

A homotopy extension theorem for fundamental sequences

bv

Hanna Patkowska (Warszawa)

The notion of the fundamental sequence has been introduced by K. Borsuk ([1], p. 225) in order to study the homotopy properties of compacta lying in the Hilbert space H. It is defined as a triple $f = \{f_k, X, Y\}$ consisting of a sequence $\{f_k\}$ of (continuous) maps $f_k \colon H \to H$ and of two compacta $X, Y \subset H$ satisfying the following condition

For every neighborhood V of Y (neighborhoods are always understood in the space H) there exists a neighborhood U of X such that the homotopy

$$f_k/U \simeq f_{k+1}/U$$
 in V

holds for almost all k.

Two fundamental sequences $\underline{f} = \{f_k, X, Y\}$ and $\underline{g} = \{g_k, X, Y\}$ are said to be homotopic (written $\underline{f} \simeq \underline{g}$) if for every neighborhood V of Y there is a neighborhood U of X such that

$$f_k/U \simeq g_k/U$$
 in V for almost all k .

Let X' be a compactum such that $X \subset X' \subset H$. A fundamental sequence $f' = \{f_k, X', Y\}$ is said to be an *extension* of the fundamental sequence $f = \{f_k, X, Y\}$ if $f_k | X = f_k | X$ for every k = 1, 2, ...

In the present note we shall prove (answering a problem posed by K. Borsuk) the following

THEOREM. Let X, X', Y be compacta in H such that $X \subset X'$, and let $f = \{f_k, X, Y\}$, $g = \{g_k, X, Y\}$ be two homotopic fundamental sequences. If \underline{f} has an extension $\underline{f}' = \{f_k, X', Y\}$ then \underline{g} has an extension $\underline{g}' = \{g_k, X', Y\}$ homotopic to \underline{f}' .

Proof. Let V_1, V_2, \dots be a decreasing sequence of open neighborhoods of Y such that

(1) For every neighborhood V of Y the inclusion $V_k \subset V$ holds for almost all k.

The homotopy $\underline{f} \simeq \underline{g}$ implies that for every k=1,2,... there is an index m_k and a closed neighborhood U_k' of X' such that

(2)
$$f_i/X \simeq g_i/X$$
 in V_k for every $i \geqslant m_k$,

(3)
$$f'_i(U'_k) \subset V_k$$
 for every $i \geqslant m_k$.

It is clear that we can assume that

(4)
$$1 < m_1 < m_2 < ...$$
 and $U'_1 \supset U'_2 \supset ...$

In order to finish the proof, it suffices to construct a sequence of maps $g_i': H \rightarrow H, i = 1, 2, ...$ satisfying the following conditions:

(5)
$$g'_i/U'_k \simeq f'_i/U'_k \text{ in } V_k \quad \text{for } i \geqslant m_k$$
,

(6)
$$g'_{i}/X = g_{i}/X$$
 for $i = 1, 2, ...$

We define g_i' as follows: If $i < m_1$ then $g_i' = g_i$. Then (5) is immaterial. Now let us assume that $k \ge 1$ and that for every $i < m_k$ a map g_i' : $H \to H$ satisfying (5) and (6) is already defined. Consider now an index i such that $m_k \le i < m_{k+1}$. In order to define the map g_i' , first let us construct for every j = 1, 2, ..., k a map $\hat{g}_{i,j}$: $U_j' \to V_j$ and a homotopy $\varphi_{i,j}$: $U_j' \times \langle 0, 1 \rangle \to V_j$ such that

(7)
$$\varphi_{i,j}(x,0) = f'_i(x)$$
 and $\varphi_{i,j}(x,1) = \hat{g}_{i,j}(x)$ for every point $x \in U'_j$.

(8) If
$$j < k$$
, then $\varphi_{i,j}/(U'_{j+1} \times \langle 0, 1 \rangle) = \varphi_{i,j+1}$.

$$\hat{g}_{i,j}/X = g_i/X.$$

The construction of $\hat{g}_{i,j}$ and of $\varphi_{i,j}$ will be inductive (from j to j-1). Since V_k , as an open subset of H, is an ANR(\mathfrak{M}) ([3], p. 391; also [2], p. 85), we infer by theorem on extension of a homotopy ([2], p. 94) and by (2) and (3) that there exists a homotopy $\varphi_{i,k}$: $U'_k \times \langle 0, 1 \rangle \rightarrow V_k$ such that

$$\varphi_{i,k}(x,0) = f'_i(x)$$
 for every point $x \in U'_k$

and

$$\varphi_{i,k}(x,1) = g_i(x)$$
 for every point $x \in X$.

Setting

$$\hat{g}_{i,k}(x) = \varphi_{i,k}(x, 1)$$
 for every point $x \in U'_k$,

we get $\hat{g}_{i,k}$ and $\varphi_{i,k}$ satisfying the conditions (7), (8) (trivially) and (9). Now let us assume that $1 \leq j < k$ and that $\hat{g}_{i,j+1}$ and $\varphi_{i,j+1}$ have been already defined. The values of the homotopy $\varphi_{i,j+1}$ belong to $V_{j+1} \subset C$ $V_j \in ANR(\mathfrak{M})$. Since $\varphi_{i,j+1}$ is defined on the closed subset $U'_{j+1} \times (0, 1)$ of $U'_j \times (0, 1)$ and since $\varphi_{i,j+1}(x, 0) = f'_i(x)$ for every point $x \in U'_{j+1}$ and $f'_i(U'_j) \subset V_j \in ANR(\mathfrak{M})$ (because $i \geq m_k > m_j$), we can apply again the theorem on extension of a homotopy and thus we obtain a homotopy $\varphi_{i,j} \colon U'_j \times (0, 1) \to V_j$ such that

$$\varphi_{i,j}(x,0) = f'_i(x)$$
 for every point $x \in U'_j$

and

$$\varphi_{i,j}/(U'_{j+1}\times\langle 0,1\rangle)=\varphi_{i,j+1}$$
.

Setting

$$\hat{g}_{i,j}(x) = \varphi_{i,j}(x,1)$$
 for every point $x \in U'_j$,

we see that $\hat{g}_{i,j}$ and $\varphi_{i,j}$ satisfy conditions (7), (8) and (9).

Now we define the map g_i' as an arbitrary map of H into itself satisfying the condition

$$g_i'(x) = \hat{g}_{i,1}(x)$$
 for every point $x \in U_1'$.

It follows by (7) and (8) that

$$g'_i(x) = \hat{g}'_{i,j}(x)$$
 for every point $x \in U'_j$, $j = 1, 2, ..., k$.

We infer by (7) and (9) that the map g_i' satisfies both conditions (5) and (6). Thus the proof of Theorem is concluded.

References

[1] K. Borsuk, Concerning homotopy properties of compacta, Fund. Math. 62 (1968). pp. 223-254.

[2] — Theory of Retracts, Monografic Matematyczne 44, Warszawa 1967.

[3] O. Hanner, Some theorems on absolute neighborhood retracts, Ark. Math. 1 (1951), pp. 389-408.

Recu par la Rédaction le 2. 10. 1967