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On a class of subalgebras of ¢(X)
with applications to fX\X.

by
Donald Plank* (Cleveland, Ohio)

W. Rudin has proved that, assuming the continuum hypothesis,
ANAN has a dense subset of 2° P-points. A similar theorem of N. J. Fine
and L. Gillman states that, assuming the continuum hypothesis, SR\R
has 2 dense subset of remote points in SR. It is the purpose of this paper
to unify these results by giving a more general method of finding such
points. ’

Specifically, for a completely regular space X, we define a class
of subalgebras of O(X) called f-subalgebras. Examples of B-subalgebras
include O(X) itself and C*(X). With each f§-subalgebra 4 of 0(X) we
associate a (possibly empty) set of points in BXN\X called A-points. We
show that, under the continuum hypothesis and with reasonable restric-
tions on A and X, BX\X has a dense subset of 2° A-points. The Rudin
theorem is then obtained by observing that the P-points of JN\N are
precisely the C*(N)-points, and the Fine-Gillman theorem follows from
the fact that the remote points in SR are precisely the C(R)-points.

Our method considerably simplifies the Fine-Gillman proof of the
existence of remote points in SR but does not have the power of their
method. Using their method, we show the existence of remote points in R
which are not P-points of fR\R. We conclude by investigating a f-sub-
algebra H of ¢ (N) previously studied by R. M. Brooks. ‘We correct Brooks’s
characterization of the maximal ideals in H and show that his characteriza-
tion holds precisely for the ideals MP where p is a P-point of SN\N
(equivalently, where p is an H-point).

1. Preliminaries. The basic reference for this paper will be the
Gillman and Jerison text [5]; the terminology and notation will, with
only a few exceptions, be thab of [B].

* This paper constitutes a portion of the author's doctoral dissertation written
under the supervision of Professor Leonard Gillman at the University of Rochester.
The author wishes to thank Professor Gillman for his valuable advice and encouragement.
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The symbol X will always denote a corapletely regular Hausdortt
space. Specific spaces. X in which we shall be interested are the complex
plane C and its subspaces R of real numbers, Q of rational numbers, and N
of natural numbers.

In Sections 1 through 6, ¢(X) will denote the collection of real-valued
continnous functions on X, and O*X) will denote the subeollection of
bounded funetions. The constant function on X of value » will be denoted
by 7. Under the pointwise operations, 0(X) and (*(X) are algebras over R,
A subalgebra of C(X) will mean a subalgebra in the usual sense which
containg the constant functions. By an ideal we shall mean. a proper ideal,
In Section 7, the definition of subalgebra and ideal are changed slightly
to accommodate complex-valued functions.

A subspace Y of X is said to be (*-embedded if cach function
in O*(Y) is the restriction of some function in (*(X); the expression
“(Q-embedded” is defined analogously. Given X, there is an essentially
unique compact Hausdorff space fX which contains X as o dense C*-em-
Pedded subspace (the extension of f to fX will be denoted by f%). For
notational simplicity, we write X* = pX\X. For additional properties
of BX, the reader is referred to [5]. We mention one: if f e 0(X) and oR
denotes the one-point compactification of R, then there is a (unique)
continuous f*: fX —«R which agrees with f on X.

If 7 is a function, then we let 7+ denote the inverse map (of sets).
It f maps X to R or oR, then Z(f)=f"(0) and Coz(f) = X\Z(f). A zero-
set of X is a member of the family Z(X) = {Z(f): fe 0(X)}, and a cozero-
set of X i the complement in X of some member of Z(X).

It 8 is a set, then |8 will denote the cardinality of 8. As is standard,
we shall let ¢ denote the cardinality 2% of the continuum. If § C X, , then
olx 8, intx 8, and 9x 8 will denote, respectively, the closure, interior, and
boundary of § in X (8x8 = clxS\intx8).

2. p-subalgebras. Recall the definition of the hull-kernel topology
on a collection § of prime ideals in a commutative ring 4 with an identity.

Detine § = {P e7: () §C P} to be the closure of the subset § of 7. Tt is
-€asy to verify that the sets

By(a)= {PeF: aeP}, aed,

are closed and constitute a base for the closed sets in &. A detailed de-
scripti(.)n of the hull-kernel topology is given in [4]. Let Ao, denote the
colleot}on of maximal ideals in A endowed with the hull-kernel topology.

.Gwe‘n a subalgebra 4 of ((X), we shall now introduce a fanily G4
of prime ideals in 4. The family 8, will reduce t0 464 in the cases A = ¢ (X)
and 4 = C*(X). To motivate our definition, we observe that the maximal
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jdeals in 0 = 0(X) and O*= C*X) associated with the same point
pepX can be characterized in the following parallel ways

My = {fe0: (fg)*(p) =0 for all geC;
MY = {f O*: (fg)*(p) = 0 for all geC*}.

The first characterization was discussed by Gelfand and Kolmogoroft [6];
the second is elementary (see [5], 7.2). Gelfand and Kolmogoroff proved
that the mappings p—~M% and p-»~ME» are homeomorphisms of X onto
the maximal-ideal spaces Ao and Aor.

The similarity of the expressions for MG and Mfs suggests a generaliza-
tion of these ideals to any subalgebra A of C(X). Thus, for pefX,
let ug define

MY = {fed: (fg)*{p)="0 for all geA}.

Tt is easy to see that, for p ¢ X, MY is the fixed maximal idezjl,l {fed:
flp)=0} in 4, and we shall show pext that, for p e fX, M% is always
a prime ideal. But the general correspondence p—M% need not be_one—
to-one, and, in spite of the notation, the ideal M7% need I_xot be mamxga_l.
For example, in the algebra 4 of all real-valued polynomials on R, M3 is
the non-maximal ideal (0) for all p < SR\R.

Let us define G4 = {M%: p e fX}.

TEEoREM 2.1. For each p ¢ pX, MY is a prime tdeal in A; hence G4
may be given the hull-Ternel topology.

Proof. Forp e X, D + M4+ A, since0 ¢ M%andlé¢ M%. q1earlyM§
is an ideal in A. Next, M% is prime since whenever figed Wltll fé MY
and g ¢ M%, there exist h, k ¢ A such that (fh)*(p) # 0 and (gk)*(p) # 03

“but then (fghk)*(p) = 0, whence fg¢ M%.

Let us define 74: fX -84 bY u(p)=Mﬂ. For the special sub-
algebras C(X) and O*(X), we have observed that 7o and 7o« are home-
omorphisms of X onto g and Moge. Hence, ¢ and C* are f§-subalgebras
of O(X) according to the following definition.

DErINITION 2.2. A subalgebra 4 of 0(X) is said to be a B-subalgebra
of O(X) if 74 is a homeomorphism of fX onto Aog.

*

Forf e A, write Su(f) =5 [Be(f)]= {p ¢ AX: f ¢ M2y = [0 Z(fo)):
a closed subset of fX. By [5], 7.3, 7D, 7.2, it is immediate that

' Solf) = cpx Z(f) for feOWX),
@9 Boelf) = Z(f)  for feCHX).

Given f, g < A, we have Sa(f) v S4lg) = (S'th(fq) since each M?% is prime,
and 84(f) ~ Salg) = Sa(f*+4¢°) by the definition of M%.
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When no confusion can arise, we shall abbreviate Mo, ML, G4, By,
rs and S to M, MP, G, I, v and 8, respectively.

ProposITION 2.4. Let A be a subalgebra of C(X).

(8) 74: pX 84 is continuous, whence Sa s compact.

(b) 74 is a closed mapping if and only if Sa s a Hausdorff space.

Proof. (a) For the basic closed set H(f), fe.d, we have w=[E(f)]
= 8(f), a closed subset of fX. .

(b) Since 7 a continuous map of the compact Hausdortf space AX
onto §, this is clear (cf. [9], p. 252).

In order to give a simple characterization of f-subalgebras of (/(X),
we make the following definitions.

_ DEFINITION 2.5. A subalgebra A of C(X) iy said to be f-determining
it {Z(f*): f e A} is a base for the closed sets in fX; A is said to bo cosed
under bounded inversion if f is a unit of 4 whenever fe A with f.- 1.

PROPOSITION 2.6. The following are equivalent for a subalgebra A
of 0(X).

(a) A s B-determining.

(b) 84 is Hausdorff, and T is one-to-one.

(¢) = 48 a homeomorphism.

Proof..(a,) implies (b). Suppose that 4 is p-determining, and let
j?,‘qeﬁX mth’ p # ¢. By [B], 6.5(b), there exist Z,, Z, ¢ Z(X) such that
péclx Z,, q¢ cexZ,and Z, v Z, = X. Choose f, ¢ € A such that p ¢ Z(f*)
D Glﬁle. and ¢ ¢ Z(g*) D clax Z,; then fg= 0, f¢ M” and g ¢ M™% It follows
that G is Hausdorff and v is one-to-one.

.(b) iwmh’es (c). It 8 is Hausdorff, then 7 is a closed mapping, by 2.4,
If, in addition, 7 is one-to-one, then it iy a homeomorphism.
) (e) implies (.a). Let I be a closed set in X with p e pX, p ¢ 1. If v
is a homeomorphism, then {S(f): f e A} is a base for the closed sets in X,

50 there exists fe.A such that FC 8(f), p¢ S(f). Bub th fu)*( :
for some g e A4, and FC8(f)C Z((fg>;‘)7. () But then (fy)"ip) =0

An ideal T in A is said to be absolutely convex if f ¢ I whenever f
and g1 satisty 7] < ol Y w if fed whenover fe A

P;&))POSITION 2.7. The following are equivalent for a subalgebra A

a) A is closed under bounded inversion.
b) If I is an ideal in A, then (\ Z(f*) + @.
ter

of ¢

—_——~ =

c) Bvery iddeal in A is contained in some MP.
d) Ay C Ga.

e) Buvery M e Moy 48 absolutely convew.

—_— e~ o~

©
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Proof. (a) implies (b). Assume (a), and let I be an ideal in A. Define
3= {Z(f*): fel}; to prove (b), it is clearly sufficient to show that 3
has the finite intersection property. Thus, let fi, fo, ..., fu € I; defining

g= it fie I, we have Z(g*)=r31Z(f?). It Z(g*) =0, then

there exists 7 e R, # > 0, such that g > r; but then ¢ is a unib of 4, con-
tradicting the fact that g belongs to an ideal in A. So Z(g*) + @; hence 3
has the finite intersection. property.

(b) implies (). Let I be an ideal in 4. By (D), choose some p ¢ X
guch that g*(p)== 0 for all g eI. But then, for fel, fgel for all ge 4,
whence fe M”.

(¢) implies (d). Obvious.

(d) implies (e). Bach M is absolutely convex.

(e) implies (a). Since no maximal ideal contains 1, every f e A with
f=1is a unit of 4.

We now clagsify the g-subalgebras of 0(X), as promised.

TumoREM 2.8. The following are equivalent for a subalgebra A of C(X).

(a) 4 s a B-subdalgebra of C(X).

(b) A is f-determining and closed under bounded inversion.

Proof. (a) implies (b). Suppose that A is a B-subalgebra of C(X).
Then A is p-determining, by 2.6, and closed under bounded inversion,
by 2.7.

(b) implies (a). Suppose that 4 is B-determining and closed under
bounded inversion. By 2.6, v is & homeomorphism of pX onto S, and
by 2.7, M CG. Since g is T,, no two ideals of § are comparable. Clearly
then 46 = 8.

The topology of uniform convergence, Or u-topology, is defined on
0(X) by taking as @ neighborhood base for ge ¢ the ¢-neighborhoods
Udg)={feC: |f—gl < e} A discussion of the u-topology may be found
in [8]. We now give a simple characterization of u-closed f-subalgebras
of C(X); this characterization clearly provides a large class of examples
of p-subalgebras.

TumoREM 2.9. A subalgebra A of O(X) is @ % - closed ‘ ,stubalgebm
if and only if OXX)C A.

_ Proof. Assume that 4 is a u-closed p-subalgebra, and let A*=A n
~ 0% clearly A* is a w-closed subalgebra of C*. Next, A* seps_‘rzintes
points in BX. For, let p,q ¢ pX with p # ¢. Since 4 i3 p-determining,
there exists fe A sueh that fp) =0, f*(q) ' 0. Since 4 is closed under
bounded inversion, g= (14" ¢ A*; clearly Fo)=1, Il #1. By
the Stone—Weierstrass Theorem, A* = 0%, whence Cc*CA.
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Suppose, conversely, that 0* C 4. Now, A i8 u-closed; for let fe ¢
be in the w-closure of A. Then there exists ¢ e A such that |f—g| <1,
which means that f= (f—g)+g e 0*+A C A, Bince C* is f-determining,
A is also. Olearly A is closed under bounded invergion.

As a corollary, 0*X) and C(X) itself are w~-closed f-subalgebras
of O(X). We remark that a u-closed subalgebra of O(X) need not De
8- determining or closed under bounded inversion. An example iy the
algebra of all real-valued polynomials on R.

3. The A-points of SX\X. TLet A be a B-subalgebra of O(X).
We shall now associate with A a seb of points in X* = fI\X called the
A-points of X*. Three examples of g-subalgebras 4 and their A -points
will be examined separately in Sections 4, 6 and 7. First, we introduce
gome notation. By 2.6, the collection {Sa(f): f e 4} is a base for the closed
sets in pX. For fe A, define S4(f) = Sa(f) ~ X*; then the collection
{8%(f): fe A} is clearly a base for the closed sets in X*—a natural base
agsociated with 4. When no confusion can arise, we shall write S*(f)
for S5(f). Since most of our topological congiderations will take place
in X* let us agree that the symbols “cl”, “int”, and “9”, without sub-
scripts, refer to the topology of X*.

DerFINITION 3.1. Let A be a f-subalgebra of ((X). A point p ¢ X*
is called an A-point of X* if, for all fe 4, p ¢ 28%4(S).

Clearly a-point p ¢ X* is an A-point if and only if §*(f) is a neigh-
borhood of p whenever f e 4 and p ¢ 8*(f). The set of A-points is precisely
the set OA (XA\28%(f)), an intersection of a family of |4| dense open subsets
of X*.t

Let us now prove an existence theorem for A -points. A space X is
said to have the G;- property if every nonvoid @,-subset of X hag a nonvoid
interior; equivalently, if every nonvoid zero-get in X hag a nonvoid
interior ([5], 3.11(b)). The following analogue of the Baire category theorem.
is essentially proved in [11], 4.2.

PROPOSITION 3.2. Let Y be @ nonwoid locally compact Hausdorff space
with the Gs-property. If D is a family of at most &, dense open subsets of ¥,
then (\ D is dense in Y. If, in addition, Y has no isolated points, them
N 9| =%

Proof. We may write D= {U.: a < w,}. Suppose that G is an
arbitrary nonvoid open set in ¥; we shall show that () D) ~ G # @.
Let ¢ < @, and suppose that there is a collection {Vs: § < a} of nonvoid
open sets in @ satisfying the three conditions

(a) elgV;p is compact for f < «a,

(b) VaC Up for < a, and

(e) #Qu Vs #0.

icm°®
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Now () Vs is & G,-subset of ¥, and therefore has a nonvoid interior
f<a

which must meet the dense open set U,. By local compactness, there is

a nonvoid open set ¥V, in ¥ such that elyV, is compact and clyVeC Us~

A (N V) C Ua~ G; in fact, if ¥ has no isolated points, there are two
B<a

such V.'s with disjoint closures. Thus, {Va: a < o} is defined 'mductivtaly

in such a way that {clrVa o < oy} is a collection of compact subsets with

the finite intersection property satistying clyVa C Ua ~ G for all a < 5.

8o (ND)AGED N elyV. % @. If Y bas no isolated points, at each stage
a<wy

of the construction, there are two choices of V, with disjoint closures;
hence |[) D} = 2%,

Tet us agree to use the symbol “[CH]’ to indica,te.tha;t. we are
assuming the continuum hypothesis (¢ = §,). A space X is said to tle
realcompact if, for every p e X*, there is a Z « Z($X) such that p € 2 C X*.

TazorEM 3.3. [CH). Let X be locally compact. and realcompact but
not compact. If A is & B-subalgebra of O(X) with |A|= ¢, then X* has
& dense subset of 2° A-poinis. .

Proof. Clearly X* is a nonvoid compact set. In [2], 3.1, it 18 shown
that, if X is locally compact and realcompact, ‘ﬁheg X* I.lals the G4-property-
The realcompactness of X prevents isolated points in X*.. For suppose
that p were isolated in X*. Then there would be a zero-set neighborhood Z;
of p in fX such that Z; ~ X* = {p}, and by realcompactness, there would
be a Z, ¢ Z(BX) such that p € Z,C X*. But thfan we w?vould have {p} = Z, ~
~ Z, ¢ Z(pX), which by [5], 9.6, would be impossible.

Tet D= {X*\38*(f): fe 4}, family of ¢ (= ;) dense open. subsets
of X*. Letting X* play the role of ¥ in 3.2, cweconc.lude th'a.t N Dis
a dense subset of X* with cardinality at least 27 Buct, gince 4 is a ﬁ-sub»
algebra of 0(X), | X* < oMl — o°, soft}?f [N D| = 2° As We have pointed

iz the set of A-points o .
o Sr?lpfgose that {4.: ae ]/?1} is a family of ﬁ-subalgebras of O(X). Th.e
set of points in X* that are simultaneously 4.-points for all ae 4 is
given by
N (Z"\o8%(1)
aed feda

An obvious modification of the proof of 3.3 gives the following generaliza-
1ﬁom'TI.‘]iEOmml\l 3.4. [OH]. Let X be locally compact and realcompact but
not compact. If {Aa: ae A} is a family of f-subalgebras of C %X)t ;;zt;z
[Aq] = ¢ for each ae 4 and with | 4] < ¢, then X* has a dense subsel
points which are simultancously Aq-poinis for all ae A i

It X is separable and A is a f-subalgebra of ((X), then obviously
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|4] = ¢. Thus, if X is separable, then the cardinality restrictions on the
f-subalgebras in 3.3 and 3.4 are redundant. However, a locally compact,
realecompact, and noncompact space X may be nonseparable and still
satisfy |0(X)| = ¢. For example, let X be a nonclosed cozero-set in N*
(such exists by [5], 4K.1).

Sinee the maximal ideal space of a f-subalgebra is Hausdortf, we can
apply many of the results of [4] to f-subalgebras. For example, every
prime ideal in a §-subalgebra 4 is contained in & unique maximal ideal MP
of A ([4], 3.4). Following [4], we may define for & B-subalgebra 4 of 0(X),

0% = {fe A: peintpxSa(f)},

where p ¢ X. Clearly 0% is an ideal in 4 contained in M. % - We ghall often
write O for 0%. By [4], 2.6, each O” is an intersection of prime ideals
in 4, and by [4], 3.4, a prime ideal in 4 is contained in M” if and only
it it contains OF. Clearly then M? properly containg some prime ideal
in 4 if and only if 0% # M". ’

PROPOSITION 3.5. If A is a p-subalgebra of C(X) and p <« X*, then
MY = 0% implies that p is an A-point of X*

Proof. Suppose that M? == 0. If, for f « A, we have p « 8*(f), then
p eintgx 8(f), whence p e int8*(f). Thus, p is an A-point of X™.

The converse of 3.5 is false. For we know, by 3.3, that [CIL] N* has

a dense subset of 2° C*(N)-points; however, Mp» == 0% is never true
for p e N*. .

4. O*-poi.nts. ‘We now discuss a simple example of .4 -points, name-
ly, t.he C*-points. A point pe X is a P-point of X if any G;-subset
(equivalently, any zero-set) of X containing p is a neighborhood of p.

TEEOREM 4.1. A point in X* 4s a OYX)-point if and only if it is
a P-point of X*.

o :E’roof. Evidently, a point in X* is a P-point of X* if and only
{f it 1s* not an ele:ment of the X*-boundary of any zero-set of X*, and
is a 0*(X)-point if and only if it is not an element of the X*-boundary
of the trace on X* of any zero-set of 8X. Certainly then, every I’-point
of X* iy a (% X)-point. )

) But the converse holds. For let p 8%, where Z, ¢ Z(X*). There
is a Gy-subset 8 of X such that 8 ~ X*= Z,. By complete regularity,
‘there exists Z, e Z(8X) such that p « Z, C 8. Surely then p  8(Z, [ X*).

Combining 4.71 and 3.3 gives us the following special case of a well-
known result. For an even stronger result, see [5], 9M.3.

CoRrOLLARY 4.2 (Rudin). [CH]. Let X be locally compact and real-

compact but not compact. If |0(X)| = ¢; then X* has a dense subset of 2°
P-points. . :

icm
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5. (-points. In this section, we shall turn our attention to the
¢-points of X*; thus, we shall congider O'(X) as a 8-subalgebra of itself.
We shall relate the concept of C-point with that of remote point, defined
by Fine and Gillman.

ProPOSITION B.1. If X is completely uniformizable, in particular if X
is realcompact or metrizable, then IntS*(f)= (intex S()) ~ X* for all
feC(X).

Proof. Obviously, (inthS(f)) ~ X* Cint 8*(f). Let p ¢ int 8%(f); then
there exists g e 0 such that p e X*\8*(g) C 8*(f). But then, g¢ MP and
fg e Cp= q *M". In [10] it is shown that, if X is completely uniformizable,
then 0, aéonsists of all b e O with compact support. Thus, p ¢ claxZ(g)
(see 2.3), and X = clxCoz(fg) is compact. Hence, p ¢ pX\(K v chxZ (g))
C elpx Z(f), so that p e intpx8(f).

DEFINITION 5.2. A point p e AX is called a remote point in X if p
is not in the BX-closure of any diserete subset of X.

A remote point in X necessarily lies in X*. Following [5], We associate
with each maximal ideal M% in C(X) the z-ulirafilter

AP = {Z(f):.f e MB} = {Z < Z(X): p eclpxZ} (see 23).

TamoREM 5.3. Let p e X* where X is o metric space, and consider
the following four conditions.

(a) p is a O-point of X*.

(b) AP has no member which is mowhere dense.

(e) MG = 0%.

(4) p is a remote point in BX.

Conditions (), (b) and (¢) are mutually equivalent and are implied
by (). All four conditions are equivalent if X has no isolated points.

Proof. (a) implies (b). Suppose that p is a ¢-point, and let Z ¢ 4”.
Then p ¢ int(clpx Z\X), and by Proposition 3.1, p ¢V = intgxclgx Z. Thus,
@ #V ~XCZ, and Z is not nowhere dense. :

(b) implies (c). Assume (b), and let f e MP. Since X is a metric space,
we may find g e 0(X) such that Z(g) = clxOoz(f); hence X = Z(f) v Z(g)-
Now, if p e clpxZ(g), thenp e clpx(Z(f) n Z (9)) = clax0x Z(f), contradicting
our hypothesis, since dxZ(f) is nowhere dense. Thus, p € AX\elexZ(9)
C clpx Z(f), so that feO0”.

(¢) implies (a). This follows from 3.5.

(d) implies (b). Suppose that A” has & nowhere dense member Z.
Tt is shown in [7], p.138 (VIII), that, if Z is a closed nowhere dense set
in the metric space X, then there is & discrete subset D of X such thatb
DuZ=clgD and D~ Z=0. Thus peclxZC clgx D, so that p is ot
a remote point.

Fundamenta Mathematicae, T. LXIV 4
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Assume that X has no isolated points; we shall prove that (b)
implies (d). Suppose then that p is not a remote point; then there is
a discrete subset D of X such that p e clgxD. Since any point common
to D and intgxclxD would be isolated, one easily sees that Z == clgD is
nowhere dense; clearly Z ¢ A”. :

The equivalence of (b) and (d) appears in [3] for X = R; we wish
o thank Mark Mandelker for communicating (b) implies (¢).

TaEOREM 5.4, [CH]. If X is a separable, locally compact, noncompact
metric space without isolated points, then BX has o collection of 2" remote
points which forms a dense subset of X*.

Proof. Since X is a separable metric space, it is clear that X is
realcompact and |C(X)| = ¢. (In fact, [OH] for a metric space X, the
separability of X is equivalent to the condition [0(X)|==c.) By 3.3,
X* has a dense subset of 2° (- points, and by 5.3, the C-points are precisely
the remote points in fX.

An obvious corollary to 5.4 is that [CH] AR has a collection of remote
points which is dense in R*. This result was proved by Fine and Gillman
in [3] by another method. Our proof appears to be simpler than the Fine-
Gillman proof, but their method has wider application; they show that
[CH] AQ has remote points, whereas our method fails in this case (Q* does
not have the @s-property). Using the methods of [3], we now extend 5.4

to include the case X = Q by removing the local compactness from the
hypotheses.

THEOREM 5.5. [CH]. If X is a separable, noncompact metric space
without isolated points, then BX has a collection of 2° remote points which
forms a dense subset of X*.

Proof. Let V be a closed neighborhood in X of any point in X*.
Since X is a separable metric space, X is realcompact and has no more
than 8, (= ¢) dense open subsets. By [3], 2.3, there exists a family F
of zero-sets of X such that & has the finite-intersection property, N F = @,
and every dense open subset of X contains a member of F. Since X is real-
compact, we may construct ¥ such that each of its members is con-
tained in V' (see [3], 2.5). Now let A= {pefX: FC A"} myﬂgclpr,

e

& nonvoid compact subset of V ~ X*. A gimple modification of the
proof of [3], 2.8, gnarantees that A is infinite; hence, by [5], 9.11, we
have |A4] > 2°. As in the proof of 3.3, |X*| < 2°, whence |4| == 2°. Now,
for 9 €4, A” contains no member which is nowhere dense; each such p
is remote by 5.3.

Thus, [CH] Q* has C-points but no (*-points (see [5], 6 0.5). We
remark that 5.3 and 5.5 remain true if we assume only that the set of
solated points in X has compact closure.
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6. Remote points in fR vs. P-points in SR\R. We now con-
centrate on the case X = R. Let P denote the set of P-points of R*,
R denote the set of remote points in R, P=TRXP, and R:—-R*\l\z
We shall now show that no inclusions hold between the sets P, R, P
and . First we prove a preliminary result. ‘We call X an F-space if every
cozero-set in X is C*-embedded in X. Every C*-embedded subset of
an F-space is an F-space ([5], 14.26), N* and R* are cor.npact F-spaces
([5], 14.27), and every countable subset of an F-space is C*-embedded
([5], 14N.B).

PROPOSITION 6.1. If X is an infinite compact F - space, then X containg
at least 2° mon-P-points.

Proof. Let X be an infinite compact F-space. Then, by [5], 0.13,
X contains a countable discrete set D = {pa: neN} As a countaple
get, D is C*-embedded in X, whence clgD = gD ([ij], 6.9(a)). Define
fe 0% X) by letting f(pn) =n"* for neN a,nd‘ex.tendmg over X. Then,
for every p e D*=clxD\D, p e Z(f), but Z(f) is not a gelghborhood
of p. Thus, every one of the 2° points in D* is & non-P-point of X.

As a corollary, N* and R* each have 2° non-P-goints. o

TEEOREM 6.2. [CH]. The seis PR, P ~B, PAR and PnR
are each dense subsets of R* of cardinal 2°.

Proof. (P~ R). Apply 3.4 to the family {C(R), C*(R)} of f-sub-
algetz?snolf? 21(11({1)? ~ R). Let ¥V be a closed neighbo‘rhood in AR of.a,ny
point in R*. Then V ~R is nonpseudocompact and s ¢ -gmbedded Ll(li 1(11
(51, 1F.4); hence ¥ ~ R contains a copy D of N.whlch 15.0 -(lamb;d ed
in R ([5], 1.20). Then D*= OlpR.D\.DCVF\'I{*, smce.D is closed an
O*-embedded in R. A point in D* is a P-pou}t of D* if and f)nlyllf 1;15
a P-point of R* ([5], 4L.2, 9M.2). But D* is homecomorph',lc with 42,
so that D* has 2° non-P-points by 6.1 and Eg(i{H] 9° P-points by 4.2.

int of D* is a remote point in SR. o
Ol%f(l%vmn%)lf%l;t ¥ be a closed neighborhood in AR of any point in R;.
As in the proof of 5.5, construct an infinite compact set 4 tOfA rgmt;s (e)
points in AR. Since R* is an F-space, the C*-gmbedded subse . tﬂlls sf:; o
an F-space. Then, by 6.1, 4 has 2° non;P-P01nts, .a.nd each oP e o
a non-P-point of R*. Thus, ¥ ~ R* has 2° points which are non-F-po
of R* and remote points in AR.

7. The algebra H. In this gection, we shall let 0(X) deng.te zl::
algebra (over the complex numbers C) of complew-valued. con fusub-
functions on X and C*(X) the subalgebra of bounded funcltl{o;lls. A
algebra of C(X) will mean a gubalgebra in the usual sense which ¢

ich i joi the formation
the constant functions and which 18 self-adjoint (closed under "
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of complex conjugates). By an ideal we shall mean a proper self-adjoint
ideal. With these conventions, it is not difficult to see that all the results
that we have obtained for subalgebras of ((X) in the real case are true
in the complex case as well.

TFollowing R. M. Brooks [1], let us define

H={feON): 1”iinsupﬂn) <1}

where f{n) = |f(n)["" for n ¢ N. It is shown in [1] that H is a subalgebra
of ¢(N) containing C*(N), so by 2.9, H is & u-closed f-subalgebra of J(N).
Thus, bz is homeomorphic with AN ([1], 2.4).
Propostrion 7.1. H = {fe C(N): ¥ <1 on N*}L. A function feH is
a unit of H if and only if Z(f)=9 and [’ =1 on N*.
Proof. The first part follows by observing that limsupf(n)
N>

= sup{f"(p):_p «N*} for any real-valued fe O*(N). The second part is
clear since fg' =7§ for f, g H.

_ Following Brooks, let us define, for p ¢ N, the collection JP = {fe H:
Ff(p) < 1} of non-units of H.

PROPOSITION 7.2. For p eN*, J* is o prime ideal in H contained
in MP, whence O° CJ® C M.

Proof. We first note that feJ” implies f*(p)=0. For suppose
that #(p) < 1. Then there exists 6 < 1 and a neighborhood V of p in N
such that [f(n)[*™ < 8 whenever n ¢V ~ N; that is, |f(n)| < 6" whenever
n eV ~N. If U is a neighborhood of p in AN, then U ~ ¥V contains arbi-
trarily large n ¢N yielding arbitrarily small positive values of |f(n)l;
hence f*(p) = 0.

) J? i.s easily seen to be an ideal (see [1], 2.3.4, 2.3.5) and is clearly
prime, since fo?=f? 5. Suppose feJ?, whence fy eJ? for all ¢ ¢ H; then
(fg)*(p) = 0 for all g ¢ H, whereby f ¢ M”. Since J* C MP, it follows from [4],
3.4, that 0% CJ”.

By considering H as a topological ring, it is shown in [1], 4.9, that H
has at least one nonmaximal prime ideal. We can now improve on this
result.

ProrosiTION 7.3. H has 2° nonmazimal prime ideals.

) Proof. Since |H|==0¢, H has no more than 2° nonmaximal prime
ulegls. By [4], 2.6, 3.4, it suffices to prove that M* 5= O for p « N*. Thus,
define f(n) = n=" for n N, and let p ¢ N* be arbitrary. Since f—‘(n) = nt,
clearly feJ” C M". It is easy to see that 07 = 0% ~ H. Therefore f ¢ 0"
since Z(f) = @. ' i ’

. Let us now give a simple characterization of the basic closed seb
8*(f) for fe H (cf. 2.3). First we state a lemma.
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TeMMA 7.4 Let p e N* and fe H. If f# =1 on some N*-neighborhood

of p, then fé M". ‘
Prootf. Suppose that f* =1 on some N*-neighborhood ¥V of p. We

may assume that V = clon E\E for some subset E of N and that fy=%

for n ¢ B. Define g « C(N) by letting g(n) = f(n)™ for n ¢ ¥ and g(n)

for n ¢ F. Then Limg(n) = 1, so that geH. Furthermore, (fg)*(p)

n—>00

so that f¢ M”. ‘

PrOPOSITION 7.5. For feH, S*(f) is a regular closed subset of N*;
moreover, S*(f) = cl{g e N*: 77(¢) < 1} and int 8*(f) = {g ¢ N*: " (g) < 1}.

Proof. By 7.2, it is clear that cl{g e N*: F*q) < 1} C 8%(f). Suppose
that p € 8*f). By 7.4, in every N*-neighborhood of p, there is a point ¢
such that F%(q) < 1; that is, p e cl{g e N*: f2(g) < 1}.

By Proposition 7.2, we have {geN*: FA(q) < 1} Cint 8*(f). Suppose
that p e int8*(f) and f’(p)=1; we shall deduce a contradiction. Let

(ni)ren be an increasing sequence in N such that limf(ng) = 1. Letting
koo

B = {m: k ¢ N}, we may assume that clpnE\E C §*(f). Then f? =1 on the
nonvoid open subset clnEN\E of §*(f), and this contradicts 7.4.

In [1], it is stated that M” =J®, for all p ¢ N*. We now show that
this is false; in fact, the equality holds precisely when p is a P-poinb
of N*.

TaroREM 7.6. The following are equivalent for a point p e N*.

(a) JP= M".

(b) p is an H-point of N*.

(¢) p is a P-point of N*.

Proof. (a) implies (b). Suppose that J”= M". If pe8*(f), then
p ¢ {geN*: F°(g) < 1} = intS¥(f). Hence, p is an H-point of N*

(b) implies (c). Let p a non-P-point of N¥, and let g e O(SN) be
a real-valued funection which is nonconstant on every N*-neighborhood
of p; we may assume that 0 <g<1 and g(p) = 1. Let f(n) = g(n)" for
n ¢ N; then f= g|N, so that f? = g. Thus fe H, and by 7.5, ¢ int 8*(f)-
Now, in every N*-neighborhood of p, there is a point ¢ such that f Plg) <1,
by the construction of f. So p « 8%(f), by 7.5. Hence, p is not an H-point
of N*,

(c) implies (a). Suppose that fe MP and f¢J°. Then 2 (p) =1, but
by 7.4, f* is not identically 1 on any N*-neighborhood of p. Clearly then,
p is not a P-point of N*.

=1
=1

2
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Fundamental retracts and extensions
of fundamental sequences

by
Karol Borsuk (Warszawa)

In order to extend some standard notions of the homotopy theory
onto arbitrary compacta X, ¥ lying in the Hilbert space H, I introduced
in [2] the notion of the fundamental sequence from X to Y, defined as
an ordered triple f = {fx, X, ¥} consisting of X, Y and of a sequence {fx}
of (continuous) maps of H into itself satisfying the following condition:

For every meighborhood V of ¥ (neighborhoods are wnderstood here
always in the space H) there ewists & neighborhood U of X such that

folU = fura/U in V. for almost all k.

The set X will be said to be the domain, and the set Y—the range
of the fundamental sequence f.

Setting ix(@) = @ for every point @ <H, we immediately see that
for every compactum X C H the triple {ix, X, X} is a fundamental se-
quence ix, called the fundamental identity sequence for X.

It ¢ is a point of a compactum X C H, then setting c(z) = ¢ for every
point © « H, we get & fundamental sequence ¢x = {¢, X, X} called a con-
stant fundamental sequence for X.

Let us observe that if % is a closed subset of a compactum X C H,
and’ Y is a closed subset of a compactum ¥ CH, and if f= {fx, X, X}
is a fundamental sequence, then f={f , X, T} is also a fundamental
sequence. -

Two fundamental sequences f= {fy, X, Y} and g= {gx, X, Y} are
said to be homotopic (in symbols: f ~ g) if for every neighborhood V
of ¥ there exists a neighborhood U of X such that

fe/U ~ g¢/U in ¥ for almost all k.

The fundamental sequences from X to ¥ may be considered as a gen-
eralization of the maps of X info ¥, and the clagses of all homotopic fun-
damental sequences from X to ¥ (called fundamental dlasses from XioY)
may be considered as a generalization of the homotopy classes of maps
of X into Y. .
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