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We will now show that the sublattice L’, generated by X is exactly
the set of all finite sums of finite products of elements of X. For this,
it is sufficient to prove:

(1) (34)(d5) = D) 4:B;.

1<j<m

Assume, without loss of generality, that L has a least element which
is contained in X. Then (8) implies (7) for n = 1. Suppose (7) is true for
n = ¢; then,

(S 2m)= (S0 (S ace Sm)([T5)
~[Sact ten( Saer S))[ 3n)

m

g q m
= (gAz—FgAgHAFF ;=21AQ+IB7')(E .Bj)

= (51—%4' iglAqﬂBf) (é:; B])

~(Z4)(38) + 5 den,

1

m
= D AByt DAuBi= > 4B
1K<y j=1 i=
I<i<m ’ 11<£Kq$1

Finally, since (7) implies that L' is distributive, the proof is complete.
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Randomly hamiltonian digraphs

by
G. Chartrand (Kalamazoo, Mich.), H. V. Kronk (Binghamton, N. Y.),
Don R. Lick (Kalamazoo, Mich.)

Introduetion. In [1] a randomly hamiltonian graph was defined
as & graph @ for which a hamiltonian cycle always results upon starting
at any vertex of @ and successively proceeding to any adjacent vertex
not yet encountered, with the final vertex adjacent to the initial vertex.
These graphs were characterized in [1] as complete graphs, cycles, and
regular complete bipartite graphs. In this article we define and char-
acterize in an analogous manner randomly hamiltonian directéd graphs.
Furthermore, the characterization given in [1] is shown to be a corollary
of the result obtained here.

Definitions and notation. A directed graph (or simply digraph)
D is called hamiltonian if there exists a (directed) cycle containing all
vertices of D; such a eycle is also referred to as hamilionian. A digraph D
is randomly hamiltonian if a hamiltonian cycle automatically results upon
starting at any vertex and successively proceeding to any vertex which
has not yet been visited and which is adjacent from the preceding vertex,
where also the final vertex is adjacent to the initial vertex.

By way of notation, we represent the complete symmetric digraph
having p vertices and p(p —1) arcs by Kp. Also we denote the cycle with p
vertices (and p ares) by Cp and the symmetric cycle (with 2p ares) by Sp.
By D(n, k) we mean the digraph whose vertex set ¥V can be expressed

n
as the disjoint union | Vi, where {Vi=1F 1 <i<wn, and uw is an arc
i=1

of D if and only if % eV;, weVy, and j—i =1 (modn). We note that
the digraph D(p, 1) is the eycle Cp. The digraphs ¥, 8, and D(3, 2),
each of which is randomly hamiltonian, are shown in Figure 1.
Throughout this article, wherever we refer to a randomly hamilto-
nian (and therefore hamiltonian) digraph D we shall assume the existence
of some fized hamiltonian cycle ¢ whose p vertices are labeled conse-
cutively vy, Tay ..., Vp. A Dath P: 03, 9iz1y oov; Ditn—t (the subseripts ex-
pressed modulo p), n > 2, together with the aré v;4n—10: is referred to as
an outer n-cycle or simply outer cyele if the length » is not relevant,
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Fig. 1. Three randomly hamiltonian digraphs

while P together with the are v;viin—y Wwill be called an outer tramsitive
n-cycle or outer iransitive cycle. In such a case, we call v;1,—1v; a eyclic
arc and v;9;4n—1 & transitive arc. For n = 3 the terminology outer triangle
and outer transitive triangle is employed.

The following lemma will be useful in the proof of our main result.

Lesaa. If 7 is an outer transitive cycle of minimum length in o ran-
domly hawiltonian digraph D and v;v; is the corresponding transitive are,
then Viy k041 88 an are of D for 0 < &k < p, where i+ k and j+ & are expressed
modulo p.

Proof. Consider a path P which begins at the vertex »; and proceeds
?,long the arc v:7 t0 »;. We then follow along the hamiltonian cycle €
in the order v;y1,9jts, ..., ¥s-1. Since D is randomly hamiltonian, o; is
already on P, and v;9; belongs to an outer transitive cycle of minimum
length, this implies that v;.., is necessarily the vertex of P which follows v;_; .
In particular, this implies that v;—1v;_; is an are of D. If we now start
with the are v;_1v;—; and proceed in exactly the same way as before, we
can conclude that v;-,v;5 is an are of D (where, as always, the subscripts
are. expressed modulo p). Thus, beginning with v;v; and proceeding as
indicated p —k times, we arrive at the fact that Vi—(p—E) Vim(p—y = Vit 50
is an are of D. ' ) e
) TeeorREM. A digraph D with p (> 2) vertices is randomly hamiltonian
if and only if it is one of the following: (i) the symmetric cycle S,, (i) the
complete symmetric digraph K,, (iii) the digraph D(n, k) for some 7; and k
where nk = p. . ’

.Proof. That each of the digraphs 8,, K, and D(n, k) is randomly
h?,mﬂtonia,n is easily verified. Hence, let D be any randomly hamiltonian
digraph with p (> 2) vertices, and let ¢ be a fixed hamiltonian cycle
whose vertices are labeled consecutively v, v,, ..., v,.

If D has no ares other than those of O, then D is the digraph
Cp=D(p ) 1). If D has no ares which join non-consecutive vertices of ¢
. but contains an are v;,;v;, then by beginning & path with Vjp1, U; W6 See

o
]
<t

Randomly Hamiltonian digraphs

that each of the ares v;y;v; must belong to D, implying that D is the
symmetric cycle Sp.

Thus, without loss of generality, we assume henceforth that D con-
tains an arc which joins two non-consecutive vertices of ¢, implying the
existence of outer transitive cyeles.

If D contains an outer transitive triangle (whieh is necessarily an
outer transitive cyele of minimum length), then by the lemma, D contains
all ares of the type #;viys. In this case, D is the complete symmetric
digraph K,. To see this, let v; and v; be any two distinct vertices of D,
where j # i+1 (modulo p). We show here that v;v; is an arc of D. Begin
a path P with the vertex vy, and proceed along C in the order: vi1z, its,...
vy Uji—1. We then take v;y; via the transitive arc v;-19;41 and follow this
With iie, Vjisy -y 4. (I is possible that v;41 = 0;.) Sinee D is randomly
hamiltonian and the portion of P thus far constructed fails only to con-
tain v;, the arc v»;v; belongs to P and so also to D.

We therefore assume that n-4-2 is the length of the smallest outer
aransitive cycle of D, where n+2 > 4. Let 9:0;141 be a transitive arc
of an outer transitive (n--2)-cycle. We now show that D contains the
aTC Vitn410r, § <7 < itm+1, if and only if r=i+2. By considering
any path which begins with ®:yni2, pProceeds along C to the vertices
Ditnisy Ditntas -y iy a0d then encounters viini1, we see that D containg
an arc of the aforementioned type. The arc ?iinii?i41 is not in D, for
otherwise we could construct the following path P: 9iiniz, Viinia, -
vees Uiy Virntis Did1y Dizny oony Dipn. Since P contains all the vertices of D,
Dipnlisnse would belong to D implying the existence of an outer transitive
triangle, If n+2 = 4, we have the desired result; if not, suppose that D
CONtAins a1 arc Diyns1 Vs, Where 42 < § < i+n+1. Consider now a path ¢
containing all vertices of D which begins as follows: Titniz; Ditnts; oo
vy Diy Disneis Usy Vsily ey Vizn. Since D is randomly hamiltonian and
ViVipns1 1S & trapsitive are of an outer transitive (n+2)-cycle, the final
vertex of @ is necessarily v;.; which implies that v:;;, must be adjacent
to a vertex om, where i+l<m<<s. A contradiction is now reached by
considering a path @’ which begins as 9i, Vis1, Vitnte, Vitniay oy Vi-iy
Visny Om. Since D is randomly hamiltonian, ' must be the initial portion
of a hamiltonian cyele so that there must be an arc 9i0itn+1, where 1+1
< t< i+m, but this determines an outer transitive eycle of length less
than n-4 2. Hence, for each transitive arc 2:0:+n+1, there is a corresponding
cyclic are Vitns1Pita-

We now show that D is the digraph D(n, k), where p = nk. In order
to prove this, we show that v;e; is an arc of D if and onlyif j—i = 1 (modn).
Assume first that j = gn--i--1 for some ¢. (Of course, we already know
vewy is an are of D for ¢ =0 or 1.) Employing the results just obtained,
we consider the following path P: j, Tii1y -oey Vi-1y Ditny Vit1y Vitey .o
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vy Dipnoty Vitony Vitntly Vitntsy -y Viten—1. Continuing in this way, we
arrive at the vertex v;ygm = 951, from which we proceed to vj—n, v;_p41, ...

., ¥j—z. The path P thus far contains all vertices of D with the exception
of »; so that D contains the ares v;_2v; and »;9;. Conversely, suppose v;v;
is an arc of D and j—i =1 (modn). We then construct a path P’ which
begins as follows: ¥4, ¥y Vit1y -ry Vic1y Vitny Vit1y Vitay vooy Vigno1, Viton.
We then continue as before until we reach the final vertex of the
type it which is not thus far on P’. The next vertices of P’ would
then be Ditiny Virg—n—1, Vittt—tmy -oy Vitin—y. SiDCR j # i4-(141) n-1,
the vertex of P’ following :im—1 necessarily defines an outer transitive
cycle of length less than n-+2, and this is a contradiction. Because v,v,
obviously belongs to D, we have 1—p =1 (mod=n), or there exists an
integer % such that p = nk. If for each ¢, 1<i<n, we let Vi=
= {v5] § = ¢ (modn)}, D is seen to be the digraph D(n, k). This completes
the proof.

Rach randomly hamiltonian graph may be considered a randomly
hamiltonian digraph (obtained by replacing each edge by a symmetric
pair of arcs), but among the randomly hamiltonian digraphs with p
vertices, only 8y, K,, and D(2,p/2) are (ordinary) graphs. Thus, we
obtain as a corollary the result presented in [1].

CoROLLARY. A graph is randomly hamailtonian if and only if it is a cycle,
a complele graph, or a regular complete bipartite graph.
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Extended operations and relations on the class
of ordinal numbers

by
Arthur L. Rubin and Jean E. Rubin (Lafayeite, Ind.)

§ 1. Introduction. This is intended as a sequel to the paper An
extended arithmetic of ordinal numbers by John Doner and Alfred Tarski.
Thus, our notation is the same as theirs. For the sake of convenience we
shall repeat several of their definitions. When referring to a theorem,
lemma, ete. in the Doner—Tarski paper we shall prefix the numeral by the
symbol “D-T.

Lower case greek letters a«, S, y, ... represent ordinal numbers and
the class of all ordinal numbers is denoted by Q.

DerINITION 1. For each y€Q, 0, is a binary operation from QxQ
to 2 such that for all a,f e,

) a0, = a+p, if y=0;

(i) a0,8= |J [(a0,n)0pa], if y>1.
n<pi<y

DrrFINITION 2. For each y e, R, and L, are relations such that

(i) By, L, C X Q5

(if) For all a,f e
aR,p iff
oL,p iff

(HL3)(5 # 0 and 00,6 = B),
()5 # 0 and 80,a=B).

(For y= 0,1, R, and L, have been deseribed in Rubin [3].)

Our results include the following: If A = {a: o R, §} for some f,y € Q,
B>0,and @ # XC A then | J X ¢ A. If y is a limit ordinal and Q"= £
~{0}, then <Q', R,> is a complete lattice. Moreover, for y & limit ordinal
we have obtained necessary and sufficient conditions for O, to be com-
mutative and associative. Also, for a, 8, y 2 we have obtained necessary
and sufficient conditions on o’ such that a0, = a'0,8.

We shall assume the traditional arithmetic of ordinal mumbers.
(Sierpitiski [5] is an excellent reference.) We frequently use the following

well-known result.
15%
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