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Covering three-manifolds with open cells

by
J. P. Hempel* (Houstoni Tex.)
and D. R. McMillan, Jr, #* (Madison, Wisc.)

1. Introduction and definitions. Let M be a piecewise-linear
(combinatorial) #-manifold. If M is closed (i.e., compact and without
boundary) and connected (a8 we always assume a manifold to be),
then no more than (n--1) piecewise-linear 7 - cells are required to cover M
(see Zeeman [4], page 200). If two n-cells suffice, then M must be a top-
ological n-sphere. We consider here the first instance in which there
is a gap between these lower and upper bounds on the number of piecewise-
linear n-cells needed to cover M: Which closed three-manifolds M can
be obtained by gluing together three.3-cells?

It is not hard to see (lemma 1) that m (M) must be a free group for
such a 3-manifold M. This suggests the more precise result obtained
here. That is, if we define a punctured cibe to be a compact 3-manifold M
sueh that M is embeddable in §° and such that M is non-empty and
consists entirely of 2-spheres, then we prove: A 3-manifold M (possibly
non-orientable) can be covered by three open 3-cells if and only if M
contains a finite disjoint collection of polyhedral 2-spheres 8y, 8, ..., Sy
{h > 0) such that if U is the interior of a thin regular neighborhood
of 8; in M, then M— | J U is & or a punctured cube. In particular M
cannot contain a fake 3-cell (compact contractible 3-manifold which is
not a 3-cell). Thus if the 3-dimensional Poincaré conjecture is false, then
no counterexample can be covered by less than the maximum number
(four) of open 3-cells. We note the contrast between this fact and the
fact ([4], corollary 2) that any eombinatorial homotopy 4-sphere can be
covered by three open 4-cells. A 3-manifold M satisfying the conclusion
of the result above is called a 3-sphere-with-handles (of genus &> 0).
‘We note that a 2-sphere in a 3-manifold is always 2-sided so the regular
neighborhood T of 8 (the ith handle) always has the form 8 x[0, 1].

If I is a punctured cube, the result M* of adding a finite number
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of orientable handles of index one to 2M (that is, one identifies pairs
of disjoint polyhedral 2-cells in 2, in each case using an orientation-
reversing homeomorphism) will be called a special punctured-cube-with-
handles provided that M* is embeddable in 8. This simply means that
the added handles do not join up different components of oM. We note
that if M* is a special punctured-cube-with-handles and M** is obtained
from M* by identifying a disjoint pair of polyhedral 2-cells in the same
component of 81{* by an orientation reversing homeomorphism, then M**
is also a special punctured-cube-with-handles.

By the connected sum M;3#M, of two disjoint closed piecewise-line-
ar 3-manifolds M, and M,, we shall mean the 3-manifold obtained by choos-
ing a piecewise-linear closed 3-cell By (i =1, 2) in M; and identifying
M,—IntB, with M,—IntB, along 2B, and 8B, by a piecewise-linear ho-
meomorphism k. If each M; is oriented, h will always be chosen to be ori-
entation-reversing, so that M, M, will be oriented. We note that if M
is a 3-sphere-with-handles of genus % > 0, then we can write M = M,
4 M, 4k... 3 M5 where either Mi= §*x & for 1<¢<h (in the case
where I is orientable) or My= 8% x §* for1 < i < h—1and My is a 3-sphere
with one “non-orientable” handle.

By a surface we mean a closed 2-manifold. A polyhedral surface §
in the interior of a 8-manifold M will be called compressible if there exists
a polyhedral 2-cell D in M such that D~ 8= 8D and 8D is not con-
tractible in S. A non-compressible surface is incompressible. Finally,
S" denotes the n-sphere and Z the additive group of integers.

2. The union of two punctured cubes contains no fake
cube.

THEOREM. Suppose that M is a closed piecewise-linear 3-manifold
which can be covered by three open 3-cells. Then M is a 3-sphere-with-handles.
In particular if M is simply-connected, then M = §°

Proof. We note that the converse is also true; for it M is a 3-sphere-

with-handles, then M has a spine which is the union of two collapsible
complexes; thus M can be covered by three open 3-cells.

The proof is assembled from the subsequent lemmas as follows. We
can shrink the open cells covering M to obtain polyhedral, closed 3-cells
B,, B,, B, whose interiors cover M. By lemma 1, m(M) is a free group;
hence by the corollary to lemma 2 we can write M as o connected sum,
M = M’ X, where M’ is a 3-sphere-with handles and X is a homotopy
3-sphere. To complete the proof we must show that £ = §°. This is equiv-
alent to showing that M contains no fake 3-cell. If there were a polyhedral
fake 3-cell C M, we could assume, by performing an isotopy on M if
necessary, that F ~ B, = @; hence F CIntB; v IntB,. It then follows
from lemma 5 with Bi= P; (i =1, 2) that F iy indeed a real 3-cell.
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We note that the generality in stating lemma 5 (also lemmas 3 and 4)
for p.unctured 3-cells rather than merely for 3-cells facilitated their proof
but is not needed for the proof of this theorem.

Lemma 1. If M. s a closed, combinatorial n-manifold, n = 3, which
can be covere_tl by the interiors of three closed polyhedral combinatorial n- cells
then my(M) is a free group (possibly trivial). ’

Proof. Let B, B,, B, be closed, polyhedral combinatorial n-cells

in 3<_a;enera,1 position, and whose interiors cover M. Consider the commu-
tative diagram

td

(M —Tnb By) —— %5 (1)
N\ /
TAN e

N 7(By w B,) -

?vhere 1, j, and k are inclusions. Since n > 3, 4, is an isomorphism; thus j«
18 & monomorphism. Since B; and B, are simply connected, it follows
from van Kampen’s theorem that m(B; v By) is a free group of rank
one less than the number of components of B, n B,. Thus (M) is
isomorphic to a subgroup of a free group and, hence, is a free group.

The following result has been proven by Papakyriakopoulos (see
Theorem 32.1 of [2]) in the case where M is orientable. We could give
a proof similar to his in the non-orientable case, using the theory of
ends, but we prefer the more elementary proof below.

LEMMA 2. Let M be a closed piecewise-linear 3-mamifold whose funda-

menlal group is a free group on h free generators. Then M contains a disjoint
collection of polyhedral 2-spheres 8y, 8y, ..., Sp such that M— U8 is
connected and simply-connected.
) Proof. We proceed by induction on %, noting that the case h— 0
Is trivial. Assume % > 0. In this case, we claim that M contains a 2-sided
incompressible surface 8 which fails to separate M. To construet such
a surface, we use the techniques of [3]. A sketch of the proof of the ex-
istence of § follows in the next paragraph.

Since Hy(M; Z) is infinite, there is a piecewise-linear mapping
Jf: M-8 such that the induced mapping f, is a homomorphism of
Hy(M; Z) onto Z = H,y(8"; Z). For appropriate choice of pely fip)
will be a collection of 2-sided surfaces in M, and some component S,
of f(p) will fail to separate M. If §, is compressible, we apply the loop
theorem and Dehn’s lemma to find a polyhedral disk D C M such that
D~ 8, =2D and 2D is not contractible on §,. We then split S, v D
gilong D to obtain either one or two new 2-sided surfaces, neither of which
13 a 2-sphere in the second case, and at least one of which 8, fails to sepa-
rate M. We continue this process with §;, if necessary, noting that
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7(80) < £(8y) <2, so that the procedure must terminate after (say)
% steps. We take § = S, the desired surface.

Since S is 2-sided and incompressible, the kernel of the inclusion-
induced homomorphism s,(8)—~my(M) is trivial. Hence 7, (8) is a free
group, and in fact must be the trivial group. So 8 is a (necessarily 2-sided)
2-sphere which fails to separate M. The proof is now completed as in
case (2) of the proof of [2], Theorem 32.1, by applying induction to the
3-manifold obtained by eutting M along § and then filling in the two
resulting boundary 2-spheres with 3-cells.

COROLLARY. Assume the hypotheses of lemma 2. Then M = M’ I,
where M’ is a 3-sphere-with-handles and 2 is a homotopy 3-sphere.

A special case of lemma 3 below appears in [1].

Levora 3. Suppose that N is an orientable 3-mandfold, not necessarily
compact but with empty boundary, such that each orientable surface in N
separates N (e.g. suppose that N is simply conmected). If Py, Py are punctured
3-cells (polyhedral anmd in general position) in N such that Py~ Py#=0
and P, u P,#N, then Pyu Py is a special punctured-cube-with-handles.

Proof. The proof follows by induction on the number, n, of com-
ponents of P, noP,.

If n= 0, then since P; u P, N, some component S of oP; v oP,,
say §CaP,, separates N into two components such that the closure
of one of these contains P, v P,. Now P,—P, is the union of a finite
collection of mutually exclusive punctured 3-cells each of which meets P,
in exactly one 2-sphere in 8P, and none of which intersects 8. Thus it is
easy to see, in this case, that P; v P, is a punctured 3-cell.

Now suppose n > 0. We choose a component J of aP; ~ 0P, such
that J bounds a disk D C 2P, with Int D ~ 9P, = @. Thus either P, ~ Int.D
=@ or IntD CIntP,.

I IntD ~ P, = @, we add to P, a 3-cell neighborhood of D in such
a 'way to obtain a punctured 3-cell P§ such that P, v P is homeomorphic
to P, v P, and 9P, ~ 2P has fewer than n components. By induction
P, v P}, hence P, u P,, is a special punctured-cube-with-handles.

If IntD CIntP, then we choose a piecewise linear embedding
D x[—1,1]C P, satisfying :

D x{0}=D,
oD x[—1,1]CéP,,
(IntD) x[{—1,1]CInt P, ,
Dx(0,1]nP,=0, and
D x[~1,0)CIntP,.
In 8P, there are 2-cells B, and B, such that B, n B, = 08, = 0B, = 3D
and such that 6D x[0,1]C B, (¥, v B, is the component of &P, con-
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taining ?D). If P, 2 IntE, = @, we can use the argument of the preceding
case (with F, tak%ng the role of D) to conclude that P, v P, is a special
punctured-cube-with-handles. Thus we assume that P, IntE; # 8.

Now P,—D x(—1,1) is the union of two disjoint punctured 3-cells Py
and Py, with )

B,—0D X[~1,0]CePy and B,—&D x[0,1]CaP, .

Since P; meets both F,—aD x[0,1] and F,—aD X[—-1, 0], there is
a polyhedral arcA in IntP, such that

IntA ~nP,=0,
one end point of A is in 9Py, and
the other end point of A is in 8P, .

‘We add to P,, v Py, a small neighborhood of A to obtain a punctured
3-cell P} satisfying

P,OoP;CP v P,
(Pyv Py)—(Pyw P3) =D X(0,1), and
0P, ~ 0P3 has fewer than n components .

By induection P, v P is a special punctured-cube-with-handles. Since
P, v P, i3 obtained from P, v P} by attaching the handle D x[0,1]
and since N is orientable, the proof will be complete if we show that
D x{0} and D x {1} lie in the same component of 3(P, v P¥). If this is
not the case, there is a closed, orientable 2-manifold 8§ in Int(P, v P3)
and an are B in P, v P$ with one end point in D x {0}, the other in D x {1}
and with B ~ § consisting of exactly one point at which B pierces S.
We join the end points of B by an are in D x[0, 1] to obtain a simple
closed curve which meets S in exactly one point and pierces S at this
point. This leads to the contradiction that 8 fails to separate N.

Lemwma 4. Suppose that M is a closed 3-manifold and F and F' are
compact, polyhedral contractible 3-manifolds-with-boundary in M with
FCIntF'. If there are punctured 3-cells P, and P, in M .such that
FCIntP, v IntP,, then there are punctured 3-cells Pt and P5 in M
(polyhedral and in general position) such that F CIotPf w IntP; and
PfuPICT.

Proof. We assume that P; and P, are polyhedral and that oP, v
w 8P, v oF' is in general position. We let n = (number of components
of 9P, n 8F') 4 (number of components of 2P, n oF").

I n=0welet Pf=PinF (i=1,2)

If » > 0 then there is a disk D CoF’ and a value of 4 such that
oD CoP; ~ oF' and IntD n aP;= 0. Suppose 4= 1.
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If IntD ~ Py = 0, we add to P; a 3-cell neighborhood of D to obtain
a punctured 3-cell Pi such that FCIntP; v IntPa. and 8P{ ~ oF’ has
fewer components than does 8P, ~oF'. The conclusion then follows by
induction. .

¢ TntD C IntP,, we remove (as in lemma 3) & small product neigh-
borhood of D from P; to obtain two disjoint punctured 3-cells Py and Py,.
‘We require that the neighborhood we remove is small enough that
FCIntPy v Int Py v IntP,. If one of Py; (say P;;) does not meet
we let P, = Py,. If both meet F' we take an arc A in IntF’ such that
IntA (P v P,) = @ and one end point of A is in 8Py, and the other
is in 2Py,. In this case we let P{= Py v Py, v (small neighborhood of A).
Tn either cage the construction can be made so that Pi is a punctured
3-cell such that F C IntP; U Int P, and 8P; ~ 2F has fewer components
than does 9P; ~ OF". Again the conclusion follows by induction.

LeMoia 5. Suppose that M is a closed 3-manifold and I is a (polyhedral,
compact) contractible 3-mamifold-with-boundary in M. If there emist punctured
3-cells P, and P, (polyhedral and in general position) in M such that
FCIntP, v IntP, then F is a (combinatorial) 3-cell.

Proof. We add a collar to F' to obtain F’ such that F C IntF" and
7 —F = aF x[0,1]. By lemma 4 we assume that P, v P, CIntF.

Then by lemma 3 (with ¥ = IntF'), Py Py i3 & special punct‘.ured;
cube-with-handles. Thus F can be piecewise-linearly embedded in §
and hence iz a 3-cell.
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f-closure algebras
by

Peter Wilker (Bern)

1. Introduction. In the theory of closure algebras (cf. [2] and
the references given there) several elementary algebraic problems ecan
only be solved if appropriate completeness conditions hold for the algebras
involved. The following are examples of this situation. 4 denotes a closure
algebra, B a Boolean algebra.

1.1. Consider the set € of all closure operators on B, ordered as
usual. Whereas in topology the corresponding set of all topologies is
a complete lattice, this will in general be no Ionger true for C. If B is
complete, however, C is a complete, lattice.

1.2. Consider a Boolean epimorphism A4 --B. In his paper [2],
Sikorski solved the problem of defining a suitable closure operator on B
as an analogue to the quotient topology. His construction makes use
of a basis and of several assumptions about completeness properties of 4.

1.3. The inverse problem of lifting a closure operator has also been
investigated Dby Sikorski. Given a Boolean epimorphism B-—>4, can
a suitable closure operator be defined on B similar to the topology induced
by 2 mapping on its domain? Sikorski (cf. [2], [3]) constructed a closure
operator on B in such a way that its quotient operator on A coincides
with the given one. Again he assumed the existence of a basis and ¢-com-
pleteness. :

14.If A—-B or B-»4 are Boolean monomorphisms instead of
epimorphisms, one is confronted with the problems of extension and of
contraction of closure operators. Both problems have been investigated,
though only incidentally, by MeKinsey and Tarski (cf. [1]), using complete
algebras.

1.5. Given a family 4; (4 e¢I) of closure algebras, one might be
interested in their product and in their coproduct. While the construction
of the product is trivial, the coproduct will in general not exist. Let @
denote the Boolean coproduct of the Boolean algebras 4; (called “product”
in [4]). A suitable closure operator can be defined on @ using the methods
mentioned in 1.1 and 1.4, provided @ i3 complete.


GUEST




