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1. Introduction. In 1961 a paper by A. D. Wallace [10] appeared
in which he showed that a topological space which supports a relation
with certain properties is acyclic; thus he was able to interrelate the
notions of order and algebraic topology. The purpose of this paper is to
further the study of the relationship between order and algebraic topology
by presenting a generalized version of the Vietoris-Begle Theorem
(see [1], [2], [4], and [7]) in an order theoretic sgtting. Many of the tech-
niques employed are reminiscent of those used by Wallace. Other generaliza-
tions of the Vietoris-Begle Theorem have been given by A. Bialynicki-
Birula [3] and B. G. Skljarenko [5]. The theorem of Bialynicki-Birula
is a special case of Theorem 3.6 in which R is an equivalence
relation.

The author wishes to express his indebtedness to D. R. Brown, under
whose supervision this work was carried out.

2. Preliminaries. Let G, and G, be groups. If f is a homomorphism
from G into @,, then f is a monomorphism if f is ope-to-ome, f is an epi-
morphism if f(G) = Gy, and f is an isomorphism if f is both an epinmiorphism
and a monomorphism. '

Throughout the remainder of this section let G denote a fixed com-
mutative group. We denote the nth Alexander-Wallace-Spanier co-
homology group of a topological space X relative to a subset 4 with &
as coefficient group by H"(X, A). Basic theorems and notation of the
Alexander-Wallace-Spanier cohomology theory may be found in [6].

Let A and B be subsets of a topological space X such that B C 4;
let 4 be the injection of B into A (denoted by 4: BC 4). Tf ¢ e H"(4),
we denote i*(e) e H'(B) by e|B.

Tor a compact, Hausdorff space X and a closed subset A, Wallace [9]
has proved the following two results. )

* This work consists of part of a dissertation presented to the Graduate School
of the University of Tennessee. This research was supported by a NASA Graduate
Tellowship.
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9.1. Tug EXTENSION THEOREM. If e e H'(A), then there exists an
open set P which contains A such that ¢ can be ewtended to H"(P¥), d.e.,
if j: A CP*, then e j*(H"(P¥)).

9.9, Tug REpucrioN THEOREM. If ¢ ¢ H*(X) and e|Ad = 0, then there
exists an open set Q containing A such that e|@* = 0.

The Mayer-Vietoris Theorem may be found in Spanier’s ook [7].
The following formulation is due to Wallace [8].

2.3. Tur MAYER- VIETORIS TiumoruM. Let X be a compact, Hausdorff
space with closed subsets X, and X, such that X = Xy v X,. Then there
exisls an exact sequence

SHE) S HY ) x HY X)) > HY(X, A Xy) S ().

If X is a topological space, a closed relation on X is a closed subset
of X x X. If Ris a closed relation on X and A C X, then

L(A) = {z e X: (x,a)eR for some ae A}
M{A)={yeX: (a,y) <R for some aed}

2.4, LeMMA, Let B be a closed relation on a topological space X.
(i) If A and B are subsets of X, then

L(4d) v L(B)=L(4 v B).

(i) If T is a compact subset of X, then L(T) is closed.
(ill) If {4,}yer 8 o tower of compact subsets, then

L[} 4) =) L(4,) .

Proof. Part (i) is an easy consequence of the definition of the L
operator. For part (ii), let {Z.}aep be a net in L(T) which converges to x.
For each a ¢ D there exists t, ¢ T such that (w., t.) € B. Since T’ is compact,
the net {f.}oep clusters to some e T. Then {(@., t)}een clusters to (z, t);
gince R is closed, we have (x,1) e R. Hence z ¢ L(T).

For part (iii) let P = ﬂrAy. The inclusion L(P) C () L(4,) is im-

Vel

yer

mediate. Let y e[ L(4,). By the dual of part (ii), M(y) is a closed
yer

set; hence {M(y) ~ 4,},er is a tower of non-empty compact sets. Thus
there exists a ¢ (M (y) ~ 4,); then a <P and y ¢ L(a).
yel

3. The Generalized Vietoris-Begle Theorem. We shall have
need of the following purely algebraic lemma. The proof is only a slight
modification of the proof of the five lemma given by Spanier [7].

3.1. LemmA. Suppose that in the following diagram the Latin letters
represent abelian groups and that the arrows represent homomorphisms:
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<o
-1

A—>B——-0*=D

iﬂ bk
v ¥ v
E—sF-2sG——H

Suppose further that the rows are exact, the squares commaute, and that « is
an epimorphism.

(i) If A is a monomorphism and e € F such that o (e) € y(0), then e ¢ f(B).

(ii) If B is @ monomorphism and if d € (kernel T n kernel y), then d = 0.

‘We now introduce some notation that will be employed throughout
the remainder of this paper. Let f be a continuous function from X into ¥,
and let ¥, be a subset of Y. Then we denote by X, the set f (¥,) and
by fa the restriction of f from X, into ¥, ie., fo=f|(f (¥a). I T,
and Y, are subsets of ¥, we define the homomorphism f¥xf3 from
HY(Y,) x H°(Y,) into H?(X,) x H*(X,) by

(<) g, )= (fi(g), fF(h)  for (g, h) e HY(Y,) x H(Y,) .

3.2. LemuMA. Let Y be a compact space, A a closed subset of ¥, and
h e HP(A). If M is a non-empty tower of closed subsets of A such that h|M 5 0
for every M e M, then h| (| M + 0.
MeM

The preceding lemma is an easy consequence of the reduction theorem.

3.3. LemmA. Let X and Y be compact, Hausdorff spaces, and let f
be a continuous function from X onto Y. Let ¥, be a closed subset of Y and
h e HU(X). If hX; e f}(H"(Y,)), then there exists ¥, a closed subset of ¥,
such that Y, C X2 and hiX, e fH{H"(Ts)).

Proof. Since h|X,¢f#(H"(Y,)), there exists ge H'(Y,) such that
fi(g) = h|X,. By the extension theorem there exists an open set U such
that ¥, C U and g can be extended to U*. We set ¥, = U*. Leti: ¥, C ¥,
and j: X; C X,. Since f3j = if;, we have j*f = ffi*.

Since g e i*(H"(Y,)), there exists g, e H°(Y,) such that *(g,) = g.
If b = f¥(g,), then

J* (I —h|Xy) = J*(hy) —§*(hXs) = j*f (g0) — 2| X,
= fli*(g:) —h X, = f(g) —hlX, = 0.

We set @ = hy—h|X;. Since we have just shown that a|X, = 0, by the
reduction theorem there exists a set W open in X; sueh that X; C W
and a|W* = 0. Then W ~ f(U) is openin X since f(U) C X,. Since fis
closed, there exists an open set T in Y such that ¥, C T C U and FHT)
C W Af YD), eg, we may take T = T\f(X\W ~f (1))

Since Y is normal, there exists an open set V such that ¥, CV and
V*C T; then f(V*) Cf(T) C W*. Since a|W* = 0, we have alf (V*) = 0.

5%
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We set ¥, = V* Let g: X, CX; and y: ¥, C ¥;. The following diagram
is commutative: :
HY(X,) - HY(X)

¢ﬁ
13 o

HYY,)-L>HY(T,) -

We thus have
0= alX, = g*(a) = " (Il —h|X5) = ¢"(h) —g*(h] Xy)
= g*f3(g) —h|Xo = f2y" (1) —h| X, .

Hence we have h|X, e f#{H"(X,)).

3.4, LemmA. Let X and Y be compact, Hausdorff spaces, and f o con-
tinuous mapping from X onto Y. Let h e H(X) and let {Y,},er be a non-
empty tower of closed subsets of ¥ such that h|X, ¢ f,‘,“(fl”( Y,)) for all y < I,
IfY,= ﬂr Y,, then X, ¢ fHH"(XY).

"/E

Proof. We suppose that #|X; e fl*(H”(Yl)) and show this assumption
leads to a contradiction. Let ge H”(Y;) such that fi*(g) = h|X;. By
Lemma 3.3 there exists a closed subset ¥, of ¥ such that ¥, C Y3 and
BX, e fH{HP(X,)). Since ¥, = ﬂp Y, there exists a ¢ I" such that ¥, C ¥?.

YE

Let i: X,C X, and j: Y, C ¥,. The following diagram is commutative:

H(Y,) - HP(Y,)

12 ifa
. ¥
HY(X,)—— H"(X.)

Since h| X, e f#(H"(Yy)), there exists ¢e H”(Y,;) such that f3(e) = h|X,.
Then we have h|X, = i*(i|X,) = i*f¥(e) = f2*(¢) = f¥(5*(e)). Hence h|.X,
€ fHH"(¥,)); thus we have reached a contradiction.

We now marshall our forces and proceed toward the main theorem.
First, however, we introduce some additional notation. Let f be a con-
tinuous function from X onto ¥, R a closed relation on ¥, and € o closed
subset of Y. Then fy will denote the restriction of f to f“l(L(O)) with
range L(C). This notation differs from that employed for subscripted
subsets of Y. In the following theorem both conventions are employed.

3.5. TrroreM. Let f, X, X, and R satisfy the following hypotheses:

(i) X and Y are compact and Hausdorff, and f is & mapping fw)m X
onto Y.
(ii) B is a closed relation on Y.

(iii) If A and B are closed subsets of Y, there exists a closed subset C
of Y such that L(4) ~ L(B) = L(0).
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(iv) If y € ¥, then fi: H°(L(y)) —>H”<f—1(L(y))) i an isomorphism for
P = 0, ceey e

Then for any closed subset D of ¥ the induced homomorphism
fh: m(L(D))+m(f_l(L(D))) is am isomorphism for p= 0, .., %.

Proof. We suppose that for some non-negative integer m < n the
conclusion is false for p = m. We may assume that m is the least such
integer.

If m is greater than 0, then for any closed subset C of ¥ the homo-
morphism f&: H”(L(O))»H”(f”l(L(C))) is an isomorphism for p =0, ...
...,m—1; otherwise, m would not be the least integer for which the con-
clusion fails. We reach & contradiction by showing that f& is also an
isomorphism for p = m.

We first show that for any closed subset € of ¥ the homomorphism f&
is a monomorphism in dimension m. If it is not, then there exists a non-
zero he HML(C)) such that f&(h) = 0. Let M be a maximal tower of
closed subsets of ¢ such that h|L(M) # 0 for each M e M. The tower
is non-empty since C'e M. We set B = ADMM. By Lemma 2.4, L(B)

€.

= L(M). By Lemma 3.2 we have h|L(B) s 0. By the maximality of

MeM
the tower M, we have B eM and B is a minimal element for M.

We set Y,—L(B) and ¢=hL(B). Let t: X, Cf(L(C) and
7: ¥, CL(C). Then g=7*(h). Since zf, = fct, we have fi(g) = F¥(h)
= t*f&(h) = *(0) = 0. Hence f{ is not a monomorphism. By hypothesis (iv)
B is not a singleton.

Since B is not a singleton, there exist proper closed subsets M and N
of B such that B= M uN. We set Y,=L(M), ¥,=L(¥), and
Y,= Y, Y,. By Lemma 2.4, ¥, = ¥, v ¥,; by hypothesis (iii) there
exists a closed subset P such that ¥, = L(P). Since m is the least integer
for which the theorem fails, we have that fI: H™ Y Y)—~H"(X:) is an
isomorphism for ¢=2,3,4 (with the convention if m =0, then we
define the —1 groups to be trivial).

If m is greater than 0, then by the Mayer-Vietoris Theorem the rows
in the following diagram are exact:

H™ YY) x H" X, L gmy Y)-4>-H™( Yl)—£‘>Hm(Ye) x H™(Y5)
st Iy 4 [t

v
H"™(X,) iH’““(X»—’—»Hm"(X4)—"»H”(X1)—J—+H”(Xz> X H™X,) .

The definitions of I, J, and 4 (see [8]) and some straightforward
calculations yield that the squares in the preceding diagram arve com-
mutative. With the preceding convention that negative groups are trivial,
the rows are still exact if m = 0 sinee J is a monomorphism in dimension 0.
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Each square remains commutative since the only new homomorphisms
introduced are trivial.

Since f3* and ff are isomorphisms in dimension m—1, 50 also is £ x f¥.
Let my: Y;C ¥, for i=2,3. Since M and N are proper subsets of B
and B is minimal in M, we have h|Y, = 0 and A|Y; = 0, ie., a3 (g) = 0
and w¥(g) = 0. Hence we have J(g) = (n#(g), ni(¢)} = (0, 0). By part (ii)
of Lemma 3.1, we conclude that ¢ = 0. Since this last conclusion is
impossible, we have that f§ is a monommphlsm in dimension m for each
closed subset C of Y.

Since we have assumed the theorem fails for m and we have just
shown each fg is a monomorphism in dimension m for each closed set O,
there exists a closed subset A of ¥ such that fX: H™(L(A))—~H"( f"l(L(A)))
is not & epimorphism. Thus there exists eeHm(f“l(L(A))) such that

ed fff(H’“(L(A))). We set
= [K C A: K is closed, o|f™(L(

0) ¢ SR{E )}

Let D be a maximal tower in B. Since 4 e D we have that D s []. We
set F = ﬂ D; by Lemma 2.4 L(F) = ﬂL Applying Lemma 3.4 to fy,

L(4), a,nd f_l( (4)), we conclude tlmt cff YL(m) ¢f1’1‘v(Ilm(L(.F))). Since D
is a maximal tower in B, we have that F' ¢ D and F is a minimal element
in B.

Since f# is not an epimorphism in dimension m, by part (iv) of the
hypothesis F is not a singleton set. Hence there exist proper closed sub-
set B and S of F such that F= R v §. We set ¥, = L(F), ¥,= L(R),
Y, =L(8), and Y, = L(R) ~L(S). By part (iii) of the hypothesis there
exists a closed subset T of ¥ such that ¥, = L(T). As we mentioned
previously fI is an isomorphism from H™'(¥,) onto H™ YX,). By the
first part of the proof fi: H™(Y,)--H™X,) is a monomorphism.

The rows in the following dlagmm are exact since they form part of
the Mayer-Vietoris exact sequence:

™ (Y,)~"— E"(T,)

1 by

"X

T H™(Y,) x H™(Xo)~ 1 H"( ¥,
1 Iy
B X)L H™X,) x H™X,)~L>H™(X,) .

The squares are commutative as before. Special care must be taken if
m = 0; we omit the details, however, since they resemble those in the
fir.st part of the proof. Since B and S are proper subsets of I and I is
minimal in B, we have ¢/X;¢f}(H™( X)) for = 2,3, i.e., there exisly
gi e H(Y;) such that fi(gs) = e|X: for i=2,3. We then have that

J (6| X;) = (61Xs, ol Xa) = (f(gn), i(gs)) = (fF ><fa (g2, 95)- Hence we con-

icm

- easily seen to be closed and to satisty the eondx’mon LAy~

©
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cliude that J (e]X,) € (f#f X f3)(H™(¥,) X H™(X,)). From this paragraph and
the preceding one we see that Lhe hypotheses of part (i) of Lemma 3.1 are
satisfied. Thus we have that 6| X, e ff(H™(X5)), 1.e., elf ™ (L(F)) ¢ fF( H{L(F ))
This last statement is impossible since F ¢ B. Whence fj;: H"‘(L(A))—>
»H’"’(f‘l(L(A))) is an epimorphism.
3.6. TuroreM. Let X, Y, f and R satisfy the hypotheses of the preceding
theorem except that part (iv) of the hypotheses is replaced. by the following:
(iv') For cach ye X the homomorphism [3: H"(L(y)) »H”(f‘l(L(y)))
is an isomorphism for p=0,..,n—L and a monomorphism for p = n.
Then for any closed subset A of ¥, fi: HW(L(A))'—"HP(f_l (A))) is
an isomorphism for p =0, ..,n—1 and & monomorphism for p = n.
Proof. That f¥ is an isomorphism in dimensions 0 through n-—1
follows immediately from Theorem 3.5. To show that f1is & monomorphism
in dimension n, we simply repeat the first part of the proof of Theorem 3.5.

3.7. COROLLARY. (Vietoris-Begle Mapping Theorem). Let X and ¥
be compact and Hausdorff, and let f: X>Y be continuous and onto. If
(FIf @) B ({y)) ~H"(f"(y)) s an isomorphism for each yeX for
p=0,..,n—1, then (fif (4)": H(A)=H"(f(4)) is an isomorphism
for each closed subset A of ¥ for p=0,..,n—1 and a monomorphism
for p=n.

Proof. We define a relation R = {(y,y): ¥ ¢ Y}. This relation is
L(B)=L(C)
for closed sets 4 and B of Y. Since L(y) = {y}, f](f_l(L )) induces an
isomorphism in dimensions 0, ..., n —1 andamonomorphlsm in dimension #..
Since L(A)= 4 for each closed subset A of ¥, the conclusion follows
from Theorem 3.6.
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Open and closed mappings and compactification
Regu par la Rédaction le 15. 2, 1968
by

— ~James E. Keesling (Gainesville, Fla.)

Introduction. In this paper we study the extension of open and
closed mappings to compactifications such that the extension is open.
It iz shown that this can be done in such a way that the compactification
has the same weight and dimension as the original space. A characterization
of open and closed mappings in terms of the ring of bounded real valued
continuous functions of a space is given which facilitates the study of the
extension of such mappings to compactifications. Also a sufficient con-
dition is given for the extension of a mapping to a compactification to
be open. These results should be of interest in themselves. Among those
who have studied the extension of mappings to compactifications have
been R. Engelking [2], R. Engelking and B. Skljarenko [3], A. B. Forge [4],
H. de Vries [13], and A. Zarelua [15]. J. de Groot and R. MecDowell have
studied the extension of mappings on metric spaces to completions [6].

The last section of the paper deals with finite to one open and closed
mappings and dimension. Dimension and finite to one open mappings
have been studied by K. Nagami [11] for domain and range paracompact.
The author has studied the case with domain and range metrizable [8].
The theorems of this section are an attempt to generalize these results
to more general spaces. A. Arhangelskil has studied finite to one open
and closed mappings and metrization [1].

The paper has three sections. The first deals with the preliminaries
and reviews the relation Letween C*(X) and compactification. The second
characterizes open and closed mappings on normal spaces and proves
the results dealing with extending such mappings to compactifications.
The last section deals with finite to one open and closed mappings and
dimension.

Notation. Throughout the paper all spaces are assumed completely
regular. By mapping is meant a continuous function. By B(X) is meant
the ring of bounded real valued functions on X. The set 0*(X) is the subset
of B(X) consisting of those functions which are -also continuous. The
modified Lebesgue covering dimension of the space X is denoted by dim X.
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