Fixed points of multiple-valued transformations

by
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1. Introduction. A multiple-valued transformation ¥: X—7Y is
a2 law assigning to each point x of a topological space X, a closed non-
empty subset F'(z) of a topological space Y. A multiple-valued trans-
formation F: XY is called upper semi-continuous if F(B) is closed
in X for each closed set B in Y. By a multiple-valued map, it is meant
an upper semi-continuous multiple-valued transformation.

A fimed point of a multiple-valued map F: XX is a point satisfying
@, € F'{m,). The purpose of this paper is to associate a Lefschetz number [3]
to a class of multiple-valued self-maps of a compact polyhedron, the
non-vanishing of which implies the existence of a fixed point under the
maps. Bilenberg and Montgomery [1] defined the Lefschtez number L(F)
associated with multiple-valued self-maps F: X —X of a compact polyhe-
dron X (or a metric absolute neighbourhood retract) when the image sets
F(x) consist of acyclic sets for all we X and proved that L(F)+# 0 implies
the existence of a point , satisfying @, e F(x,). Maxwell defined the
Lefschetz number L(f) associated with single-valued continuous maps
f: X—X"/8y (here X"[S, is the orbit space under the natural action of
the permutation group of = letters S, on the nth Cartesian product of
a compact polyhedron X) and proved that L(f) 5= 0 implies the existence
of a point &, such that m, is one of the coordinates of f(z,). We shall extend
the method used by Maxwell in his study of fixed points of symmetric
product mappings and relate it to the study of fixed points of multiple-
valued maps under convenient assumptions. Our result may be regarded
as an extension of the work of Maxwell [4] and that of Bilenberg and
Montgomery [1] on‘the fixed points of multiple-valued maps.

Tt is likely that our results can be proved or generalized by a possible
generalized form of the Vietoris~Begle theorem and the methods of Eilen-
berg and Montgomery. Some results have been obtained in these directions
and will be presented in a subsequent paper.

2. Let X be a compact metric space with metric ¢. For two subsets
A, B of X, we denote by:

dz, A) = inf{o(z,y)| ¥ € A},
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d(A, B)=sup{d(», B)| we 4},
6(4, B) = max{d(4, B), (B, A)}.

Here 6(4, B) is the well-known Hausdorff distance between the
sets A and B. Let K™(X) denote the space of all sets consisting of n distinet
elements of X. A metric is introduced in the set K"(X) and it becomes
a topological space with the topology induced by this metric. WeTmake
an. assumption that it is possible to introduce arbitrarily fine simplicial
decompositions in the spaces X and K"(X). The identification map
7 X KYX) is defined Dby (%1, Bay oy Tn) = (@, Ta,y ..oy &u]  Where
(g, By, .., @) i an element of the product space X" and [@y, @y, ..., 2]
is the set consisting of » distinet elements of X and is an element of K"(X).
Let X, ¥ be compact metric spaces. ANcontinuous (single-valued) map
f: XY induces in a natural manner f: K"(X)—K"Y) given by

Flwyy @y ooy @al = (@), F (@), vy Fl@n)].

I f,,fay: X—Y are homotopic, then so also f;, iy E"(X)—E"(T).

PRrOPOSITION 2.1. Let v: X"—K"(X) be the identification map. Then
the chain homomorphism v,: Co X", L)~ Ci(K™(X), L) (where L is a field
of coefficients) induces a homomorphism Ay: Co(I"(X), L)~ Oy X", L).
(s given here is similar to the transfer homomorphism given by Floyd [2]).

Proof. Let & be a generator of the chain group Cy(K"™(X)), then
there exists an element ¢; e 0«(X") with 7, 6; = e;. We define 4,.: C,(K"(X))
0y X™ by setting A, e; = lie; for some l; ¢ L. For another generator
¢; e Ci(E™(X)), we have the equation A,c}=li¢; for some I'eL and
¢ € 0y X"). Now we define A, (ei+ e}) = lyoi+ e}, It can easily be verified
that 1, thus defined on the generators of the group Oz(K"(X )} is linear
and can thus be linearly extended to all elements of Ct(K"(X )). To prove
that 4, is & chain homomorphism, we need to verify that 4, = 81, (where?
is the usual boundary homomorphism). Consider Ohy 01 = 0lyoq = 11004
=y 061= 2407y 0= Ay T4 001 = (14 7,)00;= l00; (We observe that or, =7,0),
what we have shown in above for the generators can be easily extended
by linearity to all elements of Cy(K™(X)).

:?. Let F be a multiple-valued map F: XX where X is a compact
metric space; 'such that for each » ¢ X, F/(x) consists of n distinet elements
of X. The single-valued (continuous) map f: X —+EKMX) iy defined as

before.by fl@) =F(z) for each z e X. We have the sequence of homo-
morphisms:

(3.1) O X)L OB X)) 22 0 X245, 0y )

where f, is the usual chain homomorphism induced by the map f, A,

©
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is' the homomorphism given by the proposition 2.1 and =, is the homo-
morphism induced by the projection map m(wz;, @, ..., a) = ;.

On the level of homology groups (simplicial theory with a field of
coefficients is used throughout), we have the sequence of homomorphisms

(3.2) Hy( X)Ll Hy (B X)) 25> HA X250 Hy(X)

The composite homomorphism 7y, 4s,fs, is @ linear transformation
of the (finite dimensional) vector space Hy(X). The Lefschetz number
associated with the multiple-valued map F (of the type defined earlier)
is given by

L(F) = Y (—1) trace(mu A f,) -

—
1

The number L(F) depends only on the homotopy class of the single-
valued map f associated with the multiple-valued map F. In case n =1,
this reduces to the well known Lefschetz number associated with a single-
valued map. This generalizes the Lefschetz number associated with
a map f: X—X"[8, where X"[8, is the orbit space under the action of
the permutation group of n letters on X" as defined by Maxwell [4]. Now
we come to the main theorem of this paper.

THEOREM. Let F be a multiple-valued map from a compact metric space X
into diself such that I'(z) comsists of n distinct points for each » e X. Let
the Lefschete number L(F) be defined as in the preceding. Then the equation
L(F) # 0 implies the existence of a fized point under F. .

Proof. The single-valued map f: X—+EK"(X) is defined by f(z)=F(»)
for each ¢ X. The distance g(x,f(z)) from # to the nonempty closed
set f(x) is defined, as before, by g(m,f(m)) = inf{o(z, )| ¥ ¢ f(®) = F(z)}
We observe here that g(m,f(w)) = 0 if and only if @ ef(»), Le. # is fixed
point under F.

Consider XL~ X x K™(X)—%-> R where maps 1 x f and v are defined
by

(I xf)z) = (m7f(w)) ’
p(@, §) = oz, §) = int{e(w, yo)| ¥: ¢ f(@)}

(here 7 denotes the set f(z)).

Suppose on the contrary there exists no fixed point under F, then
(1xf)(z) > 0 for each x ¢ X. By compactness of X, there exists a ¢>0
such that

p(lxf)(x)>e¢ for each xeX.

We have assumed earlier that the spaces X and K™(X) admit simplicial
decompositions and we now choose sufficiently fine friangulations such
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that mesh X < /2 and mesh K"(X) < /2. By the simplicial approximation

theorem, there exists a barycentric subdivision X' of X and a simplicial

map s: X'—K%X) where s is homotopic to f and g(s(#), f(x)) < &/2.
We consider the composite of the sequence of maps

X582, pY X)) (X2 X X

where § is a simplicial map homotopic to f which exists by the simplicial
approximation theorem, v~' is the inverse of the identification map
r: X" K" X) and is set-valued, ¢ is induced by the subdivision map of
the barycentric subdivision of (X")' of X and = is the projection map on
the first coordinate defined by m(®y(, @y, ..., ¥x) = 2;. We define the set-
valued map &t X ol by t(o) = mpr 8 ([o]) for each simplex ¢ of the
triangulation of X. It can be easily verified that {o] » #(|o]) = @ for each
simplex ¢ of the triangulation of X by considering the definition of the
set-valued map ¢ and the choice of the triangulations of the spaces X
and K™"(X).
We now consider the sequence of chain homomorphisms

04 X) de)#;} O£(x/)&.> Ci(K%(X)) w, Oi(X)

where (8d), is the chain homomorphism induced by the map of a space X
into its barycentrie subdivision X', m, is induced by the projection map
(%, Byy ooy @n) = @, and 4, is the transfer homomorphism as defined
in proposition 2.1. Define the composite chain map 4, = w4, A+, 84,(Sd)«,.
This chain map 6+ has no fixed elements because of |o| N t(|o}) =@ and
by a theorem due to Lefschetz [3], L(04) = 0. Hence,

L(64) =2(—1)‘ trace 4,

=Zi:‘(—1)"trace 6x,  (by a theorem due to H. Hopf)
:;’(wl)itrace(m,l*‘s“(ls'd)m) ‘
=;'(~1)‘tra,ee(nn/1nsn)
=Z(-—1)itra,ce(nnl*,j*.)

=2(—1)i traceF,,
1
=90.

Hence no fixed points under F implies L(F)= 0 and our proof is
complete.

icm
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CorOLLARY. If X is a acyclic polyhedron, then L(F)+# 0 and every
multiple-valued map F: XX of the type discussed in the above theorem
admits a fized point.

Remark. O'Neill [5] by using a different method has obtained
a similar theorem, our procedure is an extension of the work of Max-
well [4]. In the statement of the theorem the image sets F() under
F: XX may consist of » distinet acyclic components by an application
of the Vietoris mapping theorem.
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