hausdorff outer measure my(E) of B
48 the extended real mumber

limint { ' h(bi—ad; B C | (@i, bi), sup (bi—ar) < e}
>0

Denote by J the callection of subsets B of I such that mp(E) = 0 for all
% € F. Denote by 7 the collection of regular non-atomic probability measure-
res 4 on the Borel subsets B of I, and denote by N the collection of subsets E
of I satistying sup{u*(E); u € T} = 0. Denote by C the set of concentrated
gubsets of I (i.e., B e C <> there is a sequence {z¢} of elements of I such
that if {e} is & sequence of positive numbers, then B— UJ ¥ (@, &) 18,
at most, a countable get, where N(x.e)= (z—ef2,a+5/2)). Finally,
denote by D the collection of enumerations {#:} of countable, dense subsets
of T and by & the collection of sequences of positive numbers.

It is easy to show that € C ¥ C N, and the author showed [1] that
if the continuum hypothesis is satistied, then C s N°. The purpose of
this note is to show, assuming the continuum hypothesis, that € 3 K.
To this end, let us begin by giving the following characterizations of the
elements of J.

LemyMA 1. Each of the following conditions is necessary and sufficient
in order that a subset B of I be an element of X.

(i) If {&} € &, then there is a sequence {zi} of points of I such that
E— |J N (24, &) 18 countable.

() If {es} &, then there is {wi} e D such that H— U N (@1, &) 8
countable.

(iif) If {es} €&, then there is a sequemce {m:} of points of I such that
EC N (@4, &1). ‘

(iv) If {es} €8, then there is {m:} ¢ D such that B C U N (w4, &).


GUEST


326 R. B. Darst

Proof. One checks without difficulty that conditions (i)-(iv) are
equivalent and that they imply e 6. Suppose.that (iii) is not satisfied.
Under this supposition there exists. a monotonic sequence {e:} € & such.
that (1) lime; = 0 and (2) if {&;} C I, then B ¢ | N (@, &). Let ke F be
defined as follows: h(em-q) = 27", h(w)=1it @ > &, and & is linear on
[eantiy, e2n—1]. Suppose that B C | J(ai, b)) where the sequence {b;— @}
is non-increasing. Then there are a poistive integer j and a positive in-
teger » satistying & < b;—a; and 2" —1 > ¢ > 2"—1. Thus

bi—a; > ey for i< 2"—1

and, hence,
D h(b—a) > (2" —1)h(emny) = (2"—1)27" > 271
which implies that ms (E) > 0.

Examere 1. Assuming the continuum hypothesis, let {#7} and {e2}
be well orderings of D and & such that each « has countably many pre-

decessors. Let y= {yi} ¢ D, let U,= | J N (g, %), and let W, — M Tp.
B<a
Then W, is the complement in I of a first category F, subset of I. In

what follows we shall use the fact that an uncountable Borel set B contains
a perfect nowhere dense set P which in turn supports an element u of T
(ie., #(P)=1). We shall also use the fact (ef. [1]), assuming the con-
tinuum hypothesis, that any uncountable closed subset Q of I contains
an uncountable Lusin subset § (i.e., if {#} is a sequence of points of Q
which is dense in @ and {e;} ¢ §, then S— | N (a, &) is countable). Let
Mo €T with support P,, a nowhere dense subset of Uy,. Let 6° ¢ & satisty
2 (N (e}, 69) < 1. Let &, be an uncountable Lusin subset of a perfect

nowhere dense subset ¢, of P,— Ny (22, 8%). Suppose that tigy Py 8, Qs,
and S have been defined for § < a. Then X, = U (Psu@g) is a first
o pia.
category F, subset of I and, hence, W,— X, contains a nowhere dense
perfect set P, which supports p,e9. Let & satisfy wa((J NV (8, 83)) < 1.
Then let 8, be an uncountable Lusin subset of a perfect nowhere dense
subset Q. of P,— L{_}N (25, 69). Let B= ()&% let {ei} € &, and let
{m} € D. Then there exist indices « and B such that (g} = &
and {m}=4". Since 95 is an uncountable subset of H— () N (af, &)
: i
E ¢ C. Moreover, g 8, C U ¥ (94, &). Because a countable union T' — U8y
rsa .

. . ¥<a
of _Lusm subsets is an element of €, there exists a sequence  {#} of
points of I such that T,C {J N (2, £25-1). Let ws;

3

;= Ys and wg;_, = 2; to
obtain BC (J N(wq, &): Be k.

!
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Although a determination of whether J€ = N° seems to be e%usive,
an example is given below to show that if = N and the contxfmum
hypothesis is satisfied, then there is a subset ¥ of I such that E is not
measurable with respect to Lebesgue measure m(0 = m,(B) < m*(E))
but satisties u (&)= 0 for every element u of ¢ that is singular with }‘espect
to Lebesgue measure (i.e., 4 A m = 0). In the course of constructing the
example, it will be convenient to have the following lemma.

LemMA 2. Suppose that v €T and that {X;} is a sequence of elements
of $. Then there is a first category subset F' of I satisfying

(1) »(F) =1, and

(2) F ~ X; is a first category subset of Xi, ¢ 2> 1.

Proof. Let p be a positive integer, and let A4; and B; be closed 31_1:1
nowhere dense subsets ¢f X: and I— X; satisfying v(_A., v By) > 1—(p2h.
Let Fp = (1 (4:v B;). Then F, is nowhere dense in I, X,, X;,.. and

1

»(I—Fp) = »(U(I—(4s v By))) < Zv(I—(4s v By)) <p~

It suffices to let F = {JFy.

Exawpre 2. Let {s:} < B such that Y& < 27", Let P be a now}lere
dense perfect subset of I satisfying m(P)> 27", Let T, bev a maximal
collection of mutually singular elements of § with m ¢ 9;. Suppose.that {s.}
is a well ordering of 9, such that 4, = m and each ¢ has countable many

predecessors. If p e, then u= 2{1’ i A v if p(B)=0 for a> 0, then
PrY

w(B)=0 for u A m=0. - N
If a> 0 and {»}}™ is an enumeration of {us}p<. Where n, is a positive
integer or “infinity”’, then u. is singular with respect to

kil

-1,a
2 2 Vi
i=1

o= (1—-27")7"

Hence, employing Lemma 2, there is a first category subset H, of I
such that
(1) Ho ~ P and H,— P are first category F, subsets of P and I—P,
(2) plHo) = 0, B< o, and
" (8) ma(Ha) = 1.
For a>0, let K,= (J H,. Then yuK,) = 0. Suppose that {x=}

o<f<a

is a corresponding well ordering of D. Let U.= UN (25, 1), and let

T,— I— U, Then pu(T)>2"" and, since ,A.,(P)>2“f, to(Te ~ P)
= pu(Tan P—K;)> 0. Let 8. be an uncountable Lusin subset of
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(To~n P—K,). Let 8, be an uncountable Lusin subset of T,. Finally,
let B = | 8,. Then, since 8, CE n T,, E ¢ £. Moreover, recalling that
a countable union of Lusin sets is an element of C and, a fortiori, of N,
it follows that for a> 0,

l/‘a(E) < ,un(ﬁxzj‘x Sﬁ) + /‘a(I—‘ Kn) =0.

Therefore, assuming the continuum hypothesis, if & = N°, then uf(H) > 0.
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Novak’s result by Henkin’s metod

#
by

H. C. Doets* (Bussum)

1. In [1], Novak proved among other things that, if Zermelo-Fraenkel

set theory (ZF) is consistent, so is von Neumann—Bernays-Godel set theory
(NBG). Mostowski extended the result (see [2]) by noting that any theorem
of NBG which speaks about sets only can already be derived in ZF. By
making use of the method of Henkin’s proof of the completeness theorem
for first order theories [3] we show how a very simple proof of the above-
stated fact may be obtained. Essentially, this is done as in [1] by showing
that, assuming the consistency of a ZF-like theory, a model may be
obtained for a related NBG-like theory.
. However, professor Mostowski notified me of the fact that J. R. Shoen-
field’s proof of the theorem (JSL 19 (1954), pp. 21-28) remains the best
result by showing that a primitive recursive function exists yielding
proofs in ZF from proofs in NBG for ZF-sentences, while from our proof
(as well as from Novak’s and Rosser—Wang's, Ji SL 15 (1950), pp. 113-129)
there results a general recursive function only (cf. Shoenfield’s introduction
to his paper).

2. Our symbolism will be one of the usual kinds and accordingly
will not be explained. Free variables are indicated between brackets as
usual; the same for substitution of terms in formulas; it is assumed that
the necessary chafiges always are made to avoid clash of variables. Seman-
tical notions like satisfaction (a finite sequence of a model M may satisfy
a formula without indicating the relation between objects and variables
too precisely) and (M-) truth are assumed to be known but use will be
made of very elementary properties of these notions-only (as in [3]).
For NBG, refer to [4]. We make however the following slight change:
let 8(z) be the formula Vy(x€y); erase axioms Al and A2; rewrite all
axioms in one kind of variables relativizing former set variables to 8.
We denote axioms of the new system by the names of the corresponding
axioms in the old gystem.

* Inpstitute for Foundational Research, Amsterdam
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