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Multiplicative extension operators and locally connected
continua

by

A. Szankowski (Warszawa)

1. Introduction. Let X be a compact metric space. Denote by
04(X) the space of all continuous non-negative functions on X with
the metrie:

el(f, g)=ig§1f(w)~g(w)l for f,ge0+(X).

We shall write fo=3f if ¢{fa,f)—0.

‘Unless otherwise stated, by & space we shall mean & eompact metric
space. “A map” will mean 45 continuons funetion”.

If A and B are closed subsets of a space X, then we define:

dist{4, B) = supd(a, B)+supd(b, 4) .
aecd beB

Let ¥ De a subspace of a space X. A map M: Oy(¥)—04(X) is said
to be a multiplicative extension operaior (meo) if:

(i) (Mf)(y) = fly) for every ¥y e Y and for every fe C{Y),

(i) M(f-g)= Mf- Mg for every f, g e O(¥).

A space Y is said to be an Ay space if for every space X D Y there
exists a meo from C(Y) into Ou(X).

The purpose of the present paper is to prove the following

1.1. TEEoREM. A space Y is an #£Moy-space if and only if 4t is a locally
connected continuum.

Lt us mention some known results related to Theorem 1.1.

Tirst we recall two theorems on the existence of operators of exten-
sion (here O(X) denotes the space of all real-valued continuous functions
on X):

1.2. For every closed subset ¥ of am arbitrary meiric space X there
emists alinear extension operafor Li C(¥)—C(X) (Borsuk [2], Dugundji [6]).
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1.3. If YCX are topological compact spaces, then there exists
o linear multiplicative estension operator from C(Y) into C(X) if ang
only if Y is a retract of X (Yoshizava [11]).

For other results on extension operators we refer the reader to [3].

Observe that 1.2 and 1.3 remain valid if we replace the spaces ¢(x)
and C(Y) by Cu(X) and C4(Y) and “linear operator” by “affine
operator”’.

On the other hand, in the case of multiplicative extension operators
the situation becomes entirely different. For instance there exists no
multiplicative extension operator from (S, to C(I*) where I denotes
a closed inferval and §; the boundary of the square I® (cf. [9]).

Secondly let us mention other facts, equivalent to the fact that Y
is a locally connected continuum:

1.4. Y is a continuous image of the unit interval.
1.8. The hyperspace 2¥ is an AR-space (Wojdyslawski [10]).
1.6. Y admits a convexr melric (Bing [1]).

The idea of the proof of Theorem 1.1. The proof of necessity
is based upon a result of Bourgin [5] on the representation of multiplicative
functionals on C4(¥). The proof of sufficiency is more sophisticated.
It comsists of three steps:

1°. We construct (in 3.1 and 3.2) a meo M: O.(8,) = C(I*). This
construction is based upon the following result, due to Bott [4]: the third

symmetric potency of the circumference is homeomorphic to the three-
dimensional Euclidean sphere.

2°. By & theorem of Borsuk, there exists an AR-space Y containing ¥
such that X = ¥ —7¥ is a polytope. Since ¥ is a locally connected con-
tinuum, a result of Kuratowski implies that there exists 5 refraction
of Yu X, on Y (X, denotes the one-dimensional skeleton of X). This
enables us to construct a meo N: Cy(¥)-> 0y (¥ u X))

3°. Using the meo M of 1°, we construct & meo from 0 (X,) to CL(X),
which together with the meo N of 2° enables us to define a meo from

Cy(Y) to CL(Y"). Since Y is an AR-space, this implies (ef. Proposition 2.7)
that Y is an #£4.-space.

.I wish to express my gratitude to A. Pelezyfiski for his help in
stating the problem and also for his advice during the preparation of the
paper.

) 2 Preliminaries. A map m from O{X) into non-negative reals
is said to be a multiplicative functional if m(f-g) = m(f)-m(g) for every
f3 g€ 0(X). The following result is due to Bourgin [5]:

Multiplicative extension operators 209

2.1. If m is a non-constant multiplicative functional on C.(X), then
there is a closed, non-empty set S(m)C X such that

m(f) =[] faye

xeS(m)
where a(z) > 0 for 2 e S(m) and Y ofx) < oco.
z€S(m)
‘We see that:
(1) if m is a non-constant multiplicative functional, then: m(1) =1,
m(0)=0 and m(10)>1 (we identify real numbers with corre-
spondent constant functions).

By m we shall denote the purely atomic regular measure defined by
m(U) = 2 a(z) for every set UCX.
zeUNS(m)

2.2. TEEOREM. If M: C(Y)—>CiX) is a function such that for

every x in X the functional My defined by .
Mo(f) = (Mf){)

is multiplicative and mon-constant, then M is a multiplicative operator.

Proof. Clearly M(f-g)= Mf-Mg for every f,ge C.(Y), thus we
need to prove only the continuity of M. Sinee X is compact, it is enough
to show that if fa==f and @p—>2 then Mz, (fa)—>Mi(f).

Put Mg = Ms,, m= My and S,= 8(my), S= 8(m). Since Mg
is continuous for every ge C(Y), we have:
(2) ma(g)—m(g) for every ge C(Y).
Now observe that:
3) ; dist(8y, 8)=0 .
Suppose to the contrary that (3) does not hold. Then there are two
possibilities:

1° there exist y,e S and &> 0 such that K(y, &)~ 8. =0 for in-
finitely many .

2° there exists an &> 0 such that 8, —K(8,¢) # @ for infinitely
many an.

(We use the notation: K(4,:) = {weX: d(z, A) < ¢} for ACX).

Define g ¢ C(Y) such that:

() = {l for yeXY—K(y, e, in case 1%
9y 0 for y=1,
for yeK(S,812)7 in case 2°.

1
9(y) = {0 for yeY—K(8,¢),

Fundamenta Mathematicae, T. LXV 14
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Tt is clear that: in case 1°: m(g) = 0 and my,(g) = 1 for infinitely

many #, in case 2°: m(g) = 1 and ma(g) = 0 for infinitely many »; thus in

both cases we have got a contradiction of (2). This establishes (3).
Next we will show that:
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(4) For every open set U C ¥ we have %ia(U) = 4% (U) for almost all n.
Indeed, pick a compact set ZC U and a g e O, (¥) so that:
m(Z) = tm(0),
10 for y e Z,

1<giy)<10for all ye Y and g(y)zilforst—U

Then logmn(g) < Ma(U) and m(Z) <logm(g) (where loga denotes
the decimal logarithm of @). Thus, by (2) and the definition of Z, we
get (4).

Now observe that m.(¥Y)=

logma(10); thus, by (2), Ma(X) > ().
Hence:

(5) fin(Y) <m(Y)+1 for almost all ».

Let {jglla = ‘311111) lg(t)| for every AC Y, ge C(Y). Let us consider two
cages:
1° m(f)= 0. Then there exists & point z, ¢ § such that f(z,)=0.

Let U be a neighbourhood of #, such that |fllz < 1. Since f»=f, we may
assume without loss of generality that ||fally < 1. It is easy to see that:

Malfa) < Wl Ul 5 < Il - (Ul +1)7P
Since |fally <1, we have, by (4) and (5), .

malfa) < ol (Ufalle +1%7* for almost all n.

Since m(U) > Mm(x) >0 and the sequence {fn} is uniformly bou.nded
there exists a constant b (not dependent on U) such that:

N(-'Dn)_b

(6) Men(fn) < anl%m for almost all n .

Clearly if diam(U)—0, then [|f]ly—~0. Since f U,
oy, o ntor s ety Ifallo—>flly for every

2°. m(f) > 0. Then f{t) > 0 for every ¢ ¢ §. Since § is compact, there

exist a compact neighbourhood U of § and d > 0 such that f(z) > d for

t e U. Since f,=3f, we may assume without loss of generality th:
t d
for te U and for all =. g oy Rt ) >

Multiplicative extension operators
Suppose now that ma(fz) =

f(=)

By (3), we may assume without loss of generality that 8, C U; thus:

i) —ma( 1 <[ (14 @gﬂl’)’w"‘y’ 1] i

(f), then
) a1 <[ (14 LYt )

< |[falB, it is clear that, by (5):

[ fn) —ma( )] =0 .

This, by (2), completes the proof of 2.2. O

A meo M: 0(Y)—0yX) will be called regular if Me¢= ¢ for every
constant function ¢, i.e. if Mz(¥) = 1 for every » ¢ X. The next proposition
shows that it is enough to consider only the regular meo’s.

2.3. ProPOSITION. If N: C(¥Y)—>C(X) is a meo, then there exists
a regular meo M: Oy (Y)—Ci(X).

Proof. Let X' = {wreX: Ny is

ma(f). Let us observe that:

f [F'

< 1+l]fn7f||y(tiilrf]f(t))‘1 <14 Wl an

for every e U .

Similarly, if ma(fa) < Mn

Since Mma(fn) <

non-constant}. Then, by (1):

X' ={zeX: [N1O)](2)>1}= {zeX: [N {1)](z) =1 and
[N (0)}{z) = 0} .

Thus X' is a closed-open set. Hence the formula p(z)= {10g1\71(10)]"1
defines a continuous funetion on X'.

Let @, be any point of ¥. Put (for fe 0i(¥)):

NP it
F (o) if
Tt is obvious that Mf e C4(X) if f e C4(¥Y) and that M, is a multiplicative
functional for every z C X; thus, by 2.2, M is a multiplicative operator.
Obviously it is a regular meo. O

Tn the sequel “meo” will always mean ‘regular meo”.
We have the following obvious proposition:

9.4, PROPOSITION. If r: XY is a retraction, then the formula

for

zeX',

04~ vex x.

Mf=Ffor fe (T

determines .4 meo. O .
14*
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Let ¥ CX. Define for o, 2, X, 0 <1, 5, <1:
(B, G)~ (@, 1) I (B, 8) = (@, %) OT =8 =00r {, =1, =1,
Obviously ~ is an equivalence relation. The pair hof quotient spaces
3X)=X xI|~, 3(¥Y)=YxI/~

will be called the suspension of the pair (X, ¥) (by I we denote the unit
interval).

2.5. ProPOSITION. If N: O (Y)—Cu(X) is a meo, then there ewists
a meo M: 04(3(T))—>04(3(X)).

Proof. If f e 0.(3(Y)), then f may be regarded as a function on ¥ x I
such that the restrictions f|¥ x {0} and f|¥ x {1} are constant functions.
Put f(y) =1y, 1) and (Mf)(x,t) = (Nf)(x).

Observe t-.ha.t Mf is a continuous function on X xI. Indeed, if
(n, tn) (2, 1) in X x I, then f;,=3f. By the continuity of N, (Nfi) (n) —
—(Nfi)(z); hence Mfe C (X x I).

By the regularity of N, Nf, and Nf, are co i

L nstant functions; hence
Mf e C4(3(X)). Thus, by Theorem 2.2, M is & meo. O ’
Let us notice the following simple property of meo’s:

" 2.6. PropoSITION. If M: C(Y)—>C(X) is @ meo and Y is connected,
en

(MN(X)=f(Y)  for every fe CL(X).

Proof: Let Mi{f) = I?f(yi)a‘ for a point z ¢ X. By the regularity
of M, we have D a;= 1. Thus

it () < [ ] fwo <sup (o).
i te¥

But Y is connected and thus there exists a point ¢ ¢ ¥ such that
MAf)=f(t). O

We have the following characterisation of - i
o 6 e of A4, -spaces (cf. Proposi-

2.7. PrOPOSITION. The following conditions are equivalent:

1° Y is an A, -space,

2° There exist an AR-space X and a meo M: C(Y)—CHX)

O 3. ;

3° There ewist an AMo-space X and o meo M: Ci(Y)~04(X)

Proof: Implication 1°—2° is obvious. B .

n 1°—2 . By 24, every AR- i

an .a‘t..ﬁu-spa.ce; thus implication 2°—+3° is also tri’viad. iTow 15;1)?"8 blz
satisfied and let Z be any space such that ¥ C Z. Without loss of generality
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one may assume that X ~n Z= Y. Since X is an AMy-space, there exists
ameo N: C{X)—C(X v Z) (topology in X v Z is induced by X and Z).
Tet us define Ly = (N o M), for z e Z. It is obvious that L: C{(¥)—>C(2)
is & meo; thus 3°->1° O

3. Proof of theorem 1.1. We vecall that the third symmeiric
potency of a space Y is the family T® of all at most three-point subsets
of Y with the dist metric (cf. Introduction). The formula J(z) = {x}
defines the natural embedding J: ¥—¥®.

3.1. TEROREM. Let ¥ C X. If there exisis o map ®: X— I® such that
®(y)=J(y) for every ye Y, then there exists a meo M: 0(Y)—0y(X).

Proof. Put for 1=1,2,3:

1 ;
. filay, @y o) = 5 *2Ta1+;2+_5 for @y, @y, 03> 0.

Let ¢{a) = card®(») and let &(z) = L{){yi} where y; = yi{(z). Let us put
i<e(z;

1 i e@w=1,
oY) = 1 i e()=2,
fi(d(yzy Ya); 4 (Y1, ¥s)» € (W1, ?/z)) it e(@)=3,

where d(.,.) denotes the metric of Y.

Put:

)= []fr®  for  feCuX), zeX.
yEeDX)

Since ®(y)=J(y) for ye ¥, we have M,(f) = f(y). Thus, by 2.2, it
remains only to prove for each f in 0.(¥) the continuity of Mf, i.e. to
show that if #n—>z, then Mz, (f)—>Ma(f).

Write g = Mz, m= Mz. Pick open sets K:CY for i<ec{x) so
that: yie Ki, Kin K= G it 1#]. Put Aip=Kin & (zy). We shall
prove that

(7 Mg K) (K  for  i<o(@).

Indeed, since ¢ is continuous, dist (di(w”),q)(w))»o. Thus without
loss of generality we may assume that:

U Adjn=Plaa) and A 20 for i<elr) (n=1,2, ).
7
Hence if ¢(z) =1, then &(z) CK;. Thus

Fin(Ky) = Fin(@ (@) = 1 = M () -
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Now suppose that ¢(#) = 2. If 6(wa) = 2, then Ma(Ki) =} = fi(K,)
for ¢ =1, 2. Therefore we may restrict our attention to the case wherte
¢(zn) = 3. Without loss of generality one may assume that Ay, = {u,)
and Asy = {in, 22}. Since dist (B (2n), D(#)) 0, obviously: ’ "

Altny2n) >0, d(tn, un) ~diam®P(z) #£ 0,  d(en, un) —diam b (x).
Thus
o 1 (tn, 2n) 1
MKy} =5 — ny #n 1.
2 2(d(t7¢) zn)‘i‘d(%y;, zﬂ)—l—d(un’ tn)) _>2 m(K;)
and

M Ky) = 1 —Mu(Ky) —~ 3 = W (K,) .

Finally, suppose that c¢(w)=3. Let A;,= {yi} £ i =
Obviously y};—»yi for 1 =1,2,3. T ) dor E=1,2,3

Since the functions f; are continuous, it is easy to see that:
() >ults), L.

Thus (7) is proved.
Since d(y:, 44n)—0, the continuity of f and (7) imply

lim n f(y)%n(u) — f(yt)%(llt) .

=% yedi,n

M Ky)~m(K;) for §=1,2,3.

But

mif= [] ] ™

i<e(x) yedy,n

and

m(f)= [] fwo™ . o

i<e(x)

Let I" denote the n-dimensional cell
and let §,-; denot
of I, the (n—1)-dimensional sphere. w fenote the boundary

3.2. CorOLLARY. For ev i
o, ery n =2 there ewists a meo M: (y(Sp_y)—
the s!;zo;(f’.g ?9:13 &h:rwe%bin [4] ;{];)at 8 is homeomorphic to S;; thus
1) 18 contractible in 83’. This obviously impli
e . y implies that there
%xmt[;[‘s a map & I8 such that B(t)=J(t) for every tef,. Thus
y Theorem 3.1, there exists a meo M: (,(8,)— 0 (I%). ' ’

Ob i
serve now that the pair (", g,) may be regarded as the suspen-

sion of the pair (I, 8,_;). Hen i
P Dbm(& é ' Dl) ence, by 2.5 and a standard induction. proce-

Now we are ready for the proof of Theorem 1.1.

Necessity. Suppose first that ¥ i
closed-open subset of Y. Put 18 not connected. Let A be a proper
0 if
1 i

ved,

f({n):{ reY—A.
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Tet XD Y be any connected space, suppose that M: 0¥} 0yX)
is 2 meo. Since f* = f, we have (Mf)* = Mf and thus Mf= 0 or Mf=1,
a contradiction with the assumption that M7 is an extension of f.

Now suppose that ¥ is not locally connected. Let p e Y be a point
of local tneonnectedness. Let b > 0 be such thab:

(8) if DCY¥, diamD < 2b and p ¢ IntD, then D is not connected.

Put U= K(p, b). Let us notice that for every n > b7 there exists
a closed-open set A, in U such that pe 4, and d(p, U—4a) <1ln, ie.
KE(p,1/n)—An # 9.

Indeed, suppose that for some n>b"' we have K(p,1/n)CB,

 where B denotes the intersection of all neighbourhoods of the point p

closed-open in U. By definition, B is the quasi-component of the point p
in U; since U is compact, B is connected. But BC U, p ¢ K(p,1/n)
CIntB, a contradiction with (8).

For n>b""! pick a point %,eT—4, and a function fn € C(Y)
so that:
0 for
1 for

_ yeU—dn,
Up o <tn amd fulo) = | e
Now assume that ¥ is a subspace of a Hilbert cube Q and suppose that
M: 0(Y)->04(Q) is a meo.
Let y» be a point of the interval (p, Z» in @ such that (Mfn)(yn) = §-
Obviously:

(9) 8(My,)—U #9.

Pick an fe (:(Y) so that f(p)=1 and fly) =0 for y e Y—T. By (9):
(Mf)(yn) = 0, obviously (Mf)(p)= 1! Since yn»—>p, Mf is not continuous,
a -contradiction. O

Sufficiency. Sinece ¥ is a compact space, by Theorem (6.2) in [3],
¢ch. V., there exists an AR-space Y such that YC ¥" and X =Y¥Y"-¥
is a polytope (for the definition—see {31, ch. IT., 2, p. 72), having & null-
triangulation, say T (I'is called null-triangulation if it is countable and
the ‘diameters of its simplexes converge to 0). We shall construct
a meo N: O (¥)—>C{¥"). By 2.7, this will imply that ¥ is an
A Moy - SPBCE.

Let Xy denote the &-dimensional skeleton of the polytope X; similarly
lot 75 denote the %-dimensional skeleton of a simplex v e T'. Since Y is
a locally connected continwum and dim{X;)=1, by Theorem 1’ in [71,
there exists & retraction r: ¥ v X;—»Y. By 2.4, this retraction determmes
a meo M;: O (Y)—>C0(Y v Xy).
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By 3.2, for every n-dimensional simplex = with # > 2 there exists
a regular meo M. Oy(ty-1) 04 (z). For n = 2 define My: Cp(X,_; YY)
—+0y(Xp v Y) by

flx) for 2eX,,vY,

) = {(M,f) (&) for @erCXy—Xn.

Now for each fe C{(¥) we define a function Nf on ¥’ by:

fle) for 2eY,

(Nf)(””)z{[(mom_lo...oMzoMl)fJ(m) for  @eX, with n>1.

Sinee N is a multiplicative functional for every @ e ¥, in order to
prove that N is a meo from C,(¥) to Cy(¥"), it is enough (by 2.2) to
show that Nfe C(¥Y") whenever f e C().

Since the restriction Nflr is continuous for each r in T, Nf is con-
tinuous on X (cf. Theorem 2.5, ch. ITL. in [3]). Thus it remains only to
prove that if ze¢Y, z,¢X and 2,-—>2 then (Nf) () —f(z). Observe
first that, by the regularity of each A, and 2.6,

(10) (Nf}(z) = (M f)(z,) for every teT.

Let on e v It is clear that no simplex 7 e T appears infinitely many

times in the sequence {z*}. Since T is a null-triangulation, diamz®—0.
Thus, since #, ¢ and Tp—>15,

d(z,7")—~0, whence d(z,r})—>0.
We have (M,f)(z]) = f[r(z})], thus, by the continuity of f:
(11) a[f (@), (M) ()]0 .
By (10): (Nf) (@) € (M) (), whence, by (11): (Nf)(2n) >f(@). O
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