Maximal chains and antichains
by
P. A. Grillet (Manhattan, Kans.)

An antichain of a partially ordered set B is a subset 4 of E such that
any two distinet elements of A are uneomparable. Our main concern
is the characterization and study of the p.o. sets in which every maximal
chain interseets each maximal antichain (we call such p.o. set chain-
antichain complete, or CAC), and the application to some existence results
in spaces of continuous functions.

Characterization of CAC p.o. sets is achieved under strong finiteness
conditions by considering four element subsets. We call a quadruple
(a,b, ¢, d) of elements of a p.o. set E an Nifa<bhe<bhe<danda
and ¢, a and d, b and @ are uncomparable; and & proper N if furthermore
there i§ N0 ¢ < & < b such that  is uncomparable to a and to d, or an N’
if furthermore b covers ¢ (i.e. there is no ¢ < # < b). If B is finite, then B
is CAQC if and only if it contains no proper ¥, if and only if it contains no N'.
This holds also if B is regular, i.e. if every non-empty chain O of F has
a Lwb. and a g.lb. which are in the closure of ¢ for the interval topology.
Any finite p.o. set is obviously regular.

Next we prove that any regular p.o. set can be embedded into a re-
gular CAC p.o. set, which one can choose “minimum’’. We conjecture
that any p.o. seb can be so completed.

Next we prove that a finite modular lattice which is CAC has di-
mension at most 2 (in the sense of [2]; see also [3], [4]). This provides
a very convenient criterion to recognize that the dimension is at most 2.
Again we suspect that it can be extended to 2 much larger class of p.o. sets.

Finally we consider all continuous real-valued functions on a compact
metric space satistying simple conditions of boundedness and equi-
continuity (so that the chains will have a minimum of good properties),
ordered by either f(x) < g(@) or f(z) < g(z) for all 2. We show that neither
p.o. set is CAC or regular, yet can prove that any maximal chain for the
first ordering intersects each maximal antichain for the second ordering.
An example of existence result is immediately derived as a eorollary.
The technique of proof is the same as in the abstract cases.

The reader is referred to [1] for the fundamentals of p.o. sets. Through-
out, B denotes a given p.o. set.
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1. Maximal antichains. We shall write a||b for: a and b are
unecomparable, so that a subset 4 of ¥ is an antichain if and only if, for
any a,be A, either a=1>b or a||b. This property is of finite character,
whence the set of all antichains of X, ordered by inclusion, is inductive;
therefore every antichain of H, in particular every singleton of &, is con-
tained in a maximal antichain. The set of all maximal elements of E ig
an antichain (possibly empty); if F is inductive, it is a maximal anti-
chain, by:

PrOPOSITION 1. An antichain A of B is maximal if and only if any
element of E is comparable to some element of A.

Proof. If there exists # ¢F which is comparable to no element
of 4, then A v {}is an antichain and A is not maximal. If conversely 4
is not maximal, then any element = of a larger antichain, such that x ¢ 4,
is comparable to no -element of 4.

If A is an antichain, we set:

AY ={ne¢B; a <o for some ac A},
A" ={xwecB; < a for some ae d}.

PROPOSITION 2. If A 4s a mazimal antichain, and if A~, AT # @,
then {47, A, A%} is a partition of .

Proof. By definition of an antichain, A7, 4, 4™ are pairwise disjoint.
If A is maximal, then they cover & by Proposition 1.

) 2. Chain-antichain-completeness. If s chain and an antichain
intersect, they have no more that one common element. This observed
we look for conditions under which ¥ is CAC. ’

PI'ZOPOSITION 3. If B is CAC, then B contains no proper N.

Proof. Let B ].oe CAC and (a, b, c,d) be an N of E. Then {b, ¢} is
eon?;amfad in a maximal chain ¢ and {a, d} is contained into a maximal
antichain A. Let ¢~ 4 = {z}. Since ajl¢, © # a; similarly, ® = d. There-
fore 2@ and =|d. It follows that # < ¢ and b < # are impossible, whence
¢ <@ < b. Therefore (a, b, ¢, d) is not a proper N. ’

Any chain, any lattice of at most 5 elements, are CAC. The following
are examples of p.o. sets, in fact lattices, which are not CAC:

Example 1 Example 2

Example 3

©
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In each example, boldface indicates a maximal chain C, “white” elements
o maximal antichain A, such that ¢~ 4 = . In both example 1 and
example 2, proper N's are obvious. On the other hand, example 3 is
a complete lattice satisfying the descending chain condition but contains
no proper N; it suggests the following additional condition.

DEFINITION 4. We say that E is sup-regular if every non-empty
chain C of B has a Lu.b. supC and if « < supC implies & < ¢ for some
¢ e C. Inf-regular is defined dually. Finally we say that ¥ is regular if it
is both sup-regular and inf-regular.

1§ B satisfies the ascending chain condition, then E is sup-regular,
for then supC e C for any chain C # @. In particular, any finite p.o.
set is regular.

TaroreM 5. If B is regular, then the following conditions are equi-
valent:

(i) B is CAC;

(il) B contains no proper N;

(iii) B contains no N'.

Proof. By Proposition 3, (i) implies (ii); also (ii) implies (iii). Finally
we show that, if # is not CAC, then E contains an N'.

LEvmA 6. Let B be regular and C be a mazimal chain, 4 be o mazimal
antichain of B such that C ~ A= @. Then 0 ~ A™ has a mazimum element ¢,
¢~ AT has @ minimum element b, and b covers c.

Proof. By the hypothesis and Proposition 2, OnA” and O~ AT
are disjoint and cover . First infC e C and inf ¢ is a minimal element
of B, since ¢ is maximal. Therefore infC ¢ At and inf( e C ~ A™. Dually
CnAT £0.

Tet ¢ = supC ~ A~. For any « e C, either y <= for all ye Cn A™
and then ¢ < z; or & <y for some y e C ~n 4~ and then # < ¢; in either
case, ¢ and ¢ are comparable. Since C is maximal, ¢ € C. Also, c € A would
imply @< ¢ for some aed and a<w for some ze (0 4™ (by sup-
regularity), which is impossible. Therefore ¢ e ¢ ~A” and ¢ is maximum
element of ¢~ A™.

Dually ¢ ~ A has a minimum element b. Since b « A*, ce A7, one
must have ¢ < b Tf b does not cover ¢, € is not maximal. This completes
the proof of the lemma.

To complete the proof of the theorem, we find, in the situation of
the lemma, b € A" and ¢ A~ such that ¢ << b= b covers c. Since beAt,
@ <b for some a e A; similarly ¢ < d for some d < A. Then ¢< & con-
tradicts ¢ < b; o << ¢ contradicts ¢ ¢ A™; therefore alle. Dually b||d. Finally
a = d since ¢ < d, so that afjd. Therefore (a,b, ¢, d) is an N, which com-
pletes the proof.
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3. The embedding theorem.

THEOREM 7. Let B be regular. There exisis a p.o. set E such thai:
(i) B CE and for any z,y ¢ B, s <y in B if and only if < y in B,
(i) E 4s regular and CAC;

(i) if EC B, CE, then B, (with the induced order) is not CAG;

(iv) if f is an order-preserving mapping of B into a CAC p.o. set ¥,
then f can be ewtended to an order-preserving of E into E'.

Remarks. The two first properties show that ¥ hag been completed
to a regular CAC p.o. set. The two last properties show that this com-
pletion is minimal in two ways; observe that (iv) is not a universal prop-
erty however, since the extension of f to % need not be unique.

Proof. Theorem 5 suggests that E be constructed by destroying
all ¥ of E. This is precisely what we shall do. Let E* be the set of all
pairs (u, v) such that u, v e E and » <Xv. For any subset § of E*, define

on B=F o § a binary relation by:
z<y (in E) if and only if w<y (in B),
#<(u,v) if and only if z<<u,
(u,v) <z if and only if wv<e,
(wy9) < (w',v') if and only if o< w,

for all @,y € B, (u, ), (u',v') ¢ 8. It is readily verified that this relation
is irreflexive and transitive, so that the addition of the equality makes
ib a partial order relation. The p.o. set & has already property (i). We
show that it is regular for any choice of .

Leywa 8. If O is a chain of B and if (u,v) ¢ 0 8, then C v {u, v}
i8 a chain of E.

Proof. If # ¢ 0 ~ E, then either z < (u,v) and @ < u, or (u,v) <z
and v<< 2. If (w',9') € O ~ 8, then either (w'y 0"y = (u, v) and w < (', v')
<5 or (u,v) < (u,v) and (w',0) < v <u< 9; Or (u,v) < (w',%’) and
% <0< (u,v'). Therefore « and v are comparable to any element of (;
since finally < v, ¢'u {u,v} is a chain. ,

Lemya 9. If Cis a non-empty chain of B, then either C has a mazimum
element or supC exists in B and coincides with the supremum in B of the
chain of all @, u,ve B such that ¢ C or (u,v) e C.

Proof. First (}u {:u, velB: (u,9)eC}is a chain of £ by Lemma 8
and an easy transfinite induction (adding successively all pairs (u, ) e 0).

Therefore this intersects B along a chain, which has a Lw.b. in E, say a,

by sup-regularity, We have to prove that, if 0 does not have a maximal
element, then a is the Lu.b. of ¢ in Z.

©
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Tirst ¢ < @, (%, v) < v < a for any «, (u, v) e 0, so that a is an upper
Dound of O. Let b be another upper bound of C. If b ¢ B, then 2 < b and
u<v<b for any x, (u,v)eC, so that a <bd by definition of a. If
b= (u,v) e8, then, for any e C ~ B, < (v, v") and & < wu'; for any
(u,v) e O, either (u,v)=(u',?') and C has & maximum element, or
(u, v) < (u',v") and w < v < u'; therefore a < u' < b, or else € has a maxi-
mum element. This completes the proof.

Levma 10. E is regular.

Proof. Let ¢ Dbe a non-empty chain of Z. By Lemma 9, ¢ has
a lwb. in B. Let ¢ = sup € and take b < a. If ¢ has a maximum element,
then b < a € C. From now on, we assume that ¢ has no maximum element.
Then o « B and a is the supremum in F of the chain of all #, %, v € H such
that @ € 0, (u,v)eC.

If b e B, then either b<<z or b<u or b < v for some x¢ C ~nE or
some (%, v) € 0, by sup-regularity of B. In the first case b < # ¢ (; in the
second case b < (u, v) € C. In the third case, (u, v) is not the largest element
of ¢ so that (u,v) < ¢ for some ¢ e C; then b <ec.

If b= (4,0, then v’ <a. We show that o' = & is impossible. If
o' = a, then %’ < @ and by the previous case 4’ < ¢ for some ¢ e C. Since C
has no maximum element, 4’ < ¢ < @ = o', which implies ¢ = (@', v') =,
s0 that b« €. But again ¢ has no maximum element, whence b < ¢’ < @
for some ¢ ¢ €. This is impossible since (u',¢’) <o in K. This proves
thabt ' < a. Then, as above, v’ < ¢ for some ¢e C, and b <?' <e.

Therefore B is sup-regular. Dually E is inf-regular, so that it is
regular. B )

Next we show that a suitable choice of S gives B the properties (i)
and (iii).

LeMMA 11. E contains no N' if and only if:

1) 8 contwins all pairs (u,v) e B* such that (v, v, u,y) is an N’ of B
for some %,y e B;

2) whenever z,u,v,y ¢ B are such that v <v, 4 <Yy, <Y, U <,
af|u, ylv and either (z,v)eS or (u,y) eS8, then (u,v)e8l.

Proof. Let (a,b,¢,d) be an N' of B. We show first that b,ce .
If b,ced, then ¢ = (u,v), b= (v,v) and

o= (u,v)<v<u <(u,v)="b

g0 that b does not cover ¢ in B. If ¢= (u,v)e 8, bek, then e<o<b
and b = v since ¢ <2 b; but then b = v < d which is impossible. Tt is dually
impossible that ¢ ¢ B, b 8. Since ¢ <b in ¥, also ¢ <) in F and further-
more (¢, b) ¢ 8. Now we proceed to show that either 1) or 2) does not hold.

" Oase A: a,d e E. Then (a,b,c,d) is an N’ of F and (¢, b)¢ 8 so
that 1) does not holds.
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Case B: a=(u,0) 8, dcB, v b In this case: v < b since a < b;
¢< v contradicts ¢<<b and v<<¢ contradicts alle, so that vl¢; d< v
contradicts bljd and v < & contradicts al|d. Therefore (v, b, ¢, d) is an N’
of E and (¢, b) ¢ 8 so that 1) does not hold.

Case C: a=(u,b)e8, deH, u[ld. In this case: 6< U contradicts
ajlc and % << ¢ implies u = ¢ (since w <3b) and contradicts all¢, so that
ulle. Then (u,b, ¢, d) is an N’ of B and 1) does not hold.

Case D: a=(u,b)ef, deB, v and d are comparable. Then ull¢
as in case O; also d < w contradicts alld, so that w < d. In this case 2)
does not hold.

The cases when ae B, de§ are treated dually. If finally a,de S,
there is as above three cases to consider for each of 4 and d. We leave
these eases to the reader since they are quite similar to cases B, 0, D; in
each case again, either 1) or 2) does not hold.

If conversely 1) does not hold, then (#,v, w,y) is an N’ of B where
(u,v) ¢ 8; (v, %,9) is then also an N of E. Tf 2) does not hold, and if
©,y,%,vel are such that <o, v <y, z<Y, w<v, jlu, v|ly and
(x, v) € § for instance, with (u, v) ¢ §, then {(a, v, , y), where a = (x, v) e 8,
is an N" of E. Indeed, u v in E since (u,v)¢8; a<v; w<y; vly;
if o and u were comparable, then either v < % or u < @, so that aj|u; if a
and y were comparable, then either » <y or y <, so that afy. This
completes the proof of the lemma.

Call now 8, the set of all (u,v) ¢ B* such that (z,v, u,y) is an N’
of E for some z,y ¢ B. Observe that any intersection of subsets of E*
satisfying 2) again satisfies 2); since E* itself satisfies 2) and contains Sy,
there exists a smallest subset S of E* verifying 1) and 2). The corresponding
p.0. set B satisfies (ili) by Proposition 3 and Lemma 11; it is regular by
Lemmsa 10 and, since it contains no N’ by Lemma 11, it is CAC by
Theorem 5.

Finally we show that E has property (iv). In fact this does not depend
of the choice of §. Let f be an order-preserving mapping of & into some
CAC p.o. set B'. If (u, v) € 8, we extend f to (u, ») in the following manner.
If (u, v) ¢ 8,, define f(u,v) = f(v). If (u, v) ¢ 8y, then (z, v, u, y) is an N’
of E for some ,y ¢ B; if (f(z), f(v), f(u),f(¥)} is not an NV of H', define
flu, v) = fv); i (f(&), f(0), f(w), f(9)) is an N of B, then by Proposition 3
it is not a proper N and there exists 2’ ¢ B’ such that f(u) <2’ < f(v),
f(@))2'lf (y); define f(u, v) = #'. It is immediate by the definition of the
partial order on § that f is order-preserving. This completes the proof
of the theorem.

4. The dimension theorem. Recall that F is said of dimension n
if » is the smallest cardinal number such that the partial order of E is
intersection of n total orders (cf. [2]). We shall prove the following

icm
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THEOREM 12. If B is a finite modular latlice and is CAC, then the
dimension of E s at most 2.

Example 1 of Section 2 shows that the converse does not hold. Con-
sider also the direct product R x R x B, where R is the chain of all real
pumbers and B = R u {4 oo} U {—oo}; it can be shown that this is & dis-
tributive lattice of dimension 3 and is CAQ; this shows that the finiteness
assumption cannot be removed in Theorem 12.

The proof can be sketched as follows. We shall assume that E has
dimension at least 3. We consider all order relations R on E such that
x <y implies By and that there does not exist #,y,zeH such that
z << 2, allyllz, vByRz; a total order with these properties can be found
if and only if B has dimension at most 2 (Lemmas 14, 15). Under our
assumption, an order relation R maximal with the two properties
above is not total, so that the addition to R of a pair of uncomparable
elements will make R lose the second property. This yields a pattern
of elements of F from which we manage to extract an N'.

DEFINITION 13. We say that the antichains of F can be coherently
oriented if there exists a total oxder T on F (= a coherent orientation of the
antichains) such that z <y implies Ty and that z|yllz, Ty Tz implies
al|z.

(It can be shown that this is equivalent to the existence for each
antichain A of B a total order T4 on 4 such that, for any antichains 4, B:
1)if #,y e A ~ B, then T4y if and only if #Tpy; 2) if z,y e 4, y,z¢ B,
2 T4y Tpz implies |z or s =y =2.)

LeMMA 14. The antichains of B can be coherently oriented if and only
if the dimension of E is at most 2.

Proof. Assume that the order relation on ¥ is intersection of two
total orders 7, T'. Then x < y implies zTy. Also #||y||z, v Ty Tz implies
xTz and also 2T’y T'x (since 1" is total and 71"y for instance would
imply # < y). Therefore ©7T2, 21", so that z|z. Hence T is a coherent
orientation of the antichains of H.

Assume conversely that there exists a coherent orientation T' of the
antichaing of E. Define a binary relation 7’ on H by: #T'y if and only
if either # <y or xlly, yT». Then T’ is reflexive and antisymmetric.
Transitivity follows from the condition on 7; if for instance z< ¥, ¥lz

- 2Ty, then z< o is impossible; also ajjz, 2Tz is impossible; therefore

T’z Tt follows that 7" is an order relation, clearly total. Finally it is
immediate that #Ty and » T’y implies # < y and conversely. Hence the
dimension of F is at most 2. ;

LuvmMA 15. If E is finile, a total order T on B is a coherent orientation
of the antichains of B if and only if: 1) & < y implies v T'y; 2) «{yllz, aTyTz,
x <3z is impossible. R o . R -

11*
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Proof. These condition are obviously necessary. Conversely, suppose
that T satisfies them but that z|y||2, 2Ty T= for some z,y, 2 ¢ F such
that # and z are comparable. To obtain a contradiction, observe first
that 2T, so that < 2. Choose a maximal chain from # fo 2, with »
elements. If # = 2, then # < 2, contradicting the assumptions on 7. If
there is contradiction whenever # = p, and if # = p-+1, let ¢ be in the
chain and such that # <t< =2 Then y <t contradiets yllz; { <y con-
tradicts @|jy; therefore y||t. Finally T is total so that either yT'%, con-
tradicting 2), or tTy, contradicting the inductive hypothesis. This com-
pletes the proof.

LEMMA 16. Let B be a partial order relation on E and a,beE be
uncomparable for B. Then

R = R o {(&,y); 2Ra, bRy}

is an order relation containing R and such that aR'D.

Proof. This is straightforward. See also [2] for a proof.

Lewvva 17. Let E be o modular lattice. If (a,b,0,d) is an N of H
such that a b or ¢ < d, then B contains a proper N.

Proof. If N is proper, the proof is over. If not, there exists # ¢ B
such that ¢ < # < b, alla||d. If a <b, then a < ave < b makes ava = b;
hence a Az <@ Also a Az <a, ¢<® gale. Finally ¢ < a A x con-
tradicts alle, 6 A # < ¢ contradiets ¢ A 2 <w, s0 that a A z||e. Therefore
(¢,,a A®,a) is an N' of B. The case when ¢ < d is dual.

Lemua 18. Let B be o modular lattice. If B contains elements x,y, 2
such that #lylz, * <z, then B contains a proper N.

Proof. Observe that

s<aVyA)=(svy)rz<z2

80 that either v (y A2) == or &V (y A2) =2 In the first case svy <2
contradicts yllz and 2 <<#vy contradicts (zvy) v 2=, so that zvy|z.
Therefore (y,2Vy,x,2) i8 an N of B, where 4 <32, and the conclusion
follows from Lemma 17. The other case is dual.

Proof of Theorem 12. Assume that E is a finite modular lattice
of dimension at least 3. Let B be an order relation on ¥ which satisfies 1)
and 2) of Lemma 15, and is maximal with these properties: such R exists
since 2) is of finite character. If R were total, then it would be a coherent
orientation of the antichains of B by Lemma 15, and B would have di-
mension at most 2 by Lemma 14. Therefore R is not total. By Lemma 16,
we can find an order relation R’ such that R C R’. Since R’ then satisfies
condition 1) of Lemma 15, it cannot satisfy 2); or else B is not maximal,
Therefore there exists #,y,zeH such that #lyllz, s R'yR'z and o< 2.
Then E contains a proper ¥ by Lemma 18 and is therefore not GAC.

©
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5. Sets of functions. Let R (R') be the set of all real numbers
(all positive real numbers) and K be any compact metric space. For any
mapping ¢ of B into R and any M ¢ R¥, let C(M, ¢) be the set of all
(continuous) real-valued functions f on K such that

(i) If(@)| < M for all x ¢ K;

(ii) [f(®)—f(¥)| < & whenever ¢> 0, 2,y <K and d(z,y) < ¢(e).

Tt is well known that C (M, ¢) can be partially ordered in two fashions:
first, by f < g if and only if f(z) < ¢(2) for all z € K; next, by f < g if and
only if f(#) < g() for all ¢ K. We shall refer to the latter as strict ordering,
and expressions such as strictly comparable, strict antichain, ete. shall
be understood as relative to that ordering. If for instance K is connected,
then it is immediate that two functions f, g« O(M, ¢) are strictly un-
comparable (which shall be denoted by fllg) if and only if f+ ¢ and
fl@) = g(=) for some z ¢ K.

Obviously none of these p.o. sets contains an N'. However it is not
difficult to verify that none of them is sup-regular, unless K has only
one element, and the following examples will prove that they need not
be CAC.

Exampre 19. Take K = [0,1]C R, M = 2 and let ¢ be the identity
mapping of R and the ordering be the strict ordering. The set 4 of all
functions of (2, p) such that f(0) = 0 is clearly a strict antichain; it is
maximal since, for any fe 0(2, ¢), either f(0) = 0 and fe 4, or f(0)>0
and then % < f, where h(z)= —&, he A, or finally f(0) <0 and then
f< —heA.

On the other hand, let f, be defined by fu(#) = 1+ae—sif 0<a<1,
ful@) = 2 —1+aif —1 < a < 0, and let C be the set of all fofor -1 <o < 1.
Olearly C is a strict chain of €(2, ). To prove that it is maximal, take
ge0@2,9). I g1)>0, then g<fw; if g fun, then g(0) <fow(0)
= 1+4g(1), so that g || f. whenever g(0)—1 < a < ¢g(1). It is shown similarly
that, if g(1) < 0, then g is either in (' or is strictly uncomparable to some
element of (. Therefore C is maximal. -

Clearly A ~ 0 = @, so that ((2, ¢) is not CAC for the striet ordering.

ExAMPLE 20. This time we use the other ordering with K = [—1, 41]
CR, M =1 and ¢ the identity mapping of R*. For maximal chain we
take the set of all constant functions of O(1, ¢). Constructing a suitable
maximal antichain takes some more doing.

For each a e K, let f, be defined by: ful#) = 2+1+a when —1<2
< —a and fu(r) =1—a—2 when —a <z <1; let g, be defined by: Jul)
= g—1—z when —1 <# < a, go(#) = 2—1—a when a<z <1 Observe
that fo(—1) = guo(—1) = @, full) = ga(1) = —a, so that go <fa find qa”fﬁl
fallfz, gallgs Whenever a # . The set A of all f, such that‘ a is rational
and all g, such that a is irrational is, therefore, an antichain of C(1, ¢).
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To prove that it is maximal, take he C(1,¢) and set h(—1)=aq,
B{l)=—f. If a=p, then h<foed if a is rational, b= gac A if a
is irrational. If a< B, then observe that h(z) <fu#) for z< —a,
(@) < fa(w) for © > —p; therefore h(w) < f,(z) for al ze K if a<y< By
choosing y in that fashion and rational, we obtain k< f,eAd. We
proceed similarly in case o> f, using the g,’s. In ail cases, h is compara-
Dble to some element of A, so that A is a maximal antichain.

Clearly A contains no constant, so that our p.o. set i3 again not CAC.

Tu view of these examples, the following theorem is the best that can
be obtained in that situation:

TaeorEM 21. For any K, every maximal chain and every mazimal
sirict antichain of C(M, @) intersect.

The proof will use the techniques of Section 2, due to the fact that
some sort of regularity appears when the two ordering are used simul-
taneously, as shown by the two following lemmas.

LemMA 22. Every non-empty chain C of (M, ) has o Lub. supC
in C(M, ). If furthermore C is a strict chain, then f < sup C for all f ¢ C,
f#supC.

Proof. If g = supC exists, it must be defined by: ¢g(z) = Lw.b.f(x)
feC
for all z e K. All we have to show is that the function g defined by this

equation is in C(M, ¢). Clearly |g] << M. Let  be in R* and ,y ¢ K be
such that d(z, y) < ¢(e). First

g(y) =1lub.f(y) <Llub.f(x)+e=g(x)+e.
feC jeC

Also, for each o> 0, there exists feC such that f(z) > g(x) —a; then
91 = 1Y) = f(#) —e = g (@) ~e —a,

whence g(y) > g(»)—e since a was arbitrary. Therefore g ¢ 0(M, ¢).

If finally C is a strict chain, and if fe 0, f = ¢, then f < h for some
heC, whence f < h<<g and f < g.

Observe that sup € is usually not a striet Lu.b. of C.

Lemwia 23. Let G be a non-empty chain of C(M, ) and b e O (M, p)
be such that b < supC. Then h < f for some feC.

Proof. Since g=supC and h are continuous and K is compact,

h < g implies a= gxyg {g{2)—h(z)) > 0. Then la.:tsli;). (9(@) —f () < a for

some f e G {or else, f() < g(w)—a for all f ¢ C, z « K, which is impossible).
Choosing f thus:

k() < g(@) ~a < f(2)
for all # ¢ K, whence & <€ feC.
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Proof of Theorem 21. Assume that a maximal chain ¢ and a maxi-
mal striet antichain A of C(M,¢) do not intersect. First the constant
function +M is in O, since ¢ v {4+ M} is a chain and ¢ is maximal; this
function cannot be in 4 nor in A7, 50 it is in A* and ¢ ~ 4™ 3 @. Similarly
O~A" 0. Let g=supC A", h=infC ~ AT, Note that g < k; also,
every element of ¢ is in AT or in A~, hence is comparable to g, so that
g ¢ 0; similarly he C.

Since ¢ is not in 4, ¢ is either in At orin A, But ge AT implies a < g
for some a e A and @ € fe 0 n A” by Lemma 23, which is absurd. There-
fore ge O ~ A™ and g is the largest element of ¢ ~ A™. Similarly b is the
smallest element of ¢ ~ A%, Since € is maximal it follows that & covers g;
but this is not possible in (M, ¢), which completes the proof.

From Theorem 21 can be derived existence theorems such as the
following:

COROLLARY 24. Let K be a compact connecied metric space and let
{fi vy fu} ond {guy ey go} e two finite disjoint sets of comtinuous real-
valued functions on K such that the fi are pairwise comparable and that
the graphs of any two gs intersect. Then there exists a continuous real-valued
function f on K which is comparable to all the fi and whose graph intersects
the graph of every gi.

Proof. The set of all f; and gy is a finite set of continuous functions
on K and is therefore contained in some € (M, ¢). Then the f; form a chain

- and the ¢ a strict antichain of this C(M, ¢). These will be contained in

a maximal chain and a maximal striet antichain, which by Theorem 21
have in common some function f having all the required properies.
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