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please to any desired position. 8, as well as its multiples 68, is measure
inducing since limy(logs(t)/t) = 0. Hence w(0%8 ~ N) = 0" u(6"8 ~ 0" W)
= 6"#(0"(6’ ~N )) = u(8 ~ N), the final equality following because ue §,.
Let PM = 08 ~ N, a set of integers which corresponds to the arc u
all P having the same measure with respect to u. Now consider p, g e N
such that (pfg) < A(U). By a simple geometric argument this imﬁlies
that we can find ¢ ares U™, &k ¢ 4, such that every point of € belongs t6
at least p of them. Correspondingly every m ¢ N belongs to at least p of
the ¢ sets P®, ke A. For n e N let B, be the set of m ¢ N which helong
to exactly n of the P, ke 4. Then we have ;

P = > w(P?) = D nu(Ba) = p .
e == ’
Thus .(p/q) < u(P"). Proceeding in exactly the same way we can show
that it 2(U) < (plg), then u(P®) < (p/g). It Wwe combine these results,
we see that u(8 A N)= u(P9) = A1(U). qed.

» C(')ROLLARY. If Py is the set of natural numbers whose first significant
digit lies between 1 and n, 1 <n <9, and pe 8 (in fact to any 8, where
logi, 0 is irrational), then u(Pp)= logy(n+1).

Eroof. For we can describe Py = S, ~n N where 8, is the set of all
o el such that 0 < e(logy®) < logy, (n+1). q.e.d.
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Metrizability of trees *
by
Carl Eberhart (Lexington, Ky.)

Introduction. It is a well-known result that dendrites (acyclic
Peano continua) can be alternatively defined as metrizable continua in
which each pair of points can be separated by a third point. L. E. Ward,
in [6], generalized the notion of dendrite by removing the metrizability
condition in the second definition, and called such objects trees. He then
showed that many properties of dendrites carry over to trees. In this
paper we shall be concerned with establishing properties of trees which
vield metrizability theorems. The principal results in this connection
are 1.6, IIL.1, II1.2, and IIL.5.

1. Separable trees are metrizable. By a continuum we mean
a compact connected Hausdorff space. A continuum is hereditarily wni-
coherent provided the intersection of any two of its subcontinua is connected.
A tree is a locally connected hereditarily unicoherent continuum. An are
is a continuum with precisely two non-cutpoints.

In Whyburn [7], pp. 88-89, several properties of metric trees (= den-
drites) are established. L. E. Ward showed in [6] that a number of these
properties carry over to the nonmetric case.

For the rest of this section X will denote a tree. Proposition I.1 is
due to Ward.

11. PropositioN. For each » and y in X, [z,9]1=) {0 w,y¢C
and C is a subcontinuum of X} is an are with endpoinis x and y.

Proof. It follows from the hereditary unicoherence of X that [z, ¥]
is the only subcontinuum of X irreducible between z and y. Suppose

e (2, y) = [z, yN{z, y}. I [#,y]\¢ were connected, then z and y would
lie in the same component of X\z. But this is impossible since the com-
ponents of open sets in locally conmected continua are continuum-wise
connected ([1], p. 110). Hence [z, y] is an arc.

1.2. ProPOSITION. If C is a component of X\p, then [z, p) = [z, pI\P
C C for each x in C.

* This research was supported by a Faculty Fellowship from the University of
Kentucky.
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Proof. This follows from the fact that C*, the closure of 0, is 0w {p}.

A point p in X is called a branch point of X provided X\p has more
than two components. It follows readily from I.2 that p is a branchpoint
of X iff there are at least three arcs in X with p as a common endpoint
which are pairwise disjoint except for p. Let B denote the branchpoints
of X.

1.3. PROPOSITION. Suppose D thatis a dense subset of X which contains B.
Let C be the collection of all components of X\d as d ranges over D. Then C
is o subbasis for the topology of X.

Proof. Let ze¢X and U a connected open set containing ». Let 4
be the collection of all components of X\d which fail to confain « as d
ranges over (U ~ D\&. We show that U covers X\U. Let y ¢ X\U and
choose 2 € (z,y) ~ U. Then [y,2]C U. Let pe(z, &) and V a connected
open set containing p which does not contain x and y. Suppose ¢ € V\(%, ¥).
Then [p, ] ~ [#, 2]is an are [p, 7] lying in (2, y) and the point 7 is a branch-
point of X. Hence (#,2) contains a branchpoint of X or (z,#) is open.
In both cases, we conclude that (z,2) N D = @. Let d e (2, 2) ~ D. Then
the component of X\d which contains y does not contain x. We conclude
that O eovers X\ U. Consequently there exist dy, dy, ..., dn in (U ~ D)\
such that every point of X\ U lies in a component of X\d; not containing
for some i. Let C; be the component of X\d; which contains «. Then

n
W= Ql C; is an open set containing z. Furthermore, if ¥ ¢ X\ U, then

for some 4, y lies in a component of X\d which does not eontain « and
hence y ¢ C;. Thus W C U and the proof is complete.

I.4. PrOPOSITION. Suppose that D is a dense subset of X. Then card B

< card D, and hence card B v D = cardD.
. Proof. Fix beB. Define a function f: DxD->B by f(x,y) =10
if ye[w,b] or zely,d] or [z,b]~[y,b]l=">0 and f(z,y)=10b"if [x, b]
Ay, b1 =1[b", b], where b’ = b. If b’ € B, then there are two components ¢,
and C, of X\b' which do not contain b. Since €, and C, are open, thW
must contain points d, and d, e D respectively. Hence f(dy, d,) == b’ by 1.2,
We conclude that cardD = card D x D = card B. '

The weight of a space is the smallest cardinal such that theve ix a hasiy
for the space with that cardinal. The densily of a space is the smallest
cardinal such that there is a dense subset of the spmé with that cardinal
(4], p. 50).

L5. TuroreM. The weight of X equals the demsity of X.

Proof. Let D be a dense subset of X whose cardinal is the density
of X. By I.4, we may assume that B C D. Let C be the collection of (zoni~
ponents of X\d as d ranges over D. For each d ¢ D, let: C; be the collection
of components of X\d. Then card Cz < caxd D, because C; is a collection

©
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of pairwise disjoint open sets each of which must contain points of D.
Since G = | C¢, we conclude that card € < card D. By 1.3, C is a subbasis
for the topology on X. Let $ be the basis generated by C. Then cardB
— cardC < card D. Consequently the weight of X is less than or equal
the density of X. Since the reverse inequality is true for arbitrary spaces,
the theorem is proved.

The following corollary can also be obtained from 6.6 of [2].

I.6. COROLLARY. X is metrizable iff X is separable.

Proof. A compact Flausdorff space is metrizable iff it has a count-
able base.

1l. ¢; and F, sets of endpoints. As in section I, X will denote
a tree. A point p of X is an endpoint of X provided X\p is connected.
It follows quickly from L.2 that p is an endpoint of X iff p is an endpoint
of each subarc of X which contains it. Denote the set of endpoints of X
by E. We shall investigate the relationships between E and B, the branch-
points of X. .

TI.1. PROPOSITION. If e B is a limit point of H, then ¢ is a limit
point of B.

Proof. Let U be a connected open set containing e. Then U contains
two endpoints e; and e, distinet from e. Since X is locally connected,
[e1, €]\ [€s, €1C U. Now [ey, ¢] ~ [e., €] is a proper subarc of [e, ] and
[e,, €], and the endpoint of this arc different from e is a branchpoint of X.

I1.2. ProposITION. If 2 ¢ X is a limit point of B, then @ is a limit
point of E.

Proof. Let U be an open set containing x and choose V connected
and open so that » e VCV*CU. Since the components of X\V* form
a cover of X\ U by pairwise disjoint open sets, there must be only a finite
number of them which meet X\U. Label those which do meet X\U,
{C}4-,. Now the boundary of each ¢; is a single point e;. (To see this,
let y and 2 be in C7\Cs and we C;. Then by 1.2, [y, w] and [z, w] lie,
except for y and z respectively, entirely in C:. Since ([y, w]v [z, w]) N
~V*= {y, 2} is connected, we have z=19.) For each e;, ¢ with i #j
consider [ei, #] ~ [¢, «]. This intersection is either » or an are [, byl
where bg; is a branchpoint of X. Since there are at most a finite number
of by, there is.a branchpoint b in V different from each of them. Let K, K,
and K, be distinet components of X\D. At most one of these contains &
and at most one of the others contains an e;. Consequently one of them
contains neither # nor an ¢;. Assume that K, has this property. Then
K, C U and any one of its noneut points is an endpoint of X. This completes
the proof.

11.3. TusoreM. If B is closed, then B is countable.
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Proof. Fix a branchpoint p. For each branchpoint b # p, we assert
that [, p] ~ B is finite. For if not, then some in {0, plis a limit point
of B. Hence by IL.2, « is a limit point of B, and since X is closed by assumyp-
tion, # e B. This is an impossibility since b and p are branchpoints.

Now let o(b) denote the number of points in [b,p] ~B, and let
Bu={beB| o(b)=n} for n=2,3, .. and let By = {p}. If By is infinite
for some =, then B, has a limit point 4, which by IL.2 must also be a limit
point of F, hence an element of E. Now on the are [z, p] there are an
infinite number of branchpoints; in fact, for each 2 in (#, p) there
is a branchpoint in (¢, z). To see this, pick an endpoint ¢ other than
in the component ¢ of X\z which contains #. Then, by 1.2, [¢,z] and
(2, ] lie except for # entirely in 0. Now [e, 2] ~ [, 2] is u proper subare
of each of [e, 2] and [z, #] since ¢ and @ are endpoints. Thus the endpoint,
of this arc different from z is a branchpoint lying in (2, @).

Thus [#, p] ~ B is infinite, Choose b in [z, p] ~ B so that o(b) > .
Let € be the component of X\b containing . Then b e[y, p] for each
yeC, and hence By~ C =@, a contradiction. Thus each B, is finite.

o
We have already shown that B= | J By, and therefore B is countable.
n=1

II. 4. ProrosITION. If A and B are connected subsets of X, then
A ~ B is connected. .

Proof. Let # and y be in 4 ~B. We show that [#,y]C A A B.
Suppose that some point z of [#, ¥] is not in 4 ~ B. Assume 2 ¢ 4. Let ¢
be the component of X\z containing . Note y ¢ (. Thus 4 = (C ~ 4) v
w ((X\C*) ~ A) is not connected, a contradiction. o

I1.5. CorOLLARY. Hach subcontinuum of X is a iree.

Proof. It follows from IL.4 that each subcontinuum of X is locally
connected. o

I1.6. TaeoreM. If .E is an If’t,' set in X then B 18 countable.
o . N
Proof. Write B = UIE,., where E, is a closed subset of A und
n= . A [

E,C Byyy. Let X, be the intersection of all subcontinua of X which
«?ontain E,. Tt follows from the hereditary unicoherence of X that Xy
is a continnum. Thus X, is a tree by IL.5. We assert that the endpoints
of X, consist precisely of the set B,. That each element of K, is an end-
point of X, is clear. Suppose that # is an endpoint of X,, and let y be
some other point in X,. For each 2 in [y, 2] let €. be the compo.nent
of X,;\z which contains #. These form a base for the topology at @: Further,
each O must contain a point of By (otherwise X,\C; would bé:a.smaller
continuum containing By). Therefore # is a limit point of B, or atisin By.
We conclude that z e B,.

T

©
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Let B, be the set of branchpoints of X,. Clearly B = CI B,. By 1.3,
1

B, is countable for each #; hence B is countable. This completes
the proof.

IL.7. TreoreM. Let A be a closed set of endpoints of X. Let 4, be the
set of isolated points of 4 and A,= ANA,. Then

(1) Ay is countable,

(2) 4, is a G5 set in X, and

(3) if X s first countable at each point of A;, then A is a G5 set tn X.

Proof. Let X, be the intersection of all subcontinua of X containing 4.
Then by previous arguments X; is a tree -whose set of endpoints is pre-
cisely A. Let B, denote the pranchpoints of X;. Choose p e B; and define
for each z € X, the order of x, o(x), as the number of points in [z, p] ~ B;.
We claim that o(z) is infinite iff 2 ¢ A,. To prove this, suppose that
[#, p] ~ B, is infinite. Then some point z of [z, p] is a limit point of B,.
By IL.2, 2z is a limit point of A. Since A is closed, z must be in 4, and
therefore z — . Since # is not isolated in A4, » € 4,. Conversely, suppose
that [, p] ~ B, is finite. Then there is a 2 in (@, p) such that (z,2) » B,
is void. Let O denote the component of X\z which contains z. If z ed,
then C contains a point y of A distinet from . Since (z, 2) contains no
points of B,, we have z¢€[y,2], & contradiction.

Proof of (1): Let An = {acd] o(a)= n}. I Ay, is infinite for
some 7, then some a in 4 is a limit point of 4;,. Note that a € A,. Hence
[a,p] ~ B, is infinite. Choose b in B, ~[a,p] so that o(b)>n. Then
the component of X\b which contains & must contain a point a’ of 4.
But since b € [a, p], and o(b) > n, @’ ¢ 4;x. Hence A,, is finite for each »
Since 4, = | A1a, 4, is countable.

n=1

Proof of (2): Let By, = {b e By| o(b) = n}. Let Up={zeX] (,p)
A By, # 0}. We claim that Uy, is open and Ay = [ Un. To prove this,
n=1

suppose # € Up. Then (x, p) » Bin # 3. Let b be the branchpoint of X
in (2, p) such that o(b) = n. Then clearly the component of X\B which
contains « lies in Uy. Thus. Uy is open. Now since 2 e A, iff [#,p]~ B
is infinite, we see that z e 4, iff [z, p]~ By, # O for each n. From this

00
we conclude that [ Un = 4,. Thus 4, is a G5 set in X.
n=1

Proof of (3): Label the points of 4in {an ™% for each n. Since X
is the first countable at a@mi, we can find a monotonic sequence {@nsj}io1
on [p, an} which converges to &ui. Further we can choose @n; $0 that
the component of X\ani which contains an: containsg no other point
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of 4. Now for each @y, lot ¥y be the component of X\@uy containing .
Define

Vo= U {Vem: k=1,..,n} and We=UpwV,

where U, is the same as in the proof of (2). We observe that 4;,, v 4, u
U oo A1, CV, and that A4,;C Uy for 4 >n. Hence Wy is an open set
containing 4. Now suppose ¥ ¢ X\4. Then. as in the proof of (2) there is
an # such that y ¢ U,. For each ay where k=1, ...,%, choose a j so
that y ¢ Vi, and then choose m to be larger than » and all of the js
choosen above. Then we have ¥y ¢ | {Vim: k=1,..,0 CVyu. Con-
sequently y ¢ Wn.

1II. Metrizability of Souslin trees. Let X be a tree. We
call X a Souslin tree provided (1) each are in X is separable, and (2) there
does not exist in X an uncountable family of pairwise disjoint open sets.

In this seetion we obtain some metrizability conditions for Souslin
trees. The question of the existence of a non-metrizable Souslin tree is
not answered by these results; however, they do indicate that it would
be difficult to construet such an object. It seems to me that this question
is equivalent to Souslin’s question about linearly ordered spaces [5].

Throughout this section X will denote a Souslin tree with branch-
points B and endpoints E.

IIL1. TuEorEM. X 45 separable iff B is countable.

Proof. If X is separable, then B is countable by I.4. Suppose that B
is countable. Consider X\B*. The components of this set form a collection
of pairwise disjoint open sets. Hence there are only countably many of
them. Label them (), C,, ... It is seen that O} is an arc for each i and

hence has a countable dense subset D;. Clearly D = B v [j Dy is a count-
able dense subset of X. =
ITL.2. THEOREM. If B is an T, set in X, then X is separable.
Proof. This follows immediately from II.6 and ITL.1
II1.3. PRrOPOSITION. X 4s first countable.

Proof. Let < X. Note that there are only countably many com-
ponents of X\w since these form a collection of pairwise disjoint open
sets.m Choose a point y; from each of these components and a sequehce
{yy}i=1 on [y, #] which is monotonically converging to ». Let Cy denote

‘

the component of X\yy; which contains # and let U, = ﬁ Cin. We need

q=]
only show that Ql Un = . Suppose y € X/z. Then y lies in the same com-

ponent of X\z as some 1. Furthermore, [y, v lies in this component

e _®

icm
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and [y, ¥i] » [¥i, %) is either y; or an are [y, 2]. Choose % so that yis € (2, 2).
Then clearly ¥ ¢ Cin D Uy, and thus 2= (") Un.
n=1

TIL.4. THEOREM. Hach closed subset of X is Gy in X.

Proof. Let 4 be a closed subset of X. Then X\ A4 has only countably
many components; label them C;. It can be seen that CF is a Souslin
tree and that 4;= A4 ~ €% is a closed subset of the endpoints of (7.
Thus if follows from IT.4 and IIL.3 that 4; is G5 in CF. Let {Uﬁ}t}il be

a collection of open sets in (% such that A;= (") Uy. Now define Us
i=1

=X\ LTJ (C'\Uw). It is easily verified that U, is open and that
i1

ﬁ U, = A. This completes the proof.
i=1
We now examine some implications of IIL.4 which we interpret to
mean that a non-metrizable Souslin tree would be difficult to construct.
Define the core of X, K (X), to be the set of all # in X such that U~ B
iz uneountable for each open set U containing ». We note that K(X)
is closed.
TIL5. COROLLARY. X is separable iff K(X) has a void interior,
Proof. If X is separable, then K(X) itself is void. Suppose that

K (X) has a void. interior. By IIL.4, K(X)= M Un, where U, is open
n=1

in X. Furthermore by the normality of X we can assume UE 1 C Uy,
Note that X\ U, ~ B is countable for each n. Hence for each n, the closures
of the components of X\ U} are Souslin trees with only a ecountable number
of branchpoints. Consequently they are separable. Since there are only
a countable number of these components, we conclude that X\Zn is

separable. Let Dy be a countable dense subset of X\Uy. Then D = U Dn

n=1
is a countable dense subset of X\intK (X)= X, since we have assumed
int K(X) = ©. This completes the proof.

III.6. CoROLLARY. If X is not separable, then there is a Souslin tree
X, CX such that K(X,) = X,.

Proof. If X is not separable, then int K (X) is nonvoid. Let C be
a component of int K (X) and let X, = C*.

The author has recently become aware of a very nice metrizability
theorem for trees which can be obtained quickly from a result of Isbell
([21, . 629) and a result in [5), p. 426; namely, o tree is metrizable if and
only if it is an absolute retract. As a consequence of this fact, the following
question has a yes answer: Is every one-dimensional factor space of a Ty-
chonoff cube metrizable? This question was the starting point of the work
presented here. R
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A dense set of sewings of two crumpled cubes yields s°
by
Robert J. Daverman and William T. Eaton (Knoxville, Tenn.)

I. Introduction. In 1963 Hosay [8] and Lininger [9] proved that
the space obtained by sewing a crumpled cube to a 3-cell with a homeomor-
phism between their boundaries is actually 8% At the Wisconsin Topology
Seminar in 1965 Lininger asked several questions about sewings of one
crumpled cube with another. The primary result of this paper is Theorem 1
which answers Question 7 of [10]; this result shows that, given a sewing
of two crumpled cubes, there is another sewing near the first (in the
metric sense) which yields S°

Results by Harrold and Moise [7], Ball [1], and Martin [12] indicate
that not every sewing of two crumpled cubes yields §° Neither Theorem 1

. nor the techniques of its proof show which homeomorphisms do produce §°

Section 3 contains some information about this problem in certain cases.
The strongest result is Theorem 2, which shows that any sewing matching
the wild points of one crumpled cube with points of a tame Sierpinski
curve in the other yields S°. Theorem 3 proves a necessary and sufficient
condition that a sewing gives 8 for special crumpled cubes.

A crumpled cube C is defined as a space homeomorphic to the closure
of the interior of a topological 2-sphere in E°. The boundary of C, denoted
BdC, consists of the points where C fails to be a 3-manifold.

When two crumpled cubes K, and K, are sewn together by a homeo-
morphism h of BAK, to BdK,, the resulting space § is obtained from
the union (disjoint) of K, and K, by identifying each x in BAK; with h(x)
in BdK,. The homeomorphism % is referred to as a sewing of K, and K,
and S is called the sum of K, and K,.

Suppose that € is a crumpled cube and p is a point in BdC. The
statement that p is a piercing point of ¢ means that there exists an
embedding f of ¢ in 8° so that f(Bd C) can be pierced by a tame are at f(p).
Similarly, a Sierpiniski curve X on Bd ( is fame if f(X) is tame under an
embedding f of O into §° so C1{($*—f(C)) is a 3-cell. It follows from
Theorem 11 of [11] that a Sierpiriski curve X on Bd (' is tame if and only
if it is tame under some embedding of ¢ in &

The reader is referred to [2] for definition of other terms used in this
paper.
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