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A dense set of sewings of two crumpled cubes yields s°
by
Robert J. Daverman and William T. Eaton (Knoxville, Tenn.)

I. Introduction. In 1963 Hosay [8] and Lininger [9] proved that
the space obtained by sewing a crumpled cube to a 3-cell with a homeomor-
phism between their boundaries is actually 8% At the Wisconsin Topology
Seminar in 1965 Lininger asked several questions about sewings of one
crumpled cube with another. The primary result of this paper is Theorem 1
which answers Question 7 of [10]; this result shows that, given a sewing
of two crumpled cubes, there is another sewing near the first (in the
metric sense) which yields S°

Results by Harrold and Moise [7], Ball [1], and Martin [12] indicate
that not every sewing of two crumpled cubes yields §° Neither Theorem 1

. nor the techniques of its proof show which homeomorphisms do produce §°

Section 3 contains some information about this problem in certain cases.
The strongest result is Theorem 2, which shows that any sewing matching
the wild points of one crumpled cube with points of a tame Sierpinski
curve in the other yields S°. Theorem 3 proves a necessary and sufficient
condition that a sewing gives 8 for special crumpled cubes.

A crumpled cube C is defined as a space homeomorphic to the closure
of the interior of a topological 2-sphere in E°. The boundary of C, denoted
BdC, consists of the points where C fails to be a 3-manifold.

When two crumpled cubes K, and K, are sewn together by a homeo-
morphism h of BAK, to BdK,, the resulting space § is obtained from
the union (disjoint) of K, and K, by identifying each x in BAK; with h(x)
in BdK,. The homeomorphism % is referred to as a sewing of K, and K,
and S is called the sum of K, and K,.

Suppose that € is a crumpled cube and p is a point in BdC. The
statement that p is a piercing point of ¢ means that there exists an
embedding f of ¢ in 8° so that f(Bd C) can be pierced by a tame are at f(p).
Similarly, a Sierpiniski curve X on Bd ( is fame if f(X) is tame under an
embedding f of O into §° so C1{($*—f(C)) is a 3-cell. It follows from
Theorem 11 of [11] that a Sierpiriski curve X on Bd (' is tame if and only
if it is tame under some embedding of ¢ in &

The reader is referred to [2] for definition of other terms used in this
paper.
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Throughout this discussion the standard 3-cell will denote the gset
of points in E® whose norm is less than or equal to 1.

II. Existence of sewings which yield §°. The following lemma
is an easy consequence of the fact that any crumpled cube K can be
embedded in 8 so that CL($*—K) is a 3-cell. '

Lumta 1. Suppose that K is a crumpled cube in 8°, Y is o tame. Sier-
piniski curve on BAK, B is the standard 3-cell, X is a Sierpinski curve
on BdB; and f is & homeomorphism of ¥ onto X.

Then there exist:

(1) o null sequence of 3-cells {Ci} in B such that BACy ~ BB is a 2-cell
Di with BAD;C X and Int.D; C (BdB—X), :

(2) a homeomorphism F: K—CL(B— J Ci) such that F|Y = f.

LeMMA 2. If K, and K, are crumpled cubes, h is a homeomorphism
of BAK; to BAK, and &> 0, then there are Sierpinski curves X and ¥
on BAK, and BdK,, respectively, and a map f: K, v K,—~8® satisfying
1) flK; s an embedding (j =1, 2),

2) L) ~ f(EK) = f(X) = f(X),

3) f(X) is a tame Sierpinski curve,

1) the diameter of each component of BAK, —X is less than e:,.

5) the diameter of each component of BAK,—h(X) s less than e,
6) for each z in X, g(BdKzr\f" 1 (@), h(m)) is less than &, and

7) 8 —f(K,v K,) consists of a null sequence {Bi} of components
such that ClB; is a 3-cell.

Proof. By [2] there exist tame Sierpidski curves X and ¥ in BdK,
and BdK,, respectively, and also a homeomorphism ¢: h(X)—~Y such
that (1) e(g, I) < ¢ and (2) each component of BAK; —X and of BAK,—Y
has diameter less than e. Let B denote the standard 3-cell in §%, and let Z
denote a Sierpinski curve on BdB.

We define homeomorphisms f, taking X onto Z and f, taking Y
onto Z such that f; = fogh. By Lemma 1, f; may be extended to an em-
pedding of K, into B and f, may be extended to an embedding of I,
into C1(8°—B). Then the required map f is obtained by piecing together
the embeddings f; and f,. ' k
‘ Lemyva 3. Suppose that K, and K, are crumpled cubes in S whose
wndersection is a tame Sierpifiski curve X in the boundary of each and that
S —(E, v K,) consists of a null sequence {Bi} of compoments such that
each Ci= OlB; is a 3-cell. Given a neighborhood N of (\J C;—X) and
&> 0, there is o map f of §* onto S° satisfying

(1) fIS*—N = identity,

(2) fIE; is a homeomorphism (j =1, 2),

(
(
(
(
(
(
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(3) the closure of each component of §*—(f(K,) v f(Ky)) is a 3-cell
of diameter less than &,

(1) fIE) n f(Ky) = f(BAK,) ~ f(BAK,) is a tame Sierpinski curve Y,

(3) each component of (BAK;) —f YY) has diameter less than & (j = 1, 2).

Furthermore, if the diameter of each By is less than d, then f can be
chosen so that o(z, f(x)) < d for each x in &

Proof. In the following argument we work with each of the 3-cells Ci
individually and only very near those of big diameter. For simplicity
we agsume that € is the only 3-cell whose diameter is greater than e.
Tet § denote the simple closed curve § = BdC, n K; ~ K,. There exists
2 homeomorphism ¢ of ¢, onto the standard 3-cell B in E® taking 8 onto
the circle BdB ~ {(z, ¥, 2)| #=0}. It follows from uniform continuity
that there is & positive number a such that, for each a-subset M of B,
g-{M) has diameter less than ¢/3; similarly, there is another positive
number & so that 6-subsets of O, are sent by g to af24-subsets of B.

There exist tame Sierpiniski curves X; in BdC, ~ BdK; containing 8
such that each component of (BdC, ~n BdK;)—X; has diameter less
than 6 (j=1,2). See Theorem 9.1 of [3]. With a slight adjustment of
the homeomorphism g, we can push each accessible simple closed curve
in X, v X, to a round circle on BdB. To prevent further complications
in epsilonics, we assume that if D is a component of Bd 0, —(X; v X,),
then ¢g(BdD) is & geometric circle on BdB.

Leb g, -.., Toney D horizontal planes in E® such that

(1) m~BdB=(0,0,1),

(2) i1 N BdB = (0,0, —1), and

(3) o(ms, mep1) < af12 for i=0, ..., 2n.

Let J; denote the simple closed curve where BdB is intersected by
a horizontal plane halfway between mx; and @iy1. We also assume that the
inaccessible part of g(X, v X,) contains all the eurves z; » BdB and J;
(t=0,...,2n).

Inside B is another 3-cell A which is obtained by removing a null-
sequence of 3-cells from B. Each cell in the sequence is bounded by a com-
ponent D of BdB—g(X, v X,) and the 9-dimensional plane containing
BdD. Observe that g-1(4) is a tame 3-cell in 8 [8], so glg~}(4) may be
extended to a homeomorphism of & onto itself. We also denote the ex-
tension by g. Note that each component of C,—g4) is a 3-cell of diameter
less than &/3.

Let A; denote the 3-cell which is the slice of A between z; and 741,
Let L denote Bdd ~ {(z,y,?) # <0} and R denote BdA ~ {(z, v, 2)|
@ > 0}. We assume that g(X;) CL and g(X,) C R. Let Y; be a Sierpifiski
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curve in m ~ A containing m ~ Bd4 such that each component of
(m ~ A)—Y,; has diameter less than «/12. '

We construct disjoint 3-cells My, ..., My, satisfying:

(1) Mi~A=BdA ~BdM;=L~Bd4, if ¢ is odd,

(2) Min A =3Ba4 ~nBdM;= R~ Bd4, if ¢ is even,

(3) ¢-4(M;—8)C N,

(4) the diameter of each component of g(C,—g~(4)) intersected
with M; i3 less than of12, and

(8) M; is so close to A that a-subsets of A w (| M) go to ¢/3-subsets
of §* under g1

N

%
W T
\ L
L .
\

IR

—AW}}/%
Man— — A2n—_

| ——Components of g(crg”(A)

TFig. 1

It follows from Lemma 4 that there are hom phigms
t t are eomorphisms fi: M-
Ayv My such that pltins fi i

(6) fil(Bd M) —As =1,

(T) filg(Xy) A i) = ¥y0 Yir v (9(Xy) ~ Ay) if 4 is odd,

(8) filg(Xo) m Ai) = Yyu iy (9(X2) ~ Ay if i iy even, and

(9) Diamfi(Z ~ M) < af2 it Z is a component of g(O]L —g*l(A)).
Avsehematic diagram of the pushes f; is given in Figure 1.

We construct a map % from g(K, v K,) to 8 by defining h to be

the identity on ¢(K, v K,)— | J M; and defining & to equal f; on the

points of M;. Extending ¢g-lhg so the d in is ¢ ¢
s oo g omain is all of §° produces the

©
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The proof of Lemma 3 is completed using Lemma 4 for the existence
of the homeomorphisms f;. For simplicity of description we assume that
each cell 4; (4 =1,...,2n—1) is a solid geometric cylinder.

LeMMA 4. Suppose r >0, h> 0 and

(1) A={®,9,?) *+9P<r0<z< h} is a solid geometric cylinder,

@) T={=,y,9 &+ <r? 2=}
3) B= {(.')2, ¥, 2)| S S 0},
4) D= {(z,y,2)] = ]/72—""?—/?7 0 <z<h}
)
)

N

(
(
(5) B = BdA—IntD,
(6) J = {(@,y,2) @+y*=r% 2=}k,

(T) X is a Sierpifiski curve in D containing BAD and J ~ D in its
inaccessible part and the diameter of each component of D—X is less than b,

(8) Y is a Sierpitiski curve in E containing BAE in ils inaccessible
part and the diameier of each component of B—Y 1is less than h,

(9) {K} is @ null sequence of disjoint 3-cells such that KinA=BdK;n
~ BdA is a disk whose interior is a component of D—X.

Then, given a 3-cell M such that M ~ A = D and Diam (M ~ K;) < bk,
there exists @ homeomorphism f: M —~M v A such that

(10) fIBAM —IntD = 1,

(1) f(X)= X, and

(12) Diam f(M ~ K;) < 6k for each cell Ki.

Proof. Let a be a positive number such that

(13) a < r and the diameter of each of the disks

G, = {(m:f‘hz)l 2=0,r—a<y, wz+y2<,~z}’ M
Gy={(@,9,2) 2=0, y<-r+a, P+ <77

ig less than h.

Let {®}i-o be a finite decreasing sequence of points on the z-axis
such that @, = (r,0,0), o= (—7,0,0) and o(@:, @s41) < Bj2. Consider.
the circle containing @i, (0,7,0) and (0, —7, 0); let A; be the arc on
this cirele that has an end point on each of the planes y =1—a and
y = —r-+a, lies between these planes and contains the point ;. Let F
be the disk in the wy-plane whose boundary is a subset of A v A
o {(®,y,2) lyl=r—a}. Let Ci={(y,9 0<z<h (z,9,0)cF:}.

We construct a 3-cell L such that I~ A =D, LC(Int M) v D,
and straight lines parallel to the z-axis intersect BdL in at most two
points. Let Ty =L ~ {(#, ¥, 2)] [yl <r—a} and B,= T,~ D. Since {Ki}
is a null sequence and J ~ D lies in the inaccessible part of X, there is
a finite sequence {T';}i-. of 3-cells such that -
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(14) Ty~ A =BdTi~Bd4 is a disk B, C.D such that

BAF: = (3,7, Iyl =r—a, le—h2|<t, e=Vr=(r—af} u

O (@, 7,9 le—h2| = te, Iyl <7 —a, o= yE g

where W2 =1, >ty > t3...0n > 0.

(15) For [t <r—a, {(z,¥y,2) y=1} ~ Iy iy geometrically similar

to the semi-circular disk {(z,¥,2)] 2= 0, 2*+ 92 << 1, o < 0},
(16) T4, CD u Int Ty.
(17) No K; intersects more than two of the 3-celly T'—Int T,
(i=1,2,..,n-1).
There exists a homeomorphism g: MM v 4 such that
(18) g is the identity on Bd M —IntD and outside of a small neigh-
borhood of L,
(19) ¢(D) = B,
(20) (T —IntTirq)= Cy (t=1,...,n—1) and ¢g(Iu) = Ch,
(21) g(Bi—IntByy) = Fiv {(2,y, 2)| (@,y,0) Py, 2= h}
(t=1,..,0—1),
g(Bn) = Fo v {(®,9,2)] (2,9,0) e Fu,2=h}v
i y,2l hl<r—e,0<z<h, o= —)r—y}

(22) for [t| < 7r—a, g preserves the y =t plane, and
n

(23) g(L—IntTy) = A —Int (| Cy).
=1

The effect of the homeomorphism g in the y = t plane for Jt| < r—a
i illustrated in Figure 2.

It follows from (1), (17), (20) and (22) that Diamg(K; ~ M) < 2h.
There is & homeomorphism h: 4—A such that kD=1, h(g(X)) =¥
and oz, h(z)) < 2h. The required homeomorphism f equals hg.

TaroreM 1. If K; and K, are crumpled cubes, h is o homeomorphism
of BAK, to BAK, and ¢ > 0, then there is another homeomorphism ¢ of BAK,
to BAK, such that (g, h) < ¢ and that the union of K, and K, sewn together
by g 18 S

Proof. There exist tame Sierpitski curves X, and Y, on BdK,
and BAK,, respectively, and a map f, from X, v K, into &* satisfying
the conclusions of Lemma 2.

Let &, &, ... be a sequence of positive numbers with a finite sum.
Using Lerma 3 we define inductively a sequence of maps {fi} from K, v K,

into 8 and sequences of tame Sierpitiski curves {X:} on BAK, and {¥:}
on BdK, such that

@
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Tig. 2. y =t plane for jtj <r—a

(1) X1 C Xy and Y- C ¥y
(2) fi takes Ky (j=1,2) homeomorphically into S°
(3) filZy) N filo) = ful Xi) = ful¥4),
(4) fi(Xy) is a tame Sierpinski curve,
(5) Q(fi—lzfi) < Ei-1, )
(6) fol K — N (BAK;, &) = fialEj—N (BaEy, e) (=1, 2.),
(7) the closure of each component of 8 —fi( K, v K,) 18 a 3-cell of
diameter less than e:. o

These Sierpiniski curves are chosen, using condition 5 of Lemma 3,
so that BAX, = C1(|_ X;) and BdK, = cl( Yu).

Liet H, designate the union of the closun.es of the co
8% —fu(K, v K;). There exists a decreasing collection of open set
satisfying

(8) N contains H;, '*fi—l(—Xi—l),
(9) N; is contained in the &¢-neighborhood Of. H -1, and

(10) no two components of Hii—fi-a(Xi-1) le in the same com-
ponent of Ni.

In addition, the maps fi

(11) flf (8 —N0) = foralf2a(8* = T0).

We define a map f of K, v K, info 8 by f(@) = limf(2)- Oleaﬂ:sﬁrhf
is a continuous function. It follows from (6) that f is one to one on e

mponents of
s Ny Nayooo

from K, v K, to §° are restricted so that
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domain Tnt K, v Int Ky, and it follows from (7) that fis onto. Further-
more, we have that

f(BAK,) = f(BAK,) C 8 —f(Int K, w Int 1) .

It can be verified using (11) that f takes BAK; (j=1,2) homeo-
morphically into §° Therefore f embeds each of K; and K, in §°

We let g denote the homeomorphism of BAK, to Bd XK, satistying
f(a) = fg(x) for each » in BAK,. Then §° iy the space obtained when K,
is sewn to K, by g. It is easy to check that o(g, h) < 3s. With an appro-
priate change in the positive number employed, the proof is complete.

1L Other sewings which yield S°

THEOREM 2. If K; and K, are crumpled cubes in 8%, W is the set of
wild points of Ky, and h is a homeomorphism of BA I, to BA K, such that
W(W) lies in o tame Sierpitiski curve X on BAK,, then the union of K,
and K, sewn together by h is S

Proof. As a consequence of Theorem 9.1 of [3], we may assume that
h(W) lies in the inaccessible part of X. We may also assume that K, is
embedded in 8% so C1(§* —K) is a 3-cell B ([8], [9]). It follows from Lemma 1
that there is an embedding ' of K, into B such that F|X = »™*|X and
that §°— (K, v F(K,)) consists of a null sequence of components By, By, ...
with C1B; a 3-cell C;. Each cell C; has the property that K; ~ Bd(; iy
a disk D;, where Int D; is a component of BAdK,—h™X). Note that
eaeh Dy is tame in 8% '

The sewing is completed by a map g of 8* onto §* such that (a) ¢
takes K; homeomorphically onto Cl (S‘”‘ —F(Kz)), (b) g|F(K,) is the identity

and (c) for each positive integer 4, g|D;= Fh|D;. This establishes the
theorem.

DEFINITION. A crumpled cube € is countably knotted if there is an
upper semi-continuous decomposition & of the standard 3-cell B in E*
into points and at most a countable collection {4} of wild ares satisfying

(1) 4i ~BdB = Bd4; ~ BdB = one point and

(2) A4: is locally polyhedral mod(Bd.4,—BdB),
such that ¢ is homeomorphic to the decomposition space B/G. The bad
zgt WGOf C is the image of the non-degenerate elements of the decomposi-
ion @.

Both the Fox Artin sphere and Martin’s rigid sphere [13] produce
countably knotted crumpled cubes. Unfortunately, many of the fiercest
crumpled cubes are not countably knotted. Theorem 3 characterizes the
homgomorphisms sewing two crumpled cubes together which give &,
provided that one of these cubes is countably knotted.

©
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THEOREM 3. Suppose that W 48 the bad set of a countably knotied
crumpled cube Cy, that C, is another crumpled cube, and that h is a homeo-
morphism of BAC, to BACs. Then S is the space obtained by sewing C,
and O, together by h if and only if, for each w e W, h(w) is a piercing point
of Cs.

Proof. Let G denote an upper semi-continuous decomposition of
the standard 3-cell B, as in the definition of countably knotted, whose
non-degenerate elements are the wild ares 4,, 4,, ..., which has C; as
its decomposition space.

Assume that for each w in W, k(w) is a piercing point of (. There
iy an embedding f of B into §* such that (1) the closure of §*—f(B) is C,
and (2) for each b e BAB, h(b) is the point of C, corresponding to f(b)
([8), [9]). Note that the space obtained by sewing C; to 0, by h is homeo-
morphic to the decomposition space of §* where the non-degenerate elements
in the decomposition are the arcs f(4:) in f(B).

Bach arc f(4s) is locally tame at its interior points; f(4;) is locally
tame at f(d; ~ BdB), since f(4:~ BdB) is a piercing point of C,
(Lemma 2, 12). Therefore, f(4;) is cellular.

The decomposition of §° whose non-degenerate elements are the
ares in the collection {f(4)} produces §* as its decomposition space,
because each arc f(4;) is cellular and locally tame modulo one point [6].
Thus, sewing €, to Cp, by h yields §° .

The converse implication may be proved with the same construetion
and an appeal to the results in [12].
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A note on inverse binary operation in abelian groups

by
R. Padmanabhan (Winnipeg)

Tt is well known that in a group <&, +, —, 0, all the group operations
can be expressed in terms of a single binary operation a¥b = a—b. Thus,
0= a%a, —a= 0%a and a+b = a¥%(—>b). It is not known whether the
‘right subtraction’, the ‘left subtraction’ and its transposes are the enly
binary operations in groups in terms of which all the other group operations
can be expressed. However, in [1], Higman and Neumann have stated
that, in the case of abelian groups, these are the only operations having
the property and Professor Neumann says (*) that there exists no explicit
publication of the proof so far. In this note we give a proof for the same.

Notations and definitions. A binary operation in a group
(@, +, —, 0 is a word in two symbols, say a, b and in the group symbols -+
and —. It is known that any word in a, bin an abelian group can be written
in the form ma--nb where m and n are integers (ma stands for ‘a4 a-+...m
times’). If f(a, b) is the word ma-nb, then the length of the word f is,
as usual, the positive integer |m|+-|n, while the ‘degree’ of the word f
is, by definition, the integer m-n.

" TugoREM. If a%b is a binary operation in an abelian  group
(G, +,—, 0> in terms of which all the other group operalions can be ex-
pressed, then a¥b = a—b or else a%b=">b—a.

Proof. Given that

a+b=g(a,b), some word in the binary system (G, %,
—a = h(a), some word in the binary system (@, %,
and so, (or even otherwise)

0=oa+(—a)

g(“; h(a))
= f(a), some word in <G,% .

if

Moreover, we have G+ & = G, i.e. given a in G, there exist elements b, ¢
in @ such that a = b-+e, or a = g(b, ¢) = UK, where % and v are words
in b, ¢ and the symbol %. So we have @G = @G.

*) In a private communication.
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