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Strongly cellular cells in #* are tame

: . by . .
H. C. Griffith* and L. R. Howell, Jr. (Tallahassee, Florida)

1. Introduction. Bing and Kirkor [4] have shown that a 1-cell

in B® is tame if and only if it is strongly cellular. The purpose of this paper
is to extend this result to 2-cells and 3-cells, and to use the concept to
characterize tame 2-spheres. The main results are these.

TmeorEM L. If Z is a k-cell in B°, k= 1,2, or 3, then Z is tame if

and only if it is strongly cellular.

TrmoreM II. A 2-sphere in §&° is tame if and only if each of its com-

plementary domains has a strongly cellular closure.

Numerous characterizations of tame cells are known. Cells of di-

mension one are treated in [9]. The 3-cell case reduces to the question
of whether or not the boundary 2-sphere is tame. Useful characterizations
of tame 2-cells and 2-spheres have been given by Bing [3], Burgess [6],
Harrold [8], Hemple [10], and others. The criteria to be used here are,
in the 3-cell case, the result due to Bing [2] that tame 2-spheres are those
which can be approximated in each complementary domain, and in the
92-cell case, the result given in [7] that tame 2-cells are those which have
both the strong enclosure and the hereditary disk properties.

2. Definitions and notation. The real interval [0, 1] will be

denoted by I. A homotopy of 8 in T is & continuous funetion h: §xI—T
such that h(z, 0) = & for all & in §, and h will then denote the function
given by hi(#) = h(z,t). If Ois a cell, then 0* and C° will denote the com-
binatorial boundary and combinatorial interior of C. The set of all points
in E" lying within ¢ of some point of 4 is denoted by B(4, ).

A st Z in E" is strongly cellular (Bing and Kirkor [4]) if there is an

n-cell C in B* and a homotopy H: CxI—C such that, if 8= C, then

(1) H, is the identity map, and Hi|Z is the identity for oll 1,
2) H3|8 is a homeomorphism and Z ~HyS) =@ for 1 <1,
3) HyS) ~ Hy(8) =@ for t  u. o
4) Hy(0)= 2.

* Work on this paper was. supported by the National Science Foundation under

NSF G-5458.
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In the paper cited condition (2) appeared as (2') H;|S is o home-
omorphism for ¢ < 1. It can be shown, however, that every arc in ® has
a corresponding homotopy satistying (1), (2'), (3) and (4). In a private
communication Bing writes ‘‘the definition of strongly cellular should
include the condition Z ~ Hy(S)= @ for ¢t < 17,

In the next section the following will be proved.

9.1. TmroREM. If Z is a compact subset of I with a connecled com-
plement, then 7 is strongly cellular if and anly if there is an (n—1)-sphere 8
in BNZ and o homotopy h: §x I —E" such that

(1) R is the identity,

(2) ks is an imbedding for t <1,

(3) m(8) N by (8) =9 for t #* u, and

(4) hy(8) = BdryZ.

A set Z for which there is an S and h satisfying these conditions
will be said to have @ cocoon, and henceforth when the hypothesis that Z
iy strongly cellular or Z has a cocoon is made, the symbols § and kb will
be used as in this theorem.

Tt should: be noted that Z may have a cocoon without being compact
or having a connected complement. In this notation theorems I and IT
become: Tame cells in E® arve those having cocoons, and, & 2-sphere in I®
is tame if and only if each of its complemeniary domains has a cocoon.

3. Preliminaries. A strongly cellular set Z clearly has a cocoon,
and the remainder of the proof of Theorem 2.1 will only be sketched.
Firgt it is verified that it U =8 x [0, 1), then h|U is an embedding. Next,
since Z does not separate B, any point of the component of ™S con-
taining the connected set Z is either in Z or can be joined to a point of
(8 x 1/2) by an arc missing both Zand 8, 80 @ = Z v h(U) ig the closure
the bounded component of E™S. Since the bicollared sphere h(S8 x 1/2)
could be used for §, @ may be assumed to be an n-cell (Brown [5]). The
inverse of h|U throws each € A(U) to a point (y[«], 7[#]) of U. The mup
H: @ xI>Q defined by ‘ '

. 1%, (w,0)eZ X1,
R . Hm,t)=12, (,t) e h(U)x I and t<<[x],
NAh(y[2],8), (%,%) eh(U)xI and ¢ > v[2]

can. be shown to be the desired homotopy. ‘

Two straight forward consequences of the Zoretti Theorem ([11],
p. 109) will be used.

3.1. Lemma. If A and B are distinct components of a compact subset K
of the 2-sphere 8 and ¢ > 0, then there is a simple closed ourve J in B (A, e \K
~ which separates A and B on 8. :
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3.2. Levma. If A is a compact connected proper subset of the 2-sphere 8
with arcwise connected complement in 8 and &> 0 there is a disk D in S
with ACD° and DC B(A, &)

4. Cocooned sets in E°. Throughout this section Z will denote
a subset of E® with a cocoon and with boundary W.

4.1. Lmvuma. If A is an arcwise connected closed subset of W and WA\A
is simply comnected, then hi Y(A) is connected.

Proof. Suppose that p and g are points of distinct components
of h7Y(A). Then by Lemma 3.1 there is a simple closed curve J in S\ATH(4)
separating p and ¢ on 8. Let B be an arce from p to g meeting h(S x I)
only at p and ¢, and let C be an arcin 4 from &, (p) to hy(g). Then K = B v
Uh(pxI)w 0w h(gxI) is a simple closed curve and J links K. But J
is homotopie in h(J xI) to a loop in hy(J) and hence is null-homotopie
in h(J xI) v (W\4). This set does not meet K, which is a contradiction.

1.9. Levma. Let K be a finite or locally finite 1-complex in W with
vertices {am| m ¢ M} and 1-simplezes {en] n € N}. Let U be an open connected
subset of S8 such that if f = hy|U, then K| C f(T). Let {ea| n € N} be a col-
Tection of positive numbers. Suppose that each f~ Y(en) s commected and each
F am) is connected and has arcwise connected complement in 8.

Then there is a 1-complex K’ in U which is isomorphic to K and a home-
omorphism g: |K|-|K'| which throws each simplex of K onto its isomorph
in K’ and is such that hyg leaves vertices fized and moves poinis of en less
than dia(es)--en for each neN.

Proof. Using 3.2 a pairwise disjoint collection {Dm: m e M} of
disks can be chosen so that, for each m e M,

fHam)C D%y, DmCTU, f(Dm)C Blan,en)

for each e, having am as a vertex, and f(Dm) n en=0 otherwise. Then
choose a pairwise disjoint collection {Va: neN } of open subsets of W
such that, for each n e N, e} CV, C B(én, en), 0O G is in Vy, and Vo
~ f(Dn) =© when am is not a vertex of en.

Choose for each m ¢ M a point aj, of f '(am) and a homeomorphism
of a round 2-ball onto Dy, throwing the center of the round ball onto .
The images of the radii of the round ball will be called the radii of Dm.

For each.n e N, if e, has vertices am and ax, then the open set D, v
U f(V,) v Dj contains the connected set f(es) and hence contains an
arc i, from a point P, of Dy t0 2 point Pux of D which is otherwige disjoint
from Dy v Di. Choose one such t, for each n.

Tor each m ¢ M and n e N such that an is a vertex of e, let vum be the
radiug of D,, to the point pmm of Dy,. For each n € N, let en = vum v ln v
U wpg, Where am and ax are the vertices of en. v

The collection K’ of all a;, and all ¢n is a 1-complex in U isomorphic
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to K, and g: |K|-~|K’| can be defined by letting glen be any home-
omorphism of ¢, onto e throwing vertices onto their isomorphs. Clearly
hyg (@) = hy{@h) = tm, fOT @ € by (@n). Let e éo. Then

g(w) € 6, C Dy £~ (on) v Di

and f throws this set into B(ea, en) by choice. Hence fg = hyg moves z
less than diaes+ . .

5. Two spheres and three ecells. Throughout this section Z
is assumed to be a subset of B with a cocoon, and having as boundary
a 2-gphere W. i

5.1. Lemma. If A is o point or arc in W, then by L4) is connected
and has arcwise connected complement in 8.

Proof. Lemma 4.1 assures that hy(4) is connected and since it is
also closed, it suffices to show that S\h,(4) is connected. But 4 is the
intersection of a countable family {Uy} of open disks with U, D U, D ...
For each u, if Dy= W\Un, then hi'(D,) is connected. Since S\hi*(4)
is the union of all h;'(Dy), it is also connected. ‘

5.2. LeMMA. If &> 0, there is a homeomorphism g: W—8 such
that hyg moves points less than e.

Proof. The set- D of all D° such that D is a disk in W of diameter
legs than ¢ is an open cover of the compact set W, so if T' is any. finite
triangulation of W of sufficiently small mesh, one can associate with
each 2-simplex § of T a sub-disk 4(6) of W such that B(0, 2dia6) C 4(0)
and diad(0) < e.

‘Lemma 5.1 is used to verify that the hypotheses of Lemma 4.2 are
fuifilled for K = T U'= 8§ and dia(es) = ex for each 1-simplex e, ofd;.:f
Thus there is a l-complex K’ in § and a homeomorphism g.,;. | T~ |K'|
;lgeh that kg, leaves vertices fixed and moves points of each e, less than

iaen. :
) Lgt 0, = O and let oy, ..., om be the 2-simplexes of T, and make the
inductive . assumption that g, has been extended to an imbedding gn—
of Xp=|T% Voy v o U 01, The image of X,—\on may be aséurrred
connected and therefore disjoint from one component Cp of S\g 1(0')
80 ¢n-1 can be extended to an imbedding g, of X, by mapping o;, or%x;o (;L 7
?E]}us 9= gn: W->8 is a homeomorphism and the lemms is establishc::i
if it can be shown that &, ¢(o) C 4 (o) for each 2-simplex ¢ of 7. But suppose
that @ € o and hyg(x) e W\4 (0); then there iy an arc 4 in W\4(o) joining
Ing(@) to a vertex a of T.Since hy Y(A4) is connected, (h,g)"*(4) is connected
and contains both = and (k,g) '(a) = a, s0 some point. p of (h,g)"(4)

lies in o°. But th is i .
disiohat w 9# hlg (p) is in both' A and 4(o), and. these were taken
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5.3. Proof of Theorem II and the 3-cell case of Theorem 1.
Let W Dbe a 2-sphere in §* and let Z and X be the components of SA\W.
Let ¢ > 0 be assigned. Then if Z has a cocoon, sinee h: 8 xI-8° must
be uniformly continuous, there is a te(0,1) such that cl(ht(y),hl(y))
< g2 for all y in 8. By Lemma 5.2, there is a homeomorphism g: W8
such that d(z, g (@) < &2 for all z ¢ S. Hence hig: WX is a home-
omorphism which moves points of W less than e. Theorem II and the
3-cell case of Theorem I follow from the results of Bing [2].

6. The 2-cell case. Throughout this section Z will denote a 2-cell
in E® with a cocoon.

6.1. LEMMA. Let A be a point or arc in' Z°, or an arc or disk in Z
meeting Z° in a single point. Then WTH(A) is conmected and S\hi'(4) is
arcwise connected. '

Proof. That hi'(4) is connected in each case is an immediate con-
sequence of Lemma 4.1. In each case A =\ U, where {Un} is 2 countable

n

family of open disks with Z\Un a closed disk for eachn and U, D U,D ...

Then hi*(Z\U.) is connected for each 7 by Lemma 41, so S\hH(4)

= |J ki {(Z\Ux) is connected. It is also open, and hence is arcwise con-
. s

nected.

6.2. LymMA. If p is a point or arc of Z°, then ki (p) has at most 2 com-
ponents. ‘

Proof. Suppose that A4, B, and ¢ are distinct components of " (p)-
Then if ac< A, beB, and ceC, o

V= hi{axI) v h{bxI)vhic xI)yvp

is a connected set meeting Z in p. There is a polyhedral 2-sphere X

separating p from Z® in EP, and a subdisk D of Z which is a neighborhood
of p in Z and does not meet 2. By Bing’s approximation theorem 11,
there is a disk W, such that D C W,, W, is locally polyhedral at points
of WA\D, and W¢ is separated from p by Z. Using standard techniques
a disk W containing D and meeting X'in W* can ‘be found. Then W divides
the 3-cell which X bounds into two crumpled cubes E and F such that
E~F=W and B F is a neighborhood of p.

Thus there is an open interval K = (t, 1) such that h(a xK), h(b xK)
and h{c x K) lie in B° v F°. Two of these three, say h(a xK) and k(b x K)
lie in one of the two sets, say E°. By Lemma 3.1 there is a simple closed
curve J in S\k:(p) separating 4 and B on S. The distance 2& between
h(J xI) and V is positive, and F° is wle. ([12], p. 66), so there is a & > 0
such that any two points of B° within 8 of each other are the end points
of an arc in E° of diameter less than e. Choose points. @ = hy(a), L1y 2y Tm
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= hy(b) in p, each within ¢/3 of its successor, and corresponding points
1y = hs(a) for some s in (¢, 1), ¥y, ..., Ym = hs(b) for the same s, such that
yi € B° ~ B(=, 8[3) for each. 4. Let a; be an arc in E°from y;..; to y; having
diameter less than ¢, 4 =1, ..., m. Since ¢ may be taken less than e, each
point of a; lies within 2¢ of 2;, so the union of the a’s does not meet
h(J xI). Therefore this union contains an arc a from hs(a) to hs(b) lying
in k(8 x I°) and missing h(J x I). This is impossible for k(J xI) separates
h{a xI) and h(dxI) in k(S xI°). )

6.3, LmMuMA. For each p e Z° there s an e >> 0 such that p < f(Z) for
every continuous function f: Z->Z which moves points of Z° less than e.

Proof. It suffices to consider the case where Z is a round ball in
the plane with p as center. Let » be the radial projection from p of Z\{n}
onto Z* and note that if f: Z—Z misses p, then #f provides = null homo-
topy of »f]Z*. But for ¢ sufficiently small, whenever f moves points of Z*
less than e, »f|Z* has Brouwer degree one. .

6.4. LEMMA. If p is a point of Z°, then hi (p) has emactly two com-
ponents, and they lie in distinct components of hi'(Z°).

Proof. Suppose not. Then by Lemma 6.2 there is a point p of Z°
such that either case 1: hi'(p) has two components not separated by
hi'(Z*) or case 2: hi*(p) is connected. Tn case 1 let 4 = h(p) v a, where a
is an are in k;(Z°) joining the components of A Y(p), and in case 2 let
A= 17'(p). In either case, A is a compact connected subset of hit(ze)
containing hi(p). Now ki (Z*) is connected by Lemma 4.1 50 by Lemma, 3.1
there is a simple closed curve J in § separating A and h{'(Z*). This J
bounds a disk ¥ in § containing ki '(p), and h(E) has positive distance 7
from Z*. Choose ¢ in (0, %) corresponding to p as in Lemma 6.3. Let K
be a triangulation of Z* of mesh less than ¢/2. By Lemma 6.1, K satisfies
the hypotheses of Lemma 4.2 with U = 8 and &, = /2 for each. 1-simplex e,
of K. Thus there is a homeomorphism g: %°—>§ such that hig moves
points less than e.

Now ¢(Z°) is the common boundary of two disks D, and D, in 8.
For'i=1,2 extend g to a homeomorphism g: Z—D;. By choice of ¢,
p is in both k,¢,(Z) = Iy(Dy) and h,gx(Z) = hy(Dy). Thus, since B containg
hi'(p), it meets both D, and D,, and hence meets their common boundary
g(Z*). But the existence of y ¢ Z* with g(y) ¢ B yields the contradiction

n=alZ", (B <dly, hg@) <e<n.

.6.5. LEMMA. hy "2°) has exactly two components, each of which s
thrown onto Z° by h,. V

o P?o?f. By Lemma 6.4, it has at least two. Suppose that a, b, and ¢
liein distinct components of A7 (Z°). Then there is an arc 4 in' Z° containing
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the h, images of a, b, and ¢, 80 hy '(4) contains the three points. But by
Lemma 6.2, hi'(A) has at most two components, so one of its components
contains at least two of the points. This contradiets the choice of a, b,
and ¢.

6.6. LeMMA. If C is a component of hi(Z°) and A is an arc or a point
of Z°, then G ~ hy Y(A) is connected and has an arcwise connected complement
in S.

Proof. That ¢ ~ by (A4) is connected is elear, for hy'(4) has but
two components and one of them lies in the other component of h'(2°).
Ag a component of ki YA), CAhT Y(4) is compact, so it suffices to show
that S\C ~ hi'(4) is connected. Let p and ¢ be points of this s(?t and
choose a disk D in Z\ 4 containing both hy(p) and M(a), and meetmg z
in a single point. Then A (D) is connected, contains p and ¢, and misses
B (A).

6.7. LEMMA. If the are A spans the boundary of Z there is & 2-sphere X
in B® meeting Z in A and separating the two components of 2\A.

Proof. Let P, and @, be the components of Z\4 and let Q= 0.
T4 is not difficult to see there is a locally finite triangulation T of ¢, such
that (i) to each 2-simplex ¢ of T there corresponds a sub-disk L.I‘(U). of @,
such that @,\4 (o) is connected and B(u,Zdiaa)CA(a),_and. (ii) if {oa}
is a sequence of 2-simplexes of 7' with ligln diad(on) = 0, then 11.};11 diad(on)=0.
Let N be an open neighborhood in Z of Q*\ A4 meeting neither 4 nor any
simplex ¢ of 7 having no vertex in Z°. Llet ¢, and C, be the two com-
ponents of hy*(Z°), and let Ux= Cx v hi (¥), k=1,2. ‘

Tf o is a simplex of T%, then either Lemma 6.1 or Lemma 6.6 appl'les,
40 it can be verified that both the pair Uy, T* and the pair Us, ™ §atlsfy
the hypotheses on the pair U, K in Lemma 4.2. U.sing diaen as e In th.IS
lemma provides two complexes, Ki in U and K; in Us, e&(lzh 1sonlt10rph1‘c
to T%, and two homeomorphisms ¢.: | T —|K3| and g2 |T |-—>],Kz\. It 3%
claimed that by making proper choices in the construction of Ki ax}d Kif
I’ = K! u K} will be a complex and the common su})eomplex ..Kl ~K;
will be the isomorph of the sub-complex I of T consisting of all simplexes
of T lying in Z°.

Tz ;ﬁ that this can be done, let Dimy Vin, f1a, etc., De the sets chosen
in the Lemma 4.2 construction of Ki and let Don, Van, tons ete. be those
chosen for Kj. If am € 2°, choose Dyn t0 be a subset of O, k=1,2. If
G € Z*, take Dip= Dum and oim= adm. Since a,;m,L must,be t&kel.l in
Ci hfl(am) when a., € Z°, the vertices comn}on to K1 a.nd K; a_Jre precls: %
thoge corresponding to vertices of T°, a8 desired. If en 18 2 1-31mp}ex : )
with ep, C Z°, take Vi, = Van to be a subset of Z°, forcing 4em C Cr, k=1, 2.
I e, C Z*, take Vip= Von and bin = ton-
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These choices clearly force the isomorphs of simplexes of T to be
common to K. and Ki, while if &,C Z° then e, C 0y and e C G, so
¢in N &= ©. In the remaining case where e, has one vertex a; in Z°
and the other an in Z*, the inclusions % C Cin for k=1,2 still hold,
S0 iy M 6hy is 2 subset of Diy = Dop. But the portion of efy inside Dy,
is a radius from af, to a point of Din lying in Cy, k=1,2, 80 ey N €y,
= @iy = Gy 28 desired.

Tt is assumed that g, and g, agree on |7}, and the two maps are now
extended inductively and simultaneously to |T] = €,. The typical step,
assuming that {o;} is an ordering of thé 2-simplexes of T’ antl that both g,
and g, have been extended to [T © oy v v Ogmy = Xy 18 to note
that gy Xn-1) U go(Xa-)\gi(on) = Y, i3 connected and misses gi(an), s0 ¢,
can be extended to throw oS onto that component of S\gi(o7) not meet-
ing ¥,. Then gi(Xa—1) v go(Xn 1) © g:(oa)\go(0n) is connected, so g, can
be extended. )

The proof that each h;gr throws each ¢ into 4 (o) is the same as the
corresponding part of Lemma 5.2.

Now for k= 1,2 a map fi: @->h(S xI)is defined by taking fu(z) = &
on 4 and

Slo(z, )] = hegrlp(z, )] on @,

where ¢ is & homeomorphism of I xI onto @ throwing I x 1 onto A. To
show each fi is an imbedding, it suffices to show that if {y.} C @, converges
toy e d thfan {fu(yn)} does also. Let yn = @(%n, ta) 80 that fe(yn) = s, gr(tn)
and note hﬁutn= 1. For each n choose a 2-simplex o, of T' with ¥ ¢ On
and a vertex a, of o,. Note that {as} converges to y and limdiad (a,) = 0.
Then ' i

Alfu(yn) s Y1 < Alhey gi(yn) s Pag(yn)1+ ALy gi(yn) , by gu(an)]+ APy gr(an), 41

Since % must be uniformly continuous on § x I, the first term on the
the second term is less than diad(o,) and i s d(an, ),
1i£nfk(yn)=y_ (on) the third is d{as,y), so
Tpus f%(Q) @nd fZ(Q) are two disks meeting in their common houndary,
80 their union is a sphere X meeting Z in A. To see that X separates j’o
:;nd 20, note first that 7}1 throws both g,(Q,) and ¢(Q,) into @y, 8o if
€hy (PO),. tl}en h(bxI) is an arc missing 2. This arec can be extended
Fo a mytmlss;ng 2's0 Py is exterior to X. On the other hand, if @ = p(x, t)
18 a vertex of T, then h : is’ i ; i
o vertex o y 8 [g:(a)xI] is seen to pierce X at hug,(a) 50 @, ‘1.»4

6.8. Proof of the 2-cell case of Theorem I. By Theorem 5.1

©
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of [7], it suffices to show that a 2-cell with a cocoon has both the strong
enclosure property and the hereditary disk property. A 2-cell Z has the
gtrong enclosure property if to each pair of points a, b of Z* there correspond
rays 4 and B meeting Z in their initial points ¢ and b and such that in
each neighborhood of Z there is a 2-sphere enclosing Z and meeting
both A and B in single points. A 2-cell with a cocoon clearly has this
property.

A 2-cell Z has the hereditary disk property if given any sub-disk ¢
of Z, any are T which spans the boundary of ¢, and any &> 0 there is
a disk D such that

(i) D*~ C=0,
(ii) D ~ O spans the houndary of ¢ and is within £ of T in the sense
of a certain metric on arcs, and

(iil) If the two components of C\D are C, and C,, then there is an
7> 0 such that each connected set M with dia(M) <7 which meets
both. ¢, and C,, also meets D. ) .

To see that a 2 cell Z with a cocoon has this property let T be an
arc spanning the boundary of a sub-disk € of Z. Then T can be extended
to an arc 4 spanning the boundary of Z and meeting Cin T. A 2-sphere X
meeting Z in 4 and separating the two components of Z\4 can be chosen,
by Lemma 6.7. Let D be a sub-disk of £ with A CD°. Then D~ C =T,
0 the second condition above is satisfied for each &> 0, no matter how
the metric was defined. The first condition is evident, and that the third
is also satisfied follows from the fact that Y separates the components
of Z\A4. Hence Z is tame.

®
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Finitely additive measures and the first digit problem*

by
Richard Bumby and Erik Ellentuck (New Brunswick, N. J.)

1. Introduction. In his paper [4], R. 8. Pinkham attempts to
give a theoretical justification of the remarkable empirical conjecture that

(1) the proportion of physical constants whose first significant digit lies
between 1 and n, where 1< n <9, i8 logy, (n+1).

His approach consists of imposing ‘reasonable’ conditions on the distribu-
tion F(x) of physical constants so as to yield (1) as a result. Two separate
such considerations are given. In the first he argues that if every physical
constant were multiplied by some real number ¢ > 0, the resulting distri-
bution F'(#/c) should agree with F(z) regarding all data concerning first
significant digits. This property of F'(x) is called scale invariance. Then
in ([4], th. 1) it is shown that if the distribution F(«) of physical constants
is scale invariant and continuous, then (1) holds. His second argument con-
sists of showing that (1) approximately holds independent of the specific na-
ture of F () and depending only on well-known statistical parameters associ-
ated with F'(z). In ([4], th. 2) bounds on this approximation are estimated in
terms of the variation of the density function f() associated with F(x).

Our interest in this problem stems from the fact that several in-
vestigators have raised such questions as ‘what is' the probability that
2 natural number has property ¢%’ In this context we agk what is the
probability that a natural number has a first significant digit which lies
bhetween. 1 and %, where 1<n < 9. Our first task consists of giving
a ‘reasonable’ definition of probability for natural numbers. This definition
will then be tested against various sets of numbers to see whether it gives
results which are in accord with our intuition. Finally, using a modified
notion of seale invariance, we compute the probabilities of various sets
asgociated with (1)

We use the following notation. Let ¥ = {1,2, 3, ..} be the set of
natural numbers, K the real numbers, and Rt the non-negative real

* This paper is a report on some moonlighting performed by the authors while
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