On o-models which are not g-models

by
A. Mostowski and Y. Suzuki* (Warszawa)

Tn this paper we shall prove a theorem which, roughly speaking, says
that g-models for the second-order arithmetic (see [1]) cannot be distin-
guished from o-models by elementary sentences. Although this result
is by no means surprising, the proof of it is not immediately obvious. In
section 6 we state a similar result for models of the Zermelo—Fraenkel
set theory and give a solution of a problem concerning the existence of
models which are N,-standard but arve not K.y, -standard. This problem
was formulated in [3].

1. Syntax. In our formal language we shall use Vv, &, —», 7, =
as propositional connectives, (E ), { ) as quantifiers. Variables will be
denoted by Roman letters and the predicate of identity by “~". We
shall use the abbreviation (B!x)F for (Bz)(x)[(x ~ z) = Fl. ()

We shall consider a first order theory T which has the primitive
predicates N, S, H, A, P and possibly still other predicates. N, 8 will
have one argument, E two and A, P three. We read N(x) as “x is an
integer”, S(x) as “x is a set of integers”, B(x,y) as “x is an element
of y?, A(x, v, z) as “x is the sum of y and 2” and P(x, 7, 2) as “x is the
produet of y and z”.

Tn order to make our formulae more readable we introduce a number
of simplifications.

We shall abbreviate (X)[N(x)—>...] as (Xx.. and (Ex)[N(x)&...]
as (Bx)y...; we also use similar symbols for quantifiers limited to S.
Sometimes even the index N or § can be omitted, because we ghall use
lower case Roman letters a, b, ..., as variables “ranging over elements
of N and upper case Roman letters X,Y,. ,F,.. a8 tyariables ranging
over elements of §7. (Letbers x,y, ... will be used whenever the domain
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(1) 'We use in the meta-lan fuage the abbreviations (dw), (Va), and = for ““there
is an ", “for every @', and “if .., then...”. The symbol & will also be used as an
abbreviation of “and” and the symbol “‘¢” as an abbreviation of “is an element of”.
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of variability is unrestricted). Also a formula F in which the wvariable a
oceurs will be thought of as an abbreviation of N(a)~T and similarly for
formulae with other variables b, ¢, ... Similar remarks apply to formu-
lae with the free variables X, Y, ... Finally we write “x ¢ y” for E(x, y).

The axioms will be interspersed with definitions (numbered D1,
D2, ...). At each point when axioms formulated up to this place allow
one to derive a theorem of the form (B!x) F(x, ...) we shall allow a definition
of the form f(...) = (ix) F(x, ...); the symbol £ will be allowed to occur
in subsequent axioms.

Of course, all these abbreviations and simplifications are really not
necessary: with some patience it would be possible to write all axioms
in the “official” langnage of the first order logic.

I. ARITHMETICAL AXIOMS.
1. [A(x,y, 9)VE(x, ¥, 2)]>N(x) & N(y) & N(z).
2. (E'a)A(a, b, c) & (E!a)P(a, b, ¢).

D1. b+c= (1a)A(a, b, ¢), b-c= (1a)P(a, b, ¢).
3. (Bla)A(a,a, a).

D2. 0 = (ta)A(a, a, a).
4. (Bla)[—(a~ 0) &P(a, a, a)].

D3. 1= (1a)(~1(a ~ 0) & P(a, a, a)).

5. 1 (a+1 ~0).

6. (a+l~b+l)>(anh) .
7. a+0 ~ a.

8. a+(b+1)~ (a+Db)+1.
9. a-0 =~ 0.
10. a-(b-+1) ~ (a-b)4a.
II. SET-THEORETIC AXIOMS.
1. 18(a).

2. (xey)—>N(x) &8(y).
3. (@)[(aeX)=(aeY)]>X~ Y).
III. AXIOM OF INDUCTION.
(0 eX) & (a)[(a e X)—>(a+1 e X)]>(a e X).
IV. AXI0M SOHEME OF COMPREHENSION.
(BX)(a)[(a € X) == @];

in this axiom @ may be any formula in which the variable X does not
occur freely.

D4, {a: O} = (I X)(a)[(a e X) = D]
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In D4 we assume that & does not contain X as a free variable; of
course, D4 is not a single definition but a scheme.
From the above axioms one ean deduce the theorem

(Ble)((e+e) ~ (a+D)-[(a+b)+1) ,
and hence we can formulate the definitions
D3. (a, b) = (ce){(e+c) ~ (a+D)-[(a+Db)+17}
D6. X* = {b: (a,b) ¢ X}.
V. AXIOM SCHEME OF CHOICE.
(a)(B X)P - (BEY)(a)(EX)[(X ~ Y®) & 1.
In this scheme @ is any formula in which the variable Y is not free.

It is known that axiom scheme V implies IV but we shall not use
this fact in our considerations.
2. Auxiliary formal theorems and definitions. In this section

we collect some further abbreviations and definitions and formulate a few
theorems which can be proved in the baJs1s of axioms I-V.

D7. aXb = (a, b) e X.

D8. Ord(X) = (a)(aXa) & (a)(b)(¢)[(aXDb) & (hX¢)->
—~(aXe)] & (a)(b)[(aXDb)v(a ~ b)v(bXa) &
b)[(aXD) & (bXa)—(a ~ b)].
DY. Bord(X) = Ord(X) & (Y)(a){(a ¢ Y)—(Eb){(b ¢ ¥) &
(e)[(e e Y)>(bXe)]}).

Obviously Ord defines “orderings of N and Bord ‘“well-orderings
of N7, .

D10. Fn(X) = (a)(B!b)(aXDb) &

(a)(a') (b)[(a X D) & (2 Xb) - (a ~ a')].
This formula defines ‘“‘one-one mappings of N into N
D11. Imb(F, X, Y) = Fu(F) & (a)(2) (b) (0') {2 Fb & o Fb'
»[(aXa’) = (bY )T}

This formula defines the notion: F is an isomorphiec imbedding of
the relation aXa' in the relation DYb'".

D12. X < Y = (EF)Imb(F, X, Y).

It is very easy to show that the transitivity of < is provable in T

X<Y)&(YL4)~(X<5).

We mention still that for each integer # > 1 it is possible to define
a-formula Q, with n-+1 free variables a, 2, ..., an Such that the following
theorems are provable:
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(*) (Bla)@n(a, g, ...; an);
(x%) (Blag, oo, 22)@u (2, 2y -0y Bn).
Thus @, allows us to define a ‘“one-one mapping of N* onto N”.
The definition of @, proceeds by induction:

Qu(a, 5) = (2 =~ 8);
Quia(8y 21y ooy Bny Bnpr) = (Eb)[Qn(by gy oeey Bn) & (ﬂ‘ ~ (b, a'n+1))] .

In view of (%) and (s+) we can admit for each » and each ¢ < n the
definition
D13. pri(a) = (¢as) (Bay, ooy Dim1y Dig1y -y B0)@u(B, gy ooey An).

3. Relational systems. We shall denote by L the first order
language in which formulae of T are written. Since we shall also deal
with various extensions of L, we shall recall here some definitions from
model theory in case of an arbitrary first order language L* whose ex-
pressions contain not only predicates but individual constants as well.

A relational system 9 of type L* is an ordered pair (4, s> where 4
is & set and u a function; the domain of x is the set of all primitive predi-
cates and of individual constants of L* and u(¢) € 4 if ¢ is an individual
constant, u(p)C A" if ¢ is an m-ary predicate other than ~ and u(~)
= {{z,%): we A}. We use capital German letters to denote relational
systems. Instead of p(N) we shall write Ngy and similarly for other
(primitive or defined) predicates other than ~. The values of various
terms in M will be denoted by a suffix I added to the term; e.g. (a, b)m
denotes the value of the term (a, b) for the assignment of 4 to the variable a
and of b to the variable Db.

The semantical notions of satisfaction, model, elementary extension,
reduct, diagram, ete. are defined as usual. The notion of definability
will be used in the following sense. A relation R C A™ is definable in M
if there are an integer k, a sequence b,, ..., b; of elements of A and a for-
mula F of L* with n+k free variables such that <{a,, ..., ax> ¢ R if and
only it |=m Fla,, ..., G, by, ..., bx] for arbitrary a,, ..., a, in A.

If I* contains the predicates N, A, P of T, then the relational system
(N, u'; where u'(A)= Ay and p'(P)= Py is called the arithmetical
part of M.

A model M of T is called an w-model if ity arithmetical part is
isomorphic to the standard model U, of arithmetic. In this case we shall
usually identify the arithmetical part of I with %, and each X in Sm
with the set of integers n which together with X satisfy the formula
neX in M.

A model M of T is called a f-model if for each X in Sy the condition

|=m Bord[X] implies that the relation {<m, n) € Nip: |=mm X n} well orders

©
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the set Na. (Strictly speaking, we should have written j=mBord (X)[X]
and = (mXn)[m, X, n] instead of =mBord[X] and FmmIn but we
shall use the simplified way of writing whenever possible.) It is known
(and easy to prove) that f-models are w-models but not conversely.

4. The pigeon-hole principle. As is well known this principle
says that if many object are put into a small number of drawers, then
at least one drawer contains many objects. In our case the objects will
be well orderings of integers and the number of drawers will be denumerable.

Let @ be a formula of L in which U is a free variable and ¥ a formula
of I in which U and a are free variables. We shall write these formulae
as @(U) and ¥(U, a) although we do not exclude the possibility that
one or both of these formulae contain free variables other that U and a.

Let A be the conjunction of the following formulae:

1) (X) {Bord(X)—(BU)[¢(U) & (X < U)1};
2) (0)(Ba)[@(U)~¥(U, a)] .
THEOREM 1. The following formula is provable in T:
A (Ba)(X){Bord(X) - (BU)[¥(U, 2) & (X 3 U)]} .

Instead of carrying out a formal proof using axioms of 7' and rules
of proof formulated in logic we shall sketch it in the everyday’s language
of the ‘“working mathematician”. We shall supply enough details to
convince the reader that the proof can be transformed into a formal
proof in T.

We assume A and the negation of the formula after the first arrow,
i.e. the formula

3) (a) (BX){Bord(X) & (U)[¥(U, a) S= (X<

Our aim is to derive a contradiction from these assumptions.
First we use the axiom of choice and derive from (3)

(4) (BY)(a) {Bord (Y®) & (U)[¥(U, 2)>— (Y¥ )]}

Let Y satisfy the condition stated above. From axiom IV we easily
derive that there is a Z such that the following equivalence holds for
arbitrary a,a’,n,n’:

() (a, m)Z(a’, ') = {(a < &) V[(a ~ &) & @Y} .

We want to show that Y® can be imbedded into Z. The imbeddi%g)
function is obviously the map n—><a, n). Formally speaking, we g;afme’F
as {b: (En)(b ~ (n, (a,n)))} and prove using D10 that Fn(F"). Since

Y™ 0’ = (a,n)%(a,n’),
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we infer using D11 that Imb(F®, Y®, Z). Hence by D12
(6) W21z,

On the other hand, we can derive from (5) that Bord(Z) and hence,
according to (1) and (2) that there is an a and a U such that ¥(U,a)
and Z < U. Using (6) we obtain Y® <2 U since the transitivity of < is
provable in 7. But now we have a contradiction since, according to (4)
for no U such that ¥(U, a) does the formula Y < U hold. Our theorem
is thus proved. :

We do not know whether this theorem remaing valid when the axiom
scheme V of choice is removed from the axioms of 7. W

We shall formulate theorem 1 in a semantical way. Let It be & model
of T and let K = {X e Sy: |=m Bord[X]}. We shall say that a set 0 C Sy
is unbounded if for every X in K there is a U in C such that X < U.

We say that a relation D C Ny X Sm covers C if for every element X
in ¢ there is an a in Ny such that {a, X> e D. This can be expressed as
CC \J{Da: @ e Nop} where D, is the set {X e Sm: <{a, X} ¢ D}.

The pigeon hole principle in its semantical form is the following
result:

TurorREM 2. If M is a model of T and D s a definable relation
C Nu x Sip which covers an unbounded definable set O C Swm, then at. least,
one D, is unbounded. s

Proof. It is sufficient to take in theorem 1 for & a formula which
defines ¢ and for ¥ a formula which defines the relation D.

5. A theorem on f-models. In this section we shall use the
pigeon hole principle in order to establish our main result.

THEOREM 3. For any denwmerable B-model IR, there exists an w-model
which is an elementary extension of M and is not a f-model. .

Proof. We infroduce, as auxiliary symbols, the constant symbols 4.,
for every element m of M and the constant symbol R. The language L
augmented by those symbols is denoted by L.

The interpretation of the symbols of the language is determined by
the structure It. :

The value of R will in most cases be an element of Sy which satisfies
the formula Bord(X) in 9.

In the relational systems of type L, which we shall consider, the
constant 4,, will always be interpreted as m. Hence the relational systems
are determined by the value R of the constant R and can be denoted
by (I, R). .

‘We shall assume that the arithmetical part of Mt has been identified
with %, (c¢f. p. 86) and elements of Sy with sets of integers. We can and

icm

©

On w-models which are not f-models 89

will interpret each element X of Sy as a binary relation {<m, wy: Fam X a};
in ease this relation is many-one we can speak of X as being a function.

"As in section 4 we denote by KA the set of all X in Sy for which
=m Bord [X].

Let A be the set of all sentences of L, which do not contain symbol R
and are true in the structure M. We can represent the set A as the union
of an increasing sequence (A4, neo 0f finite sets of sentences for which the
following condition (A) holds:

(BEv) (N(v) & P(V)) € dn = (E4) (F(di) € ) .

Let us fix an enumeration {@;:;c, of all the sentences of the language L,.

Let us say that R is in the class Dslfy, ..., #n) if the following con-
ditions are satisfied:

I. ReK and Se K.

I1. 4y Rin—1...ty Ry and in # in—1 5 .9y 5 4o

" III. There is a function in I which maps the field of S order-iso-
morphically into the R-predecessors of in.

. Tt is obvious that Ds is extensional in the following sense: whenever S
and § are in M and there is in M a function which establishes an iso-
morphism between S and &, then Ds(iy, ..., tn) = Dgiy; .-, tn). More
generally, this equation holds for arbitrary §, 8’ in Sw such that § <m 8
and S’ ‘{gjz S .

We define by induction a monotonically inereasing sequence {Bpnen
of finite sets of sentences of the language I, and s sequence of natural
numbers {innen. These sequences are required to satisfy the following
conditions <{Cp neo

(i) Bord(R) is in B,

(ii) 4w C Ba,

(iii) if n >0, then the sentences Ay, Rds, and —(di, ~ 4,.,) are
in By,

(iv) for j < m, either ®; or —@; is in By,

(v) if j<n, D; is in By and @; has the form (Ev)(N(v) & ‘I/(V)),
then W(A4;) is in By for some i in o,

(vi) for every 8 in the class K, there is an B such that B € Ds(t; .., in)
and =@z B

Construction of the sequences.

Step 0.
Determination of the number iy. 4, can be any natural number, say 0.
Determination of the set B,. We take A, v {Bord (R)} as B,.
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Verification of the conditions C,. Conditions (i) and (i) are evident.
Conditions (iii), (iv) and (v) are true vacuously. Finally, (vi) is satisfied,
because for every § in K there is an B in K such that the last element
of the field of R is 4, and there is a function F in M which maps the field
of § order-isomorphically into the set of R - predecessors ofi,. If e.g. 4= 0,
then it is sufficient to take F(n) = n+1 and define R as the set consisting
of all pairs (n, 0)m and of pairs (F(n), F(m))m with nSm.

Step n-+1. We assume that we have already defined the sequences
(B ocicn a0d (I5d0<icn Which satisfy conditions ¢(Cjocicn- Let I, be the
class of all § such that §e XK and

(E‘[R) (R € Ds(io,..., '57;) & |’(5IJ!,R)B7I & ‘=(m}y1¢) (D:L) 3

where & ¢ {0, 1} and @) = &, and &, = P, Since the set By is finite,
the set I, is definable in the structure (M, R). We shall show that either I,
or I, coincides with the class K of all well-orderings of o in the structure
M. Let us assume S ¢ I, for some S in the class K. Hence

(VR)m (R € Db, --v» in) & [Fanmy B = Fanm 71 Pa) -

By our inductive assumption (vi), there is an R such that B € Dg(y, ..., )
and |=aumBn. S is therefore in I,. Thus we proved that I, v I, = K.
The set I, is monotone in the sense that if 8" eI, and S <m &', then
Sel,. Sinee I, v I, = K, either I, or I, is cofinal with K. The set which
is cofinal with K and is monotone must coincide with K. Hence either I,
or I, coincides with K. Let £ be the smallest ¢ such that I, = K.
Determination of the nuwmber inr1. Let S be in the set I; if and only if

8 ¢ K & (HR)(R ¢ Dsligy vy in, 1) &
l=amm Bn v {05, AR Ay, —1({di s A3)}) -

Let S be in the set K and S* be an element in K whose order type is the
successor of that of §. By our choice of %, there is an R € Dgu(tyy voy tn)
such that |=m,z) Ba v {On}. Let ¢* be the greatest element in the ordering S*
and let ¢ be the image of ¢* by an order-preserving map in It of the tield
of §* into the R-predecessors of in. The conditions R e Dgliy, .., i, 9)
and Emm {4iR4,} v {1 (di ~ 44,)} are satistied. We have proved,
theretore, (V8)(S e K = (Hi)}(S e Ki)). Since the relation S € K;is definable
in M, we can apply the pigeon hole principle to prove

(Hi)(VO) (8 e K = (HS) (S Zm S &8« Ki)).

Since the sets K; are monotone, (Hi)(V9)(SeK = §eKi). We take
a8 ip+1 the least such 4.
Determination of the set Byyi.

icm
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Case 1. @i is already in Bp. We take By v Apyiv {4i,,Rdi} v
U {1 (D, ~ 44,)} as Buya.

Case 2. tDE, is mot in By.

Subease 2.1. =1, or =0 and @y is not of the form (Ev)(N(v) &
W(V))' We take Bn v Aut1v {q);l! Aty BAiyy 1 (Aigyy ~ Ai,)} as By

Subcase 2.2. = 0 and Dy is of the form

(Bx) (N (%) & ooe & (Bxa) (N (%) & P[5y, o) xy)) )

where W(Xyy oeey Xa) is not of such a form.
Let ¥(a) be the formula

P(prila), ..., pra(a))
and let fi(e) be the value of the term pri(4,) in M. Then we have the
equivalence
Faum P (4e) <= Eaoum P (dnes - i) -
Let § in the set C, if and only if
S e K & (HR)(R € Dslipy -es ins1) &
FanmBa v Ansr v {P(4e), A Rlliny 7 (Aina = A1)}
We apply, once again, the pigeon hole principle to the sequence {Ceyeen
which is definable in 9. By our choice of the numbers i,+: and &,
(VO)(S e K = (&e) (S e C.)). By applying the pigeon hole principle,
(Te)(VI)(S e K = (HINS <8 &8 € c.) -
Since the sets €, are monotone, (He)(VS)(S e K = SeC,). We take as e
ihe leagt such e. We take as By, in this subcase,
Bpw Ansa v {T(Ah(e)y ey A1) 5 (Exs) (N(Xa) &
gl(’ﬂh(ﬂ): eny Ais—l(d)) Xﬂ))’ e Q’"} hd {AinﬂR‘Ain} hd {_‘ (Afun i A(n)} -
Yerification of the conditions Cns1- In all cases conditions (1)-(iv)
are clearly satistied. Conditions (v) and (vi) are gatisfied in subcase 2.1

pecause of our choice of the numbers in41 and zand because of property (A)
of the sequence |J An = A. Conditions (v) and (vi) are satisfied in the
n

subcase 2.2 because of property (A) of the sequence JAdpn=A4 and
G

hecause of the choice of the numbers Tnt1y € O+
Let us consider the set B= | Bn- This set is consistent since every

: n
finite subset of B has a model by condition (vi). The set B is w-closed
by condition (v). By the Henkin-Orey completeness theorem for w-closed
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consistent theories (cf. [2], p. 231) there is an o-standard model 3 for the
theory B. The structure 9, is an w-model since I, is w-standard. The
structure I, is an elementary extension of M since the set 4 is included
in the set B. Consider the value R, of the constant symbol R in 3. By
condition (i), |=m, Bord[R,]. By condition (iii), the sequence {in>ne, forms
a descending chain with respect to the ordering R,. The w-model 0,
is not, therefore, a §-model. Thus the L-reduct of M, is the required
model of T and our theorem is proved.

CorROLLARY 1. For any B-model M of T, there is an elementarily
equivalent o-model M, which is not & f-model. ) EARES

Proof. Every f-model M is an elementary extension of a denu-
merable f-model M, [1].

COROLLARY 2. If there is an w-model M for o set of sentences A, then
there is an w-model My for the set A which is not a B-model. e

6. An application to set theory. Using the construction carried
out in section 3, we can construct 2 new family of non-standard models
for set theory.

Let S be a consistent extension of ZF. A formula ¢ with one free variu-
ble is said to define a cardinal in 8§ if the sentence (E!v){y(v)&
(v)[p(v)—~Card(v)]} is provable in 8. We denote by ¢* the formul:b‘

Card (vo) & (vy) (‘P(Vl)‘>V1 <7y &
() (w2){1vs < vo) Card(e) & () (v < W)

A model M for § is called @-standard if there is no infinite descending
chain a, oy a; > ... of ordinals smaller than the cardinal 8 (M, ) where
s (M, ¢) is the unique element of M which satisfies the formula ¢ in Mt

The existence of a p-standard, ¢t -non-standard model is known in
the case when ¢ is a formula defining the first infinite cardinal s,
(cf. [3]).

We shall prove the following

TarorEM 4. For any denumerable g-standard model M for S there is
un elementary ewtension M, or M which is ¢- standard but is not gt - standard.

Proof. We introduce, as auxiliary symbols, the constant symbols Ay,
for every element m of M, the constant symbol B and an unary predfcnté
symbol N. The interpretation of the symbols ., of the extended language
is the same as in the proof of theorem 3. The symbol N is interpreted as
the set of ordinals smaller than s (9, ¢). We can define the sequences
{Buynewand {in'nes in almost the same way as above. The pigeon hole
principle which played a crucial role in the previous construction can bé
used in the present situation. To see this we merely notice that 8 (B, @)

©
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and s (M, p*) are different cardinals of I and, since M is « model ZF,
the pigeon hole princinle holds in 9t for these cardinals.

We can also prove the following corollaries:

COROLLARY 3. For any ¢-standard model M of 8 there is an elemen-
tarily equivalent structure My which is g-standard but not @ -standard.

COROLLARY 4. For any set of sentences A, if there is a ¢-standard
model M of A, then there is a ¢-standard, ¢+ -non-standard model of A.

Note added on June 20, 1968. Several weeks after the present paper was
aceepted for publication we saw a paper: H. J. Keisler and M. Morley, Elementary
Extensions of Models of Set Theory (Israel Jour. Math. 6 (1968), pp. 49-65) which appeared
in Mareh 1968. From the strictly logieal point of view the results contained in Sectionsl-5
of our paper are independent from results established by Keisler and Morley. However,
the methods used by these authors are the same as those which were used by us. The
results of our Section 6 are weaker than those established by Keisler and Morley.

After some deliberations we decided not to withdraw our paper because we believe
that the readers who will compare both papers will get useful insights into the close
relationship which exists between the meta-mathematics of set theory and that of the
second order arithmetic.

Note added on March 19, 1959, Results of our section 6 were also obtained
by K. Hrbatek who used a completely different method.
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