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Left completely continuous semi-algebras

by
B. J. Tomiuk (Qttawa)

1. Introduction. A strict semi-algebra A in which for each
element @ the multiplication operator Ts: x—azx (xe.A) is completely
continuous is called a left completely continuous (lec) semi-algebra. Thus,
every striet locally compact semi-algebra is lce. In § 2 we give an example
of an lec semi-algebra which is not locally compact. We also exhibit an
example of an lec semi-algebra A such that the Banach algebra
B=cl(4—A4) is not a ce algebra in the sense of Kaplansky [9]. More
examples are discussed in § 9.

Tt turns out that much of the technique developed by Bonsall in [3]
for locally compact semi-algebras can be carried over to lec semi-algebras.
In fact, if A is an lec semi-algebra and « is an element of A whose gpectral
radius » is different from zero, then the set I = {# ¢ A: aw = vz} is a non-
zero closed right ideal which is a locally compact semi-algebra. The
importance of this observation will become clear when we come to discuss
(in § 5) the existence of minimal closed right ideals and minimal idem-
potents in an lece semi-algebra.

In § 3 we introduce the concepts of an sa-quasi-regular element and
an sa-quasi-regular left (right) ideal which lead us to the definition of
the radical in § 4. Our definition of semi-simplicity (i.e., radical = (0))
is different from that given by Bonsall in [3], but the two definitions
are equivalent for strict locally compact semi-algebras. In § 6 the two
definitions are compared and we discuss an example of an lec semi-algebra
which is equal to its radical but is semi-simple in the sense of [3]. In.§ 7
we study semi-simple lec semi-algebras in general and in § 8 we restriet
ourselves to those that are also commutative and prime. -

There is one aspect of the theory of lec semi-algebras that is no
treated here; namely, the representation theory of lee semi-algebras.
Some results have been obtained in this direction, but much more spade
work has to be done before one can see how far this aspect of the theory
can be developed.

2. Notation and examples. Following [3] and [6] by & semi—
algebra A we shall mean a non-empty subset 4 of a Banach algebra B
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such that whenever a, b are in A then ab ¢ A and aa +4-$b ¢ A for all real
scalars @ >0, f > 0. An element a of A is said to be left completely con-
tinuous if the mapping Ta: —ax (¢ e A) is completely continuous in 4,
ie., the sequence {T,x,; has a convergent subsequence whenever {z,}
iz a bounded sequence in A. Similarly we define a right completely con-
tinuous element of 4. If an element a of A is both left and right completely
continuous, we shall say that a is completely continuous.

A semi-algebra A is said to be strict if 2 ¢ A and —o ¢ 4 imply that
z= 0. A is called a locally compact semi-algebra if the set of # in 4 with
el <1 is a compact subset of B.

A semi-algebra A is called a left completely continuous semi-algebra
if A is a non-zero, strict, closed semi-algebra in which every element is
left completely continuous. Similarly we define a right completely con-
tinnous semi-algebra. If a semi-algebra 4 is both left and right completely
confinuous, we shall say that A is a completely continuous semi-algebra.
Tt is clear that a commutative left completely continnous semi-algebra
is completely continuous.

From now on we shall use the abbreviation lec semi-algebra A for
a left completely continuous semi-algebra. Throughout R will denote the
real number field and BT the set of all non-negative real numbers.

We shall now give some examples of lec semi-algebras. We borrow
the notation and terminology from [3] and [6]. As our first example we
shall show that if X is a partially ordered Banach space with a complete
cone X such that X = ¢l(X* —X"), then every positive compact operator
gives rise to an lec semi-algebra. This will follow as a simple ¢onsequence of
a result due to F. F. Bonsall (Theorem 1 in [5]). As his paper has not yet
appeared in print, for the sake of completeness we state his result
in Lemma A below and also include the proof as given in [5]. Let X be
a Banach space and let B(X) be the Banach algebra of continuouns linear
operators in X with the usual operator norm. Let ¢ be an element of B(X).
The centralizer ¥ of ¢ is the set of all elements of B(X) which commute
with ¢ Tt is clear that Y is a closed subalgebra of B(X).

Lemva A. Let ¢ be a compact linear operator in a Banach space X
and let Y be the centralizer of t. Then the mapping a~>ta (a e ¥) i a compact
linear operator in Y.

Proof. Let X, denote the closed unit ball in X, and let B = 7X,.

Then ¥ is a compact subset of X in the norm topology. Given a ¢ ¥ with
llall <1, we have

atX, = taX, C1X;

and therefore, by continuity, a¥ C B. Let as € ¥, |an) < 1, (n = 1,2, ...
Then, for each » ¢ B, the set {@,2: n =1, 2, ...} is contained in the compact
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subset B of the Banach space X. Also

lan® —ane'l| <llo—zll (e,2'eE, n=1,2,..
=y

which shows that the mappings z—aw (@eE, n=1,2,...) form an
equicontinuous sequence of mappings of the compact space F into the
Banach space X. By Ascoli’s theorem for Banach space valued functions,
it follows that there exists a subsequence {as,} such that {a, x} converges
uniformly for z in E. Consequently, {as{z} converges uniformly for =
in X,, and so {as!} converges with respect to the operator norm. Since
an,t € Y is closed, this shows that {an,t} converges in Y. Finally, ta, = ant.
Thus T a—ta (@ e Y) is compact in ¥, and the proof is complete.
ExampLE L. Let T be a compact linear operator in a Banach space X.
We shall denote by P[77] the set of all operators in X of the form

[
i
X
i=1

with ¢; 2 0 (i= 1,2, ..., n). Let A[T] be the closure of P[] with respect
to the operator norm. A[77] is the least closed semi-algebra containing 7'
From Lemma A it follows that, for each a e A[T], To: x—0x (z  A[T])
is a completely continuous operator in A[T]. However, the semi-algebra
A[T] may fail to be strict. But if X is a partially ordered Banach space
with a complete cone X* such that X = (X" —X") and T is a positive
compact linear operator in X, i.e., TX*CX*, then A[T] is an lee semi-
algebra. In particular, if X = C([0,1]), the Banach space of all con-
tinuous real-valued functions on the closed interval [0,1], and T is the
positive compact operator defined by

8

(If)(s) = | fyar,

(]

0<s <1,

then A[T]is an lec semi-algebra which is not locally compact. In fact A[T]
is a prime radical lec semi-algebra (cf. Theorem 11) and since every prime
locally compact semi-algebra is semi-simple in the sense of [3] as well
as in our sense, it follows that A[T] is not locally compact.

Exampre IT. If is clear that the semi-algebra A[T] generated by
a compact linear operator T gives rise to a completely continuous (ee)
algebra B = cl(A[T]—A[T]) in the sense of Kaplansky [9]. As an example
of a Banach algebra B which is not a ce algebra and which contains an lee
semi-algebra, A such that B = cl(4—A4), consider the set C of all non-
negative increasing convex continuous real-valued functions on the closed
interval [0, 2]. Let 4 be the restriction of the functions in € to the set
B =1[0,1] w {2}. Then A is a prime commutative lcc semi-algebra with
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identity and Cp(B)= cl(4—A) (cf. Example on p. 68 in [3]). It is easy
to see that Cx(E) is not a cc algebra. (In fact, let {,} be an infinite se-
quence in B and let {f,} be a sequence.in Cr(¥) such that fa(#.) = 1 and
fal@®m) = 0 for m < n. Then {f,} is & linearly independent set, and therefore
Ty: s>z (¢ e Or(E)) is not ce.)

3. Quasi-regular elements in an lec semi-algebra. Let a
be an element in a semi-algebra A. We define the left partial bound pia)
and the left partial spectral radius gia) of a by

p{a) = sup{|laz]: #e A and |l <1}
and

(@) = lim ()

Similarly we define the right partial bound pr{(a) and the right partial
spectral radius or(a) of a. We shall denote by »(a) the spectral radius
of a, ie., »(a)= limjan|t/n

‘n->00

Lemma 1, Let A be a semi-algebra. Then oia) = or(a) = v(a) for
every a in A. .

Proof. Since
lam+2}

[lal

N
o Tap = (@)

< pifar) < o]

and since

we have gi(a)= »(a). Similarly we can show that or(a)= »(a).

DEFINITION. An element ¢ in an lec semi-algebra A is said to be
left sa-quasi-regular if there exists an element b in A such that a +ba = b.
The element b is called a left sa-quasi-inverse of a. Briefly we call a lsa-
quasi-regular and b lsa-quasi-inverse.

Similarly we define an rsa-quasi-regular element and an rsa-quasi-
inverse. If an element ¢ in 4 is both lsa- and rsa-quasi-regular, we shall
say that a is sa-quasi-regular. It is easy to check that if ¢ ¢ A has an lsa-
quasi-inverse b and an rsa-quasi-inverse ¢, then b == ¢. It is also easy to
see that if »(a) <1 then a is sa-quasi-regular with the sa-quasi-inverse
given by 3 a».

n=1l

A semi-algebra J contained in a semi-algebra A is called a left ideal
of 4 if AJCJ, a right ideal it JA CJ, and a two-sided-ideal if it is both
a left and a right ideal. An ideal J in an lee semi-algebra 4 is called sa-
quasi-reqular if every element of J is sa-quasi-regular. If J is a left (right)
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ideal which i sa-quasi-regular, we shall say that J is an sa-quasi-regular
left (right) ideal.

LimmumA 2. Let A be an lec semi-algebra. If J is a left (right) ideal of A
in which every element is lsa-(rsa-)quasi-reqular, then J is an sa-quasi-
regular left (right) ideal. _

Proof. Let J be a left ideal-in which every element is lsa-quasi-
regular. We shall show that »(a) = 0 for every a ed. In fact, suppose
that »(a) > 0 for some a<J. By Lemma 1, »(a) = gi(a) and, since a is
lee, by Theorem 1 in [1] there exists a non-zero element u in 4 such that
au = wu, where v = »(a). Since aa is lsa-quasi-regular for all « > 0, there

exists b in A such that %a—l—%ba: b. We have

‘%au+%bau=bu, or u-bu=>bu,

which gives u = 0. This is a contradiction. Hence v(a) = 0 and con-
sequently a is sa-quasi-regular.

" Let J be a right ideal in which every element is rsa-quasi-regular.
As above we shall show that »(a) = 0 for every a e J. Let a ¢ J and suppose
that »(a) > 0. For 1 >»=»(a), let

1 1
bz=za+1§a2 +
Then
1 1 1 1
by ”—zd'}-zbza:za"riabz

Since a is lee, by (4.1) in [1], there exists a decreasing sequence {An} of
real numbers 1, converging to » and such that [|bs,|| = co. Let ¢gn = (B3l B
By choosing a subsequence we may Suppose that ag,—>c. Since by, is the
sa-quasi-inverse of a/i, and

(IBs)™ - 60,

we see that q,,»-s»;l!-c; ¢ 5= 0. We have

L . 1 1
Tp— = - == r = ¢a.
¢ lim g };lmhq"a =, 0 Y6

i . . 1 1
Since 1 a is rsa-quasi-regular, there exists bin 4 such that Se + 5 ab = b.
v : E

‘We have lca,-)- 1 cab — ¢b or ¢+ ¢b = ¢b, and so ¢ = 0; a contradiction.
v v

Thus »(a) = 0 and therefore a is sa-quasi-regular.
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COROLLARY. Let J be an sa-quasi-regular left (right) ideal. Then for

every a <d, v(a) =0 and the sa-quasi-inverse of a is.given by Dan.
) n=1
LeMuA 3. Let I and J be sa-quasi-regular left (right) ideals of an lee
semi-algebra A. Then I+J is an sa-quasi-regular left (vight) ideal.

Proof. Suppose that I and J are sa-quasi-regular left ideals. We
argue as in [8], p. 302. Let a ¢ I and b eJ, and let a, and b, be their sa-
quasi-inverses, respectively. Since b+a,b ¢J, b-+a,b is sa-quasi-regular.
Let w be its sa-quasi-inverse. It is easy to check that a, +w +wa, is an
Isa-quasi-inverse of a--b and therefore, by Lemma 2, it is the sa-quasi-
inverse of a-b. )

A similar proof holds for sa-quasi-regular right ideals I and J. In
this case we may take b-+ba,.

CorOLLARY. If {I,;: ae 4} is a family of sa-quasi-regular left (right)
ideals of A. Then the sum D I, is an sa-quasi-regular left (right) ideal.

a€d
LeMumA 4. Let a, x be elements of an lee semi-algebra A, and let o > 0.
Then a(a+x) is Isa-(rsa-) quasi-regular if and only if (a-+o)a is lsa-(rsa-)
quasi-regular.
Proof. It is easy to see that if y is an lsa-(rsa-)quasi-inverse of
a(a+u), then (a+z)a+(a-+2)ya is an lsa-(rsa-) quasi-inverse of (« +x)a.
On the other hand, if z is an Isa-(rsa-)quasi-inverse of (a+)a, then it

can be easily checked that a(a--2)+az(a+ ) is an lsa-(rsa-) quasi-inverse
of a(a-m).

4. The radical of an lec semi-algebra.
TarorEM 1. Let A be an lec semi-algebra and let R be the set {a < A,
ala+) 8 sa-quasi-regular for all x ¢ A and all o ¢ R*}. Then

+(i) R={aed: (a+x)a is sa-quasi-reqular for all we A and all
ae R}

(ii) & is an sa-quasi-regular two-sided ideal and is equal 1o the sum of
all sa-quasi-regular left (right) ideals of A.

(i) R is a topologically nil two-sided ideal and is equal to the sum of
all topologically wil left (right) ideals of A.

Proof. (i) follows from Lemma 4.

(ii). By the d.efini’oion of the set R, every sa-quasi-regular right ideal
belons to R. By (i), R contains also every sa-quasi-regular left ideal of A.
By Len.lmaﬁ Corollary, R contains the sum of all sa-quasi-regular left
(right) ideals. But, if a ¢ &, then

I,={a(a+x): 24 and a0} and

Ja={{a +®)a: x4 and a0}
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are sa-quasi-regular right and left ideals of A, respectively, and be}ong
to R. Therefore R is equal to the sum of all sa-quasi-regular left (right)
ideals, and so R is an ga-quasi-regular two-sided ideal. _ )

(ili). By (ii) and Lemma 2 Corollary, ® is & topologically .Il]l two-
sided ideal. Since every topologically nil left (right) ideal of A is an sg-
quasi-regular left (right) ideal and conversely, it follows that R is the sum
of all topologically nil left (right) ideals.

DerrsITION 2. The set R defined in Theorem 1 is called the radicc‘vl
of A.Tf A= R, Ais called a radical lec semi-algebra, and if R = (0), 4 is
called a semi-simple lee semi-algebra.

TaroreM 2. Let A be a commutative lee semi-algebra. Then the radical R
is a closed two-sided ideal of A.

Proof. Let aecl(R) and let {a,} be 2 sequence in R such that

o — lima,. Let b, be the sa-quasi-inverse of ag (n=1,2,...). Then —ba
is tﬁgwquasi-inverse of a, in the Banach algebra B containing A4 and,

i = = —=1,2,..). But aza = aas (n=1,2,...).
gince by € Ry v(—bs) = (bn) =0 n=1,2, ) Bu . =
Therefore, by Theorem (1.4.23) in [11], @ is quasi-regular. Similarly we
can show that ae is quasi-regular for all > 0. Hen.ce, by the mgment
in the first part of the proof of Lemma 2, we obtain »(a) = 0. Since A
is commutative, a(a+z) is sa-quasi-regular for all ze A, >0, and
80 aeR.

TimmmA 5. Let A be a strict closed semi-algebra and lez W=A—A. Let
8= {wed: || <1} and & = {ax—By: z,y €8, a,f R and at+p=1}.
For each © X let olla = inf{d: 1>0 and e 18"}, Then

(i) |zl 58 & norm on A with ||l = il for all x e A, and |lzls = Hol
for all z . ‘

(ii) % is complete and A is.a clgsed subset of U with respect o liolia -

(iii) A 4 a Banach algebra with respect to |lla.

Proof. (i) and (ii) are proved in [4], PP. 64-65.

(iii). Let us first show that if z,, 2, are in 8%, then the product. 22, € 8.
Let 2 = wm—piys With >0, =0, aAp=1, m,ypel (i=1,2)
Then

2% = 0y 0371 Ty + By Be¥1Ye —Pr02Y1 %2 —a fo®¥s

oy &y +ﬂlﬁi+alﬁ2 Faf=1.
Lt ayay + Bi Bz = f- 1f § = 0, then clearly z12, € 8°. If § # 0, we can write
Gy @ p,

2,2 = f (—ﬁ— By By + ﬁ—“ggiylyz\) —@1-p (1_}‘3 1Y+ 1“%_%%%)

and it is easily verified that z;2; € S°. We have |jz,2,]la < 1. Nowleb 2, 2
be any elements of %, and let 2, u be positive real numbers such that

and
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A—%EB"; #742, ¢ 8. Then, by what we have just prov}ed and the fact -

that ||l is & norm in U, we have [j#2,]la < Au. Tt is ow quite simple to
conclude that [[212,/la < |# M llzolla, "sOthat U is a Banach algebra. '

DerINITiON 3. Let A:be a semi-algebra. The norm [ila defined in
Temma 5 is called the cone #orm of the Banach algébra . )

TeEOREM 3. Let A be an lcc semi-algebra. Let ‘R be the radical of A
and R the radical of the Banach algebra W = A — A with the cone norm ||zl .
Then R =R ~ A. o

Proof. Let aeR, 2% and e & real number. We shall show that
a{a+) is a quasi-regular element of A. Let & = », —x, with »,, %, ¢ 4,
and write « = o, —a, With a;, ¢, ¢ BY. Then '

a(a+2) = ala;+o,) —a(a+2,) .

Let a, = a{o, +,) and a,= —a(a,+ ), and let v4(2) denote the spectral
radius of z in . Since |2lla = ||z]] for 2 € A, we have va(a;) = va(a,) = 0.
Therefore g, and a, are quasi-regular elements of ; in particular, a; is
sla-quasi‘regular. Let b, be the sa-quasi-inverse of a; and b, the quasi-
inverse of a,. Since a(a,+,)+a(o-+a,)b € Ry va(a;+ayby) = 0. Thus
a;+a,b, is quasi-regular. Let w be the quasi-inverse of a,-+a,b,. Using
the fact that a, + a,b, = by, it is easy to show that —b, +w + b,w is a right
quasi-inverse of a,+a, = a(a+x). Similarly we can show that —b -+

+w, +w, by is a left quasi-inverse of a({a ), where w, i3 the quasi-inverse
of ay + by a;. Thus a(a+2) is quasi-regular for all # e Wand all real numbers a;
and 80 a e R. Hence RCR ~ A. On the other hand if ae R~ 4, then
v(a(a+o)) = vala(a+a)) =0 for all zc A and all a> 0, and 50 @ e K.
Thus R =R~ 4.

) CoroLLARY. In the cone norm topology the radical of an lec semi-algebra
i a closed two-sided ideal. ' '

S. Existence of minimal idempotents in an lec semi-
z}lgebra. An idempotent ¢ in a semi-algebra 4 is said to be a minimal
tdempotent if ed is a minimal closed right ideal (cf. [3], p. 52).

TEEDREM 4. Let A be a non-radical lec semi-algebra. Then A contains
a minimal closed right ideal which is a locally compact semi-algebra.

) Pr.o of. Sinee A4 is not equal to its radical, there exists an element «
in A with »(a) > 0. By Theorem 1 in [1] and our Lemma 1, there exists
a non-zero element % in A4 such that aw = »w, where v==y»(a). Let
1= {.n € 4: ax = vx}. Then I is a non-zero closed right ideal and, since a is
lec, it is also a locally compact semi-algebra. By an argument analogous
to that used in the proof of Lemma 1 in [3], we can show that A contains

4 minimal closed right ideal which belongs to I and therefore is locally
compact.
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COROLLARY 1. Hvery minimal -closed vight ideal of A mot contained
in the radical is a locally compact semi-algebra.

COROLLARY 2. Every mom-zero right ideal of A not belonging lo the
radical contains a minimal closed right. ideal which is a locally compact
semi-algebra. L - o

LExuA 6. Let B be a closed subset of an loc semi-algebra A such that
ol CE (a > 0) and such that S(B) = {w < E: ||l <1} is a compact subset
of the Banach algebra B. containing A. Let a be an element of A such that
(@)r ~ B = (0), where (@) is the right annihilator of a in A. Then aF s
a closed subset of A (and of B).

Proof. The same as that of Lemma 2 in [3].

Liva 7. Let A be an lec semi-algebra and let M be o minimal closed
right ideal in A. If M is a locally compact semi-algebra and M? == (0), then M
contains an idempotent ¢ and M = ed.

Proof. Since M? 5 (0), there exists an element a ¢ M with alM +# (0).
Therefore the closed right ideal (a)y ~n M % M. But M is a minimal closed
right ideal. Terefore (a)r ~ M = (0). Since M is locally compaet, by
Lemma 6, aM is a closed right ideal; moreover (0) 7 aM C M. Therefore
o ="M and so there exists an element ¢ ¢ M such that a¢ = a. We may
now follow the argument given in the proof of Theorem 1 in [3] to show
that e is an idempotent. Clearly M = e4. ) :

“pamorEM 5. Let A be an lce semi-algébra and let R e the radical of A-
If I is a non-zero right ideal of A such that R ~ I = (0), then I contains
a minimal idempotent. )

. Proof. By Theorem 4 Corollary 2, I containg a minimal closed right
ideal M of A which is locally compaet. Since MARCIAR=(0),
M?® # (0) and so, by Lemma 7, there exists an idempotent e in I such
that M == eA.

CororLLARY. If A i8 a semi-simple lec semi-algebra, then every mnon-
sero right ideal of A comtains a minimal idempotent.

TEEGREM 6. Let @ be.a minimal idempotent in an lec semi-algebra A
Then ede a closed division semi-algebra; ede = R'e.

Proof. Let A,= ede. Then 4, is a closed semi-algebra with unit
element e (cf. proof of Theorem 2 in [3]). To show that 4, is a division
gemi-algebra, let eae be a non-zero element of A, and let (eae); be the
right annihilator of eae in A. Then, since eA is 2 minimal closed right
ideal of 4 and e ¢ (eae)y, We have

eA  (eae)r = (0) .

o

Since e4 is locally compact, Lemma 6 and the minimality property of e4
together with the fact that (0) 5 (eae)ed C eA imply thab (eac)ed = eA.
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Hence
eacd,= 4, ,

and thereforc every non-zero element of 4, has a right inverse. Using
the usual group theoretic argument we can show that every non-zero
element of 4, has an inverse, and so 4, is a division semi-algebra. From
Theorem 3 in [3] it follows now that eAe = R¥e, and this completes the
proof.

Later on (Theorem 13) we shall show that, if 4 is semi-simple, the

converse of Theorem 6 also holds.

6. w-semi-simple lec semi-algebras. In [3] a semi-algebra A
was defined to be semi-simple if the zero ideal is the only closed two-
sided -ideal J with J%= (0). An lcc semi-algebra with this property will
be called w-semi-simple.

A semi-algebra 4 is said to be prime if IJ # (0) whenever I and .J
are non-zero closed two-sided ideals of A.

THEOREM 7. In a w-semi-simple lcc semi-algebra A the radical is
a closed two-sided ideal.

Proof. Let R be the radical of A. The theorem is true for K = (0)
and R = 4. So assume that (0) # R # 4 and that R s cl(R). Then, by
Theorem 4 Corollary 2, cl(R) contains a locally compact minimal closed
right ideal M of A and, since 4 is w-semi-simple, Lemma 3 in [3] gives
M* + (0). Therefore, by Lemma 7, cl(R) contains a minimal idempotent e
and M = e4. Now, by Theorem 6, eRe C R*e and, since ¢ ¢ R and eRe C R,
we obtain eRe = (0). Therefore (eR)* = (0) and so, by Lemma 8 in [31,
éR = (0). This shows that ecl(R)= (0) and in particular that e?= 0;
a confradietion. Hence R is closed.

TaroREM 8. A w-semi-simple sirict locally compact semi-algebra A
18 semi-simple.

Proof. Let & be the radical of 4 and suppose that R == (0). By
Theorem 7, R is a closed two-sided ideal of A. Therefore, by Lemma 1
in [3], R contains a minimal closed right ideal M of A and, by Lemma 3
in [8], M*® +# (0). But, by Theorem 1 in [3] (or Lemma 7), this means
that R contains a minimal idempotent e, which is obviously impossible.
Hence R = (0).

TeroREM 9. Let A be an lec semi-algebra. If A is non-radical and
w-semi-simple, then A contains ¢ minimal idempotent.

Proof. If 4 is different from its radical, Theorem 4 implies that 4
conta.i{ls & locally compact minimal closed right ideal M. And if 4 is
w-semi-simple, Lemma 3 in [3] gives M* == (0). Therefore, by Lemma 7,
4 contains a minimal idempotent.

* ©
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LmvwmA 8. Let A be a w-semi-simple lec semi-algebra and let R be its
radical. Then for every minimal idempotent e in A we have Re = eR = (0)-

Proof. If say Ke # (0), then, by Lemma 3 in [8], (Re)* # (0). There-
fore there exists @ ¢ R such that eae # 0. But, by Theorem 6, eaec = Ze,
A€ RT, so that e e R; a contradiction. Hence Re = (0). Similarly we can
show that eR = (0).

TaEoREM 10. Let A be a prime lcc semi-algebra. Then either A is
equal to its radical R or A is semi-simple.

Proof. Since A is prime, 4 is w-semi-simple. If 4 # R, then, by
Theorem 9, A contains a minimal idempotent ¢ and, by Lemma 8, Re = (0).
Therefore R (Aed) = (0) and 80, by the primeness of 4, R = (0). It follows
now that if R s (0), then R = A.

TaEOREM 11. Let X be the Banach space Ogr([0,1]) of all continuous
real-valued functions on the closed interval [0, 1], and let T be the compact
linear operator on X defined by

3
(Tf(s)= [fwar, 0<s<1.
]
Then the closed semi-algebra A[T] generated by T is a prime, radical

lee semi-algebra.
Proof. Let B = [0, 1]. Since

(IO = oy [(e—rfa @eB, feXim=1,2,),

we obtain

m el <l e, feX, n=1,2,.,

which implies that n!|T" <1. Now if e is the identity function, e(f)
= 1(t e B), then

@) (1"‘.;)(3):% B, n=1,2,..).
It follows that
3) AT =1 (=1,2,..).

Let I be the usual Banach space of all real sequences & = {Ca} with [|@}
= Zo‘o [£al < oo, and let I* be the subset of I consisting of all sequences {{a}

n=1
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with {n =0 (n=1;2;..). We ghall show that every element a in A[7
is of the form : R

= D aun!T" with  {an} el
n=1
In fact, for each @ = {an} ™, equality (3) shows that ap= 3 a,n! ™
exists and "

ool < X ann! T = 3 an;

ne=1

clearly ag ¢ A[T]. But-equality (2) implies-that (aze)(1) = 3 an. Therefore
Nl

oo
ol = 12 = D an .
B n=1
) Let w e A[T]. Then there exists a sequence {u,} in P[7] such that
wluiﬂun-—-u[] =0, and each u, is of the form a,,, where @, ¢I" and has

only finitely many non-zero terms. Since |@y]| = [[uall, {Pn} is bounded
and so, by the w*-compactness of the closed unit ball in I, there iz a w*-
cluster point @ of {$n}; & € I". We shall now show that u = a,. For fe X
and 0 <s <1, inequality (1) gives n!(T")(s)—0. So for feX and s'in
0 <#<1leb @y, = {n!(I"f)(s)}. Then the sequence ty, € o and (wnf)(s)
= (a%f)(s):.@,,(w,,s), Since @ is a w*-cluster point of {®,}, B(wy,) is
a cluster point of ’{@n(w,,,,)}. But @y(2ss)—(uf)(s). Therefore (df)(s)
= B (3,5) = (aqgf)(s) for all 0 < s < 1 and feX and so, by the continuity
of the fun_ctions (uf}(s) dnd (aef)(s) in B, we obtain ap = ». Thus every
elemant:, ain 4.1[1'] is of the form a,, with &  I*. It follows that the ma.ppin;t:
D->a, iy an isometric isomorphism of the semi-algebra I* onto the semi-
a;‘lgebra, A[T]. (The multiplication operation in I" is the usnal multiplica-
tion f‘oy series). This shows in partucilar that A[T] is prime. Since 7' is
a positive linear operator acting in a Banach lattice X A[TY is Striet“
Therefore 4[T] is a prime strict semi-algebra and, 7 I;eing a eompa,cl.‘
oga)rato;,flxemma A implies that A[T] is lec. Since y(T)=0, we havl;
»(a) = 0 for every a ¢ A[T] an is R its radi i
ot o oot ot e [m:l]eored;:n s‘o A[T] is equal to its radical. This com-
Remark. The proof of Theorem 11 given here was suggested to me
by F F. Bonsall. It is easy to see that the operator 7' above is a reduciblv;
positive operator (in the sense of [6]) acting in the Banach lattice Cr([0, 1]).

7. Semi-simple lce semi-algebras.

_THEOREM 12. Let ¢ be a minimal
semi-algebra A. Then the least closed two
closed two-sided ideal.

idempotent in a semi-simple lec
~sided ideal I containing e is a minimal
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d 4 d ¢

Proof. Let J be a closed two-sided ideal of 4 contained in I, and
suppose that J = I. Then e ¢J and so e4J Ced ~J = (0). Thus ed CJy,
where J; is the left annihilator of J. Since J; is & closed two-sided ideal
of A and eedy, ICJ:. Therefore J% C IJ CJiJ = (0), and so, since A
is semi-simple, J = (0). Thus I is a minimal closed two-sided ideal.

TeEROREM 13. Let ¢ be an idempotent in a semi-simple loc semi-
algebra A. Then e is a minimal idempotent if and only if ede is a divisjion
semi-algebra.

Proof. If e is a minimal idempotent, then, by Theorem 6, ede is
a division semi-algebra; ede = R¥e. Suppose that ede is a division semi-
algebra, and let I be a non-zero right ideal contained in e4. Since I® £ (0),
there exist elements ea and eb in I such that eaeb = 0. In particular
eae = 0. Let ¢ be an element of ede such that eaec = e. Then ‘

eAd DIDead D eaecA = ed .

Thus I = ed and 50 ¢ is a minimal idempotent.

THEOREM 14. Every mon-zero lefi (right) ideal in a semi-simple lec
semi-algebra A contains a minimal idempotent.

Proof. Since 4 is semi-simple, by Theorem 5 Corollary, every non-
zero right ideal of A contains a minimal idempotent. Let J be a non-zero
left ideal of A and let @ be an element of J with »(a) = 1. Then I = {r < 4:
ax = g} is a non-zero closed right ideal (see proof of Theorem 4) and so
contains a minimal idempotent, say f. Sinee faf = f, we have (fa)* = fa,
50 that fa is an idempotent, and fa e J. The equality (fa)d = fA shows
that fa is a2 minimal idempotent.

Luvma 9. Let ¢ be a minimal idempoteni in a semi-simple loe semi-
algebra A. Then, for every a € A, Aea (ae) is either the (0) ideal or a minimal
left - (vight) ideal.

Proof. Suppose Aea # (0). Since ede is a division semi-algebra, by
the argument of the proof of Lemma (2.1.8) in [11] it follows that Aea
is & minimal left ideal. Similarly we can show that if aed = (0), then it
is a minimal right ideal.

COROLLARY. Let J be the set of all minimal idempotents in A, and let 34
denote the set of all finite sums €,a; -+ ... +enn with es € 3 and as € A. Then JA
is a two-sided ideal of A.

TomorEM 15. Let A be a semi-simple lec semi-algebra, and let ¢ be
an idempotent in A. Then eA is a minimal right ideal if and only if Ae is
a minimal left ideal.

Proof. Tf ed is a minimal right ideal, then, by Lemma 9, Ae is
2 minimal Jeft ideal. Suppose that Ae is a minimal left ideal and let f
he a minimal idempotent in Ae. Then Ae= Af and so ¢= af for some


GUEST


136 B. J. Tomiunk

a e A. The equality ed = af4 and Lemma 9 show that ¢ ix a minimal
idempotent.

LemMA 10. Let e, f be minimal idempotents in a semi-simple lec semi-
algebra A. Then eAf 5= (0) if and only if e and f belong to the same minimal
closed two-sided ideal.

Proof. The same as that of Lemma 5 in [3].

Lemuma 11. Let e, f be minimal idempotents in a semi-simple lee semi-
algebra A. Then there is an element w in eAf such that eAf = RTu.

) Proof. We follow the proof of Lemma 6 in [3]. If ¢,f belong to
different minimal closed two-sided ideals then, by Lemma 10, edf = (0)
-fxlnd we take 1 = 0. If ¢, f belong to the same minimal closed two-sided
ideal then, by Lemma 10, eAf = (0), and so there exists an element o
of A with eaf 5= 0. Since fAf = R'f and ed = cafd, we have eAf — cafAf
= eaf (fAf) = eaf (R'f) = R'eaf = R*u, where u = eaf.

'.];]IEOREM 16. Let {My: aed} be the family of all minimal closed
two-sl.ded ideals of o semi-simple lec semi-algebra A. Let [J be the set of
all minimal idempotents in A and let 3, = 3 ~ M, (a € 4). Then the following
statements are true:

. s (i) The sets 3, are mutually dispoint and non-empty, and their wnion
is 3.

. (ii) For each pair of elfments e, fin I, there ewists a non-zero element w, ;
in eA]f such that eAf = R¥w,,s; moreover, for all elements e, f,y,h in Jay
We,jWop = Ml fOr some 4> 0. Also J,= Rtw,; is a two-sided ideal

of A contained in M., and cl(J,) = M,. efel,
(i) T4 = 43, = 5,43, = J,.

. Pro of.. (i). That each 3, is not empty is elear from Theorem 5 Corol-
]u_y.jl;o, since M, .~ My = (0} for a 5 f, 3, ~ 3y = @, and, by Theorem 12,

a€d

) (11) The first assertion follows from TLemma 11 ¢ is
venfn?d in the proof of Theorem 7 in [3]. It is clear that ; :l 1()13 zslgzrrfie—:\.(;ggbr:
contained in M,. To show that it is an ideal of A,let aed and e, fed,
If fa= 0 and ae = 0, then clearly aw,; and w.; a eJ,. Suppos; th;{:
fa # 0. Then, since A is semi-simple, Afa s (0) and so, by Theorem 14
and Lemma 9, Afa = Ap for some minimal idempotent p.7 Since Afa C M,
P Z Ja._ We ham_e_r edfo = eAp = R*w,, CJ,. Similarly, if ge 0 then
aedf = qAf = R"w,; eJ,, where ¢ is a minimal idempotem; in Ja.’ Thus
Zﬁ}l)ai]:dawéii)zegeglf tg {;1 and 80 J, is a two-sided ideal of 4. Since
property of A e 1211 (3,) ile;l{:f 4 contained in M,, the minimality
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(iii). We show that 3,4 is a two-sided ideal of 4. Since each element
of 3,4 is of the form e,a; +... + 6zt With ;e J;and ase 4 (i=1,2, .., 1),
it clearly suffices to prove the following: given e¢eJ, and a e A, there
exist f €3, and b ¢ A such that ae = fb. In fact, this is immediate if ag = 0,
for then we can take f= e and b==0. If a¢ # 0, then, by Theorem 14
and Lemma 9, aeA = fA for some minimal idempotent f and f « 3. because
aed C M,; whence the assertion. Thus J.4 is a two-sided ideal of 4, and
similarly we can show that AJ, and 3,43, are two-sided ideals of 4. Also,
each of these ideals, as well as J,, is the smallest ideal containing J.

TEma 12. Let A be a semi-simple commutative lee semi-algebra. Then
every minimal closed two-sided ideal I of A contuing a single minimal idem-
potent ¢ and I = eA = ede = R'e.

Proof. Let e, f be minimal idempotents in I. Since 4 is commutative,
[ = eA = eAde = Rfe=fA. Thus f= 1¢ and, since f*=f, 1= 1.

TrmorEM 17. Let A be a semi-simple commulative lec semi-algebra,
and let 3= {e,: oA} be the set of all minimal idempotents in A. If a is
a non-zero element of A, then v(a) > 0 and for each e, in 3 there exists a non-
negative real number 1, such that 6= Jata- Moreover, supil,: aed}
= v(a) and there exists an €, in J such that ae,, = v(@)eq.

Proof. Since A is commutative and semi-simple, »(a) > 0 for every
non-zero & € A and, by Theorem 6, ae, = €206, == Iy With 2,2 0 (ex € J)
Since [|(ae)"[*" < ™| el™ and |l > 1, we obtain 4 < (), which
implies that sup{i: aed} <v(a). To show that we actually have
sup{d,: a €4} = v(a), we shall prove that there exists an e;ed such
that ae,, = v(a)e,,- Now, by Theorem 1 in [1], for every non-zero a cd
there exists a non-zero % e A, such that ew = v(a)u; moreover, the com-
mutative and semi-simplicity properties of A imply that (34)w # (0).
Therefore there exists e, in 3 and g in R*, p + 0, such that e, 1 = péq, -
Thus

pata, = (@) ue,, = v(a)pta, 5 and s0  aeq == v(a)eq, -

ComoLLARY 1. Let A be a semi-simple commutative lee semi-algebra.
Then, for every mon-zero element a in A, the set of minimal idempotents e
in A for which ae= v(a)e is non-empty and finite.

Proof. For every a # 0, by Theorem 17, »(a)> 0 and the set of
minimal idempotents ¢ with ae=v(a)e is not empty. Moreover, since
the ideal {z ¢ A: aw = »(a)x} is locally compact, by Theorem 6 in [3]
and Lemma 12, this set is finite.

COROLLARY 2. If A is a semi-simple commutative prime lco semi-
algebra, then A contains a single minimal idempotent p and ap = »(a)p
for every a in A.
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Proof. Suppose that e,f are distinct minimal idempotents in A.
“Then, by Theorem 12 and Lemma 12, 4 contains two distinet minimal
closed ideals I = ¢4 and J = f4, and IJ = (0), contradicting the primeness
of A. Hence there exists only one minimal idempotent p in A, and, by
Theorem 17, ap = »(a)p for all ae 4. '

8. Semi-simple commutative prime lece semi-algebras.

LeMma 13. Let A be a semi-simple commutative prime lee semi-algebra.
Then there exists a positive real number M such that, for every a e A,

llall < Mw(a) .
‘ Proof. By Theorem 17 Corollary 2, A contains a single minimal,
idempotent p and ap = »(a)p for every a in 4. Since P is lec and p? = p,

the seb W = {pa: ac¢ A and |a =1} is a closed compact subset of 4
(and hence of the Banach algebra B containing A), and 0¢ W. Let

%= inf{llo): v W}.
Then
» = inf{[lpa|: » e W}.

By the compactness of W, x is attained and, by Theorem 17 Corollary 2,
px £ 0 for every x in W, and so » > 0. We have

#llall < |lpall = »(a)|Ip}
and the proof is complete.
THEOREM 18. Let A be o semi-simple commutative prime lec semi-
algebra, and let 8 = {a ¢ A: v(a) = 1}. Then
" A.(i) 8={acd: ap=p}, where p is the unique minimal idempotent
3
(i) § s a bounded closed convex set;
(?ii) 8 is a semi-group with respect to the multiplication given in A;
i (iv) S 8 a base for A m the sense that every mon-zero element a of A
48 @& umique representation in the form a = is with 1> 0 and s e 8.
Proof. (i). _By Theorem 17 Corollary 2, ap = »(a)p for all @ in 4
and 80 ap = p if and only if v(a)=1. ’
Lo n(ll;).lgys(ii); gdisn ;egosed convex subset of A and hence of B, By
(iif). That § is a semi-group is immediate from (i).
(iv). Let a be a non-zero element of A. Then »(a) 0, and 80 a = 1s

with 1= v(a,) and § = A—las s. The uni v :
easily verified. queness of thé representation iy
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THEOREM 19. Let A and 8 be as in Theorem 18. Let a ¢ 8 and let G(a)
be the set of all limit points of the sequence {a"}. Then G(a) is & non-emply
compact abelian group contained in the semi-group S. If u s the identity
element of G(a), then G(a) is the closure of the set {aku: k==1,2,..}.

Proof. We recall that an element b in 4 is a limit point of the se-
quence {a"} if for every £ > 0 there exists a strictly increasing sequence
of integers, #,, My, ... such that [a—b||l <e (k=1,2,..). (In [6], such
a point b is called a cluster point.) Since § is a semi-group and a € §, a® e §
(n=1,2,..) and the sequence {a"} is bounded. Now either (1) {a"} has
only a finite number of distinet terms (this happens when a™ = a# for
some positive integers m,n), or (2) {a"} has all its terms different. In
case (1), @G(a) is clearly a non-empty closed set. In case (2), the lee prop-
erty of the element a and the boundedness of the sequence {a"} show
that G'(a) is not empty. Since we are working in a metric topology, G(a)
is the derived set of {a"} and therefore is closed. By the argument given
in the proof of Theorem 4 in [6], G(a) is a group.

Let « be the identity of G(a). Since % is lec and uz = x (x € G(a))
and since G(a) is a closed subset of 4 (and hence of the Banach algebra B
containing 4), it follows that G(a) is compact. That G(a) is the closure
of the set {a*u: k=1,2, ..} follows from the proof of Theorem 8(v)
in [6]. (In case (1), thiz is immediate.)

COROLLARY. Every element t of G(a) generates a prime strict locally
compact semi-algebra A{t]. Moreover, if p is the unique minimal idempotent
in A[t], then

p= 71‘1530 ;%(t+t2+... +1 .

Proof. It is clear that A[t] is strict and prime. Also, since tu = {,

A[f] is locally compact. Let

th==(+1 ...+

I

and let S[t] be the set of all elements s of A such that sp = p. Then, by
Theorem 18 and the fact that A4 is locally compact, 8[t] is a convex
compact semi-group. Since t e S[f], t" ¢ S[¢] (n=1, 2, ...) and, since S[t]
is compact, the sequence {{,} has at least one limit point. Let ¢ be a limit
point of {t,}. We have ‘

ty—tn = 0T —1)
80 that lim (i, —1s)= 0. Thus tg= ¢. Moreover, the sequence {[t"|l} is
bounded. Therefore, by Lemma 1 in [6], pg = ag, ¢ > 0. Since p is idem-
potent, a = 1, and 50 pg = ¢. But pg = p, since ¢ ¢ §[t]. Therefore p = ¢.

Fundamenta Mathematicae, T. LXIV 10
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It follows now that the sequence {t,} has a unique limit point p, and so
limiy = p. .
#-200 ) . e )

TaEorREM 20. Let A be o semi-simple commutative prime loc -sems-
algebm and let t be an element of A with spectral radius »(t) = 1. Let A[t]
be thie semi-algebra generated by t. Then A[t] is a semi-simple commutative
prime loe semi-algebra and, if p s its umique minimal idempotent,. then

p= ]im—(t‘-}—t o M
n->00 1

Proof. That A[t] has all the properties claimed in the theorem
above is elear. Let t,=n""(f++..+1" and f5 ="\ +... +"™h
(n=1,2,...). Then, by Lemma 13, the sequence {f,} is bounded and
therefore, by the lcc property of ¢, the sequence {t;} has at least one limit

point. Let ¢ be a limit point of {t;}. Since »(t) =1, pty' = p (n=1,2,..). ~

Therefore pg= p. As in the proof of the corollary above we can show
that p = ¢. Thus the sequence {f;’} has a unique limit point” p, and so
Lmey = Hma Y +... +" ) = p ,

N0 >0
which completes the proof of the theorem.
See [6] for applications of the group G(a) to the study of spectral

properties of compact linear operators acting in a Banach space for which
A[T] is a prime strict locally compact semi-algebra.

9. More examples. The following examples were suggested by
F. F. Bonsall.

ExampLe III. Let @ be a compact group and let B be a (complex)
Banach algebra. Let 4 be a positive Haar measure on G such that u(G) = 1.
Let & be the vector space of all continuous mappings of G into B. Then $
is a Banach space under the sup norm

Il = sup{lf(z)]: z6}.

Let B’ be the conjugate space of B and let €(@) be the space of all con-
tinuous complex-valued functions defined on G. If ¢ « B’ and fe B, the
mapping gof, given by (¢of) (@) = ¢(f(#)) (» « @), belongs to C(@). Given
fe®, we define the linear functional L; on B’ by

= [(pepax  (peB).

é

By Prop. 2, chap. ITI, § 4, No. 1in [7], there exists an element ay belonging
to the closed convex hu]l of f(&) in B such that Le(g) = p(ay) (p e B').

icm°®
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As usual, we denote a; by [fdu. We have
&

I/ 7w < [ r@aue)
G G

Now if f, g € %, then f(y)g(yx) is a continuous mapping of G into B
for every fixed = ¢ @ and so the integral

() (@) = [F)g(ya)duly)
G

exists and belongs to B for each x ¢ @. Using the right uniform continuity

of g, it is easy to show that f+g is & continuous mapping of & into B. Thus

fxg e B and it is clear that {|fxgll < |fllllgl. Consequently $ is a Banach

algebra under the sup norm and multiplication given by the convolution.
Let 4 be a strict locally compact semi-algebra in B, and let

= {fe®B: f(z) e 4 for every z e @} .

It is clear that +# is a closed subset of B and that if f, g are in #and a, 8
are non-negative real numbers, then af 4+ fg € 4. That + is closed under
convolution is also clear. In faect, let f, g € £ and let 4, be the closed unit
ball of A. We may assume without any loss of generality that f, g € 4,
the closed unit ball of +£. Then f(y)g(y~z) € A, for all #, ¥ « @ and, since 4,
is a closed convex compact set in B, it follows that (f*g)(a) € 4, for every
# € G. Therefore fxg e+t and so 4 is a semi-algebra.

Next we show that « is an lee semi-algebra. Since u is left invariant

(o) (@) = [ fley)gly)du(y) -
(e

Let fest. Then
frdby = {f*g: g 4}

is an equicontinuous family of mappings on & into B. In fact, we have
(=) (@) —(Fg) @)} < [ If(2y) —F(e'y) g (v dp(y)
G

< f If (@y) — F(2'y)ldu(y)

-Liet ¢ > 0 be given. Then, by the left uniform contmmty of f, there exmta

@ nelghborhood N(®) of x such that
IF*g) (@) —(F+g) (@) < &
for all o' e N(x) and all g et,. Since for each z ¢ G the set
{(fxg)(x): g e}

10*
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lies in the compact set [|f|l4y, by Ascoli’s theorem for vector-valued
functions, the closure of the seb fxs is compact. Thus the operator
Tj: g—fxg (g e #) is completely continuous in #. Moreover, the strictness
of A implies that of #, so that 4 is an lee semi-algebra.

Let @ be a non-zero element of 4 and consider the mapping v of C(@)
into # defined by

v f>p()a  (BeC(&)

Tt is easy to see that v is a homeomorphism of (@) into $ which maps
C%(@) into #, where O#(@) is the set of all non-negative real-valued fune-
tions in C(@). Thus if @ is not a finite group, C%(@) isnot a locally compact
semi-algebra and therefore # is not a locally compaet semi-algebra. For
each a ¢ B let & be the mapping given by a(z) = a for all # e G. It is ob-
vious that & e $. If & and b are two such constant functions, then a*b ¢ B
and (4#5)(z) = ab for all @ ¢ G because G(y)b(y~w) = ab for all x,y <« G
and the set {ab} is compact and convex. Thus a—G is an isometric iso-
morphism of B into $, and so if B is not a ce algebra then neither is 3.
We observe that if B contains an identity element, then & is a cc algebra
if and only if B is finite dimensional. In particular, if we fake A = RY
and B= ( the algebra of complex numbers, then cl(4d—A4) is a ce
algebra.

‘We should observe that if @ is a commutative compact group and A
is a commutative strict locally compact semi-algebra then +£ is a commu-
tative lec semi-algebra. If, moreover, 4 is prime, then + is a prime commu-
tative lec semi-algebra. In fact, let us show that if f,ge A and f0,
g #0, then fxg # 0. Since A is commutative and prime, there exist
points @,y ¢ G such that f(y)g(y—) s 0. To simplify notation, let k(y)
= f(y)g(yz); we keep # fixed. Since h s 0, there exists a point a, ¢ A (&)
C A such that a, # 0, and, since A is strict, a, ¢ —4, where —A4 = {—a:
aeA}). But —A4 is a closed convex subset of B. Hence there exists ¢ ¢ B
and a constant y such that

p(b) <y <gle) (be—4).

Since ¢(0)= 0, ¥y > 0 and so ¢(a,) > 0. Moreover, it is easily seen that

¢(b) <0 for all be—A. Thus ¢(a) >0 for all ae 4, and consequently
(poh)(@) =0 for all z @G- Since poh e CE(G) and (o h)(ay) # 0,

[(ponyau=Ing) # 0.
G

Thus af hdp 540, fxg #0, and so # is prime. It is interesting to note

that # is also semi-simple. In fact, since A is semi-simple, 4 contains

- ©
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2 minimal idempotent e. Therefore # contains a non-zero idempotent;
namely ¢, and s0, by Theorem 10, # is semi-simple.

In general, if 4 is not commutative and prime, we do not know
whether semi-simplicity of A4 implies semi-simplicity of £. However, it
can be shown that whenever s+t is w-semi-simple, then semi-simplicity
of A implies that of £. In fact, let a ¢ 4 and f e B. Then, using the de-
composition of the identity for compact Hausdorff spaces (see § 15, 2,
IT in [10] p. 220) and the fact that if ¢ is a p-integrable complex-valued
funetion on @ and r is any element of B, then

Jowr@ ) ={ fomauw}r,
G

we can eagily show that

(f2@) (2) = { Gf fWap@)a,
(@+f)(2) =a ﬁj'f(y)dy(y) :
It follows now that if ¢ is a minimal idempotent in A and fe+#, then
(6xf%8) (@) = e] Gf F)any)fe = 2e

with 1 e R* (because Jf(y)du(y) e A). Therefore éxA+é= R¥e.
&

Let R be the radical of #. Then é+Rx¢ C RYe. So if for some feR,
exfx¢ 7 0, then ¢ e K. This is impossible since R does not contain any
idempotents and & is clearly an idempotent in #. Therefore éx Rxé = (0)
and 80 (R&)? = (0). Now if we assume that #£ is w-semi-simple, Lemma 3
in [3] gives R*¢= (0). But

(f8) (@) = | Gf f@)an(y)je and Gf FW)apy) e 4

for every f e +. Hence if R 3= (0), then

J = {a ¢ A: ae = 0 for every minimal idempotent ¢ in 4}

is a non-zero left ideal of 4. Since A is semi-simple, Theorem 14 implies

that J contains a minimal idempotent ¢. But by the definition of J, ¢* = 0;
a contradiction. Therefore R = (0) and 8o + is semi-simple.

Bxawere IV. We shall now exhibit a method of constructing an lee
gemi-algebra out of a given family of locally compact semi-algebras.
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Let {B,: aed} be a family of Banach algebras and suppose, that
for each a € 4, 4, is a strict locally compact semi-algebra contained in B,.
Let B be the B(oo)-sum of By, i.e., B is the set of all functions on 4 such
that f(a) € B, for each a € 4, and such that for every & > 0 the set {« ¢ 4:
IIf (@)}] > ¢} is finite. B is a Banach algebra under the norm ||f|[ = sup{|f(a)|:
@ e 4} and with multiplication given by (fg)(e) = f(a)g(a). In the nota-
tion of [11], B = (3 Buh-

Let A be the subset of B consisting of those f in B for which f(a) € 4,
for each aed. Then A is a closed semi-algebra in B and, the strictness
of each A, implies that of 4. We shall now show that 4 is an lec semi-
algebra. Let ¢ be an element of A such that #(a) = 0 except on a finite
subset I" of 4, i.e., {(a)=0 for ae A/l Let {a,} be a sequence in 4,
flal <1 (n=1,2,..). Since I' is finite and each A, locally compact,
there exists a subsequence {as.} such that fay(a) converges to an element
b, e A, for each a ¢ I. Let b be the element of B such that b(a) = b, for
ael and b(a)= 0 for a¢l. Then be A, ta,, converges to b, and so
Ty -tz (z ¢ A) is completely continuous in A. Since the set of all t e 4
which vanish off finite subsets of 4 is dense in A, it follows that for each
a ¢ A, the operator T,: z—ax (e A) is completely continuous in A.
Therefore A is an lee semi-algebra. We write A = (D 4,),.

It is easy to see that if {4,: ae4} is a family of lec semi-algebras,
then {Y A,), is also an lec semi-algebra. Let X be a Banach space with
a complete cone X such that X = el(X+ —X 7). Let {T.: a ¢ 4} be a family
of positive compact operators in X, and let A4, be the lec semi-algebra
generated by 7, for each a ¢ 4. Then (3 4,), is an lec semi-algebra which
contains all the operators T,.
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