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On decreasing sequences of compact absolute retracts

by
D.'M. Hyman* (Los Angeles, Calif

1. Introduction. It is known that every compact metric space
can be written as the interseetion of a decreasing sequence of compact
ANR’s. The purpose of this note is to characterize the compact metric
spaces which can be written as the intersection of a decreasing sequence
of-compact AR’s. -

In [5], the author defined and studied the class of absolutely neigh-
borhood contractible: spaces. We will show that a compact metric space
is the intersection of a decreasing sequence of compact AR’s if and only
if it is absolutely neighborhood contractible: Absolute neighborhood
contractibility can be characterized in many other ways. Several cha-
racterizations are givk;n in [5], and it is known that the class of compact
absolutely. neighborhood contractible spaces coincides with: the class
of fundamental absolute retracts Tecently introduced by Borsuk [2], [3].
We will summarize the known characterizations of compact absolute neigh-
porhood contractible spaces in our main theorem.

2. Statement of the main theorem. By an ANR (or AR)
we mean an ANR (or AR) for the class of all metrizable spaces. If Bis
a metric space, then ANR/(B) denotes the class of all ANR’s which con-
tain B as a closed subset: - . : : )

A subset B of a space ¥ is said to be nesghborhood contractible in ¥
if B is contractible in évery neighborhood of itself in ¥. A metri¢ space B
is ‘said t0-be- absolutely neighborhood contractible it B is neighborhood con-
tractible in every ¥ « ANR(B) [5]. . .

THEOREM.  The fbllowmg statements. comeerning @ compact melric
space’ B are equivalemt: * : . g ‘

(a) B-is absolutely - neighborhood contractible. ‘

(b) There -ewists ‘a ¥ ¢ ANR(B) such that B is neighborhood. .con-
wactible in X 0 R

(¢) For every Y ¢ ANR (B), ‘B is contractible in Y.
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(d) For every Y ¢ ANR(B), there exists a neighborhood V of B in ¥
such that for every metric pair (X, A), each map (*) f: A—V has an extension.

F. XY,

(e) For every Y e ANR(B), the natural projection p: ¥ —-Y/B has:

a left homotopy inverse.
(f) For every ¥ e ANR(B), p is a homotopy equivalence.

(g) For every Y e ANR, every map from B into Y is nullhomotopic..
(h) B is a weak proxvimate absolute retraci in the sense of Yandl [6]..

(i) B is a fundamental absolute retract in the sense of Borsuk [2].

(j) B is the iniersection of a decreasing sequence of compact contractible:

metric spaces.

(k) B 1is the imtersection of a decreasing sequence of compact absolute:
retracts.

A proof of the equivalence of (a)-(h) can be found scattered through--
out [5]. In (3], Borsuk proved that a closed subset of the Hilbert cube:
is a weak absolute retract if and only if it is contractible in each of its.
neighborhoods; hence (a) = (i) = (b). (k) =(j) = (g) is obvious; the:
rest of this paper is devoted to showing that (a) = (k).

3. Some lemmas. In this section we will establish some notation
and state three essentially known lemmas for future reference.
Let H* denote real sequential Hilbert space with norm defined by

el = f ).

n=1

Let H C H* be the set
H = {(an) e H*| 0 < an <1n}.

H is homeomorphic to the Hilbert cube. & e H is the point all of whose:
coordinates are zero. The closed interval [0,1] is denoted by I.

If (X, ¢) is a metric space, then a deformation % on X is called an.
&-deformation, & > 0, if for each © e X the o-diameter of the set {hy(w)| ¢ € I}-
is less than e.

Lemma 1. A compact metric space X is an ANR if and only if for-
every e > 0 there ewists an ¢-deformation he on X such that hy(X) is an ANR.

Proof. This is an immediate consequence of [4], IV, 5.3.

Recall that if f: XY is a map, then the mapping cylinder O of I
is the space obtained from the free union of X xI and ¥ by identifying:
each point (z,1) ¢ X x {1} with f(z) ¢ Y. '

(') A map is a continuous function. A metric pair (X, 4) is a i
g f metr.
together with a closed subset 4. ( ) : e space &
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LevMA 2. If X and Y are compact ANR’s and if f: XX is a map,

:then Cy is an ANR.

Proof. This is an immediate consequence of [4], VI, 1.1 and 1.2.
The cone over a space X is the quotient X XI/X x {1}. The cone

‘is homeomorphic to Cr, where f is the unique map from X to a point.
-Consequently, by Lemma 2, the cone over a compact ANR is an ANR.

Lemma 3. If X CH is a compact absolutely neighborhood contractible

.space, then there exisis a decreasing sequence of compact ANR’s {X;, X,, o}
-such that

(a) X, = H,
(b) each X, is contractible in Xy, n>1, and

(¢) X = ”fjl X

Proof. Let {¥i| %> 1} be a decreasing sequence of compact ANR’s
;such that X = F\ Y (3). We may and do assume that ¥, = H. Take
X, =Y, and reZ:;sively define Xp41 = Yiem), Where k(n) is the smallest

‘index greater than » such that Yiu is contractible in Xy (). {Xa| n > 1}
is the desired sequence.

4. Proot of (a) > (k). Let X be a compact absolutely neighbor-
“hood contractible space. Embed X in H, and let {X,, X, ...} be a decreasing
sequence of compact ANRB’s (satisfying the conclusions of Lemma 3).

Consider the set Z= H xH xI xI. Let a,f,y and & be the pro-
jections of Z onto its factor spaces H,H,I and I, respectively. Thus
every »¢Z can be written uniquely in the form (a(2), 8(2), ¥(2), 8(2)) -
‘Metrize Z by the rule

oz, 2") = max{la(e)—a(@)ll, [BR)—BEN, ly@—y(E)], 18()—8(]}.

‘Recalling that X,C X;=H, and writing v, = 1/n for each positive
integer n, define

Yo={(#, 1, 0,70) e Z| © € Xp},

Since X, is contractible in X,_;, » > 1, there exists such a map

fat Xn X[0,70]>Xpu1 that falz,0)=2 for all zeX, and such that
fal Xu x{za} is constant. Define a map ¥u: X X[0,m]—Z by

nz=1l.

() Pu(@, 1) = (n— Do+~ +)fal@, 1), fal@, 1), 1 Tn)

(2) The existence of the sequence { ¥ «} follows from the methods of [1]. ) .
3) Y exists: for by the methods of [5], 3.5, some neighborhood ¥ of Xin X, is
.contractible in X,.Since X is the intersection of {¥x}, some Y%,k > n,lies in V;hence ¥x

is contractible in X,.
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for all e Xy, 0 <1< 75 and let

By = Wn(Xu x[0,%]), n>1.
Inspection of (1) shows that ¥,| X, X {7} i§ constant, but if (z, 1) # (2, t')
@nd if either ¢ # 7, or 1" # 74, then Wy(z, 1) # Pa(a', t'). Tt follows that R,
is homeomorphic to the cone on X,; in particular, R, is an ANR by the
remarks following Lemma 2. Taking ¢= 0 in (1), we have

(1o) ‘ Yu(w, 0) = (2, 0@, 0, 70) -
Consequently
(2) Yo={¢eRyl y(2)=0}, n>1.

Since fu is constant on X, X {rx}, it follows that the assignment
(3) (x,t)—>—(f,n(93,t),r,._lfn(m,t),O, Tn—l) y BeXn, 0Kt T,
induces a (single-valued) map
Dn: Ry—>Ypy, n>1.

Since Z is convex, we may consider the segment ¢(z) joining z e R, to-
®,(2). Let : T
Co=Yp1v J{o(@) zeRs}, n>1.

F‘rox.n (1) apd (3) a straightforward calculation shows that if  and 2’ are
fhstmct points of E,, then the segments o(z) and o(2’) have no points.
in common except possibly an endpoint, and they have an endpoint in
common if a.,nd only 1f Pu(2) = Dy(2'). From this it follows that C, is
homeomorphic to the mapping cylinder of @, . Since R, and Yono1 22 Xoy
are compact ANR’s, Cy is an ANR by Lemma 2. '

Identify X with X x {0} x {0} x {0} C Z, and let
Dy=XVBRov ) G, n>1;
k=n+1
m
Byn = Bp v U Ck, m>n>1;
k=n+1
EByw=R,, n>1.

From (1), (2), (3) and the definitions of the sets involved, we have
(4) Ch={2eDy| 1< (2) < Tuey} U {2 €Dy 8(2) = 14—y and y(2) = 0},

= n>1;
5) EBu={eeDy 6(2) =1}, n>1; ’
)

Dp= {2 e Dy| 0<6(2) <a}, n>1;

(1) Bomn={¢ € Dy} < 6(2) <}, mzn>1;
((8) Yo={zeDy 6(2) = vs and y(z) = 0}, =n>1;
9)  X={zeDy s(z)=0}.
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By (6) and (9),
o0
X={Dy.
n=2

Therefore if we can show that D, is a compact AR, n > 1, then we
will have established (k).

'We show that D, is compact by showing that if {&| ¢> 1} is an
infinite subset of Dy, then {2} has an accumulation point in Dj,. Since X,
Ry, and Cx, k& > n, are compact, we need only show that if 2 € Cx;), where
limk(¢) = oo, then {#} accumulates at some point in X. By (1) and (3),
100

2 is of the form (ai, bi, 1, di), Where (%)
& = 84(Trn— 1) @i+ (L — Ty T 1) fun(®s, 1) + (L — 8:) Fwa (@i 84)
bi = 8sTrta fun (i, B3) (L —80) Trey-1fun(e, Te) ’
¢ = Sit;,
;= 8:Ta(iy+ (1 —88) Treiy—1
for some ;e Xi, 0 <t:<tmy, 0<s8:<1. Since fun(@i, ) € Xna—

oo
and since () Xy = X, it follows that the sequence {fr(®:, 1:)} accumulates
k=1

(10)

at some e X. Since limz = 0, it follows that {a:} accumulates at z,

100
and {b} >0, {a}—0, {di}—>0. Therefore {z} accumulates at (z, 0,0, 0)
= g ¢ X. This completes the proof that D, is compact.
It remains to prove that D, is an AR, n > 1. Let » be fixed, and
let ¢ > 0 be given. Consider the following statements:

(11)  For every m = n, Emn is an ANR.
(12)  For every m = n, Emy s contractible.
(13) For some m = n, there ewists an &-deformation of Dp onto Emn.

Combining (11) and (18) with Lemma 1, we see that Dy is an ANR;
combining (12) and (13) with the fact that every contractible ANR is
an AR ([4], p. 96), we see that D, is an AR. We proceed to establish
(11)-(13).

Proof of (11). We have observed that R,= Ep. is an ANR.
Assume inductively that By, is an ANR, m = %, and write Bniyn = Cn1 v
U Bpn. By (4), (7) and (8), Onsi ~ Bmn = Ym. We have already observed
that Y, and COpyy are ANR’s, and by the induction hypothesis, Fmn

® IfzeX -1, then 2z will not necessarily have the form (10). However, in this
a6 2 ¢ Oxity—; therefore z; will have the form (10) with % (i) replaced by % (i)—1. Con-
sequently there is no loss in generality in assuming that z; has the form (10).
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is an ANR. Therefore By, is an ANR (5). This completes the induction

and establishes (11).
For each i >1, define a deformation g on Ci by

(1-+386'(2) —s—8'(@)) r+ (s+6@— 38(2)) Du(r) ,
gi(z, 8) = if zeo(r), rekRy
2 if 2e¥ia,

where §'(2) = (8(2)—74)/(zi-1—7s). ¢s is a strong deformation retraction
of C; onto ¥;_5; g;slides each segment o(r) o its endpoint in ¥;_;. Since
the diameter of a segment in H or I is the distance between its endpoints,
the same is true of Z (under the metric g). By (1) and (3), we see that
if 7= Yi(»,t) e B; and if z € o(r), then

diam gi(z X I) < o(r, Dilr))
< max{(zi—1) (el Hifil@; D) 5 (2= Ifile, DIl 5 ¢ w1 =7 ).

Since || || is bounded on H by Y (1/n?) < 2, it follows that g; is a 47;-de-
n=1

formation.

Proof of (12). Since the cone over every space is contractible-
EBun = Ry is contractible. Assume inductively that Bms., m = n, is con,
tractible, and define a deformation n on Hmiin bY

{gm+1(z,s) if 2zeOpyi, 081,

n(e, 8) = if 2eBmm, 0<s<1.

n deforms H,y1, onto the contractible set Hpy. Therefore Hpyiyn is con-
tractible, and (12) follows.
Proof of (13). Let

Ly={z eDy| y(z) = 0}.
For each 2 eL, and for each s eI such that 6(2)+s < 7, there exists
a unique point &' = A(z,s) €L, such that «(#') = a(zs) and such that
8(%') = 6(2)+s; in fact we can determine f(¢')—and consequently 2’
itself—as follows: Taking ¢ = 0 in (3), we have

(30) (2, 0)> (2, Th—12, 0, Tpn—1) .
If 6(2)+s >0, then (1,) and (3,) yield
(14) B(2') = 6(2"yw = (8(2)+5) a(2).

If 6(2)4s=0 then s=0 and 6(2) = 0. s = 0 implies that =z =2/, and
4(2) = 0 implies that 2 ¢ X, which in turn implies that §(2) = @. There-

() Recall that if 4, B and 4 N B are compact ANR’s, then 4 U B is an ANR
(4], p. 49).
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fore (14) holds in all cases. Since [la(2)|| < 2, it follows that if 8(2) < =,
4 > n, then

(15) diam A({z} [0, 7t —6(2)]) < 2 .
From (14) and from the definition of 1 we see that 1 is continuous on its

domain (= {(2, 8) e Lp XI| 6(2) +s <)) .
For each m = n, definé a function hun: Dy xI—D, by

2 if zeli ig<m,
0<s<gl
2 if zeCiy i >m,
0 < s < 6(2);
hanlz, §) = gi(z,(s—&(z))/(n-l—é(z))) it zelCyi>m,

8(2) < 8 < vi-1y O(R) # Tima;
(I(g.,-(z, 1), min{s—71, tn—7i—1}) if 2e0; i>m,
Ti-1 <

$<1;
Az, min{s, rm}) if zeX, 081,

If 2¢Cin Oy = Yy, then hua(z, s) may be defined in more than
one way. However, by (1), (3,) and by the definitions of g; and 4, it is
straightforward to show that hms is single-valued. The continuity of Ay
is obvious except possibly on X xI; on this set the continuity of hm
follows from (15) and from the fact that g; is a 4%-deformation, Apply-
ing (15) and this property of g; again, we see that if m > 6/e, then hmn is
an ¢-deformation. Sinee hmn deforms D, onto Ems, (13) is established.
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