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Tame singular integrals*
by

MICHAEL FISHER (Baltimore, Md.)

Introduction. Let H be a real separable Hilbert space, B be a one-one
Hilbert-Schmidt operator on H, and y — T, be the regular representation
of the additive group of H acting in IP(H ), 1< p< oo,

In [1] we studied singular integral operators

Zy(f) =11;101f[ fT,,fa(j//t)dntzoB“(y)]dt/t
8105 "H

acting on IP(H), where [a(y)dnoB'(y) =0 and a{y) satisfies an
H

integrability condition with respeet to the Gaussian measure noB~l.
In this note we shall restriet a(y) to be either an absolutely integrable
odd function or an r-power integrable even tame function for some r > 1.
Under these, conditions Z, is a bounded operator on L”(H) as was shown
in [1].

Extension of the results of the present note to the more general
functions a(y) used in [1] is a simple matter.

Singular integral operators Z, generally map tame functions f in
IP(H) to non-tame functions Z,(f). In this note we shall consider the
tame singular integrals (introdueed in [1]) which map tame functions to
tame functions. Corresponding to each singular integral Z, there is a net
{(ZoQ™") 1QF} of tame singular integrals determined by the finite-
dimensional orthogonal projections Qe on H and this net converges
strongly to Z, as @ tends strongly to the identity through the directed
set #. We shall prove this result in this note.

Preliminaries. We refer the reader to papers [3] and [4] of Gross
and [5] of Segal for the measure theoretic preliminaries.

Definition (Segal). A weak disiribution on a real Hilbert space H
is an equivalence class F of linear maps from the conjugate space H*

* Research supported by the Air Force Office of Scientific Research, Contract
No. AF 49 (638)-1382.
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of H to real-valued measurable functions on a probability space (depending
on F). Two such maps, I and ', arve equivalent if for any finite set of
veetors ¥y, ¥s, ...,y in H* the two sets of measurable functions,
F(y1), F(Ys)y .-, Plyr) and F'(y1), F'(y5), ..., F' (yx), have the same joint
distribution in k-space. A weak distribution is continuous if a representative
is continuous linear map (the range space has the topology of convergence
in measure).

In what follows we shall be most interested in the normal distribution
with variance parameter ¢, ¢ > 0. This distribution is uniquely determined
by the following properties:

(1) for any y in H*, n(y) is normally distributed with mean zero
and variance cly|?;

(2) n takes orthogonal vectors to independent random variables.

The normal distribution is continuous. There is an essentially nnique
(up to expectation preserving isomorphism) probability space (S, Z, u)
and a continuous linear map F from H™* to the real-valued messurable
funetions on (8, 2, ) such that F is a representative of the normal distribu-
tion. 2 has no proper sub-o-field with respect to which all of the F(y), y ¢ H*,
are measurable. The measurable functions on H are the measurable fune-
tions on (8, 2, u). I*(H, ne) = L°(8, Z, u) and when ¢ = 1 we set n = 0,
and I (H, n) = I” (H). The expectation H(f) of a function f in L*(N, n,)
is B(f) = Sffd,u.

A function f(#) on the points of H is a tame function if there is

a Baire function g on a finite-dimensional Eueclidean space B, and

orthonormal veetors hy, ks, ..., by in H* such that f(z) = g((z, k), ...

- {#, h)). The span of the h;, i =1,...,% in H is called the base space

of f.If Fisa 1ep1esentq.tive of the normal distribution and f(z) is a tame

function as above, f( f = g(F h1)(s), ..., F'(lg)(8)) is a measurable function
on H. The ezpecmtlon of f is

B(f) = (2m0)™ f stexp| =) ”]

where % is the dimensgion of the ba,se space of f. This equality holds in the
sense that if either side exists and is finite, then so does the other and
the two are equal.

Several very useful representatives of the mormal distribution are
known. Of these the one in which we shall be most interested is the mapping
studied by Gross (in [4]) from H* to Borel measurable functions on an
abstract Wiener space. We adopt the notation and terminology of [4].
Let B be a one-one Hilbert-Sehmidt operator on a real separable Hilbert
space H. Then |z|; = ||Bz| is a measurable norm on H. Let Hp denote
the completion of H in this norm. Let ¥ denote the o-field generated

Tame singular integrals 115

by the closed sets in Hg. n, induces a Borel proba.bili‘ry measure N, on Hp
such that the extension of the identity map on Hy (< H* ), regarded as
a densely defined map on H* to measurable functions on (Hg, &, N,),
to H* is a representative of the normal distribution on H.

Continuous functions f on Hp are measurable functions on H and
if g denotes the restriction of f to H and if # denotes the directed set
(ordered by inclusion of the ranges) of finite-dimensional orthogonal
projections on H, then the net {g(QwT?Q «#} of measurable tame functions
converges in measure to f as ¢ tends strongly to the identity through 4.

Let N, be as above. We may regard B as an isometry from Hy to H.
Hence N, B~ is a Borel measure on H. This measure is usually denoted
by #.0B7 % If fis a bounded continuous function from H to o Banach
space FE, then

ff zydn,c B! Jfo dN.(y) = B(foB).

Tame singular integrals. Let B be a one-one Hilbert Schmidt operator
on H. We may now rewrite the singular integral operator Z, as

[4
z(f)=lm [ [ [TuwmfA@)any)|a,
sl0 5 “mEp

efoo

where 4 (y) = a(By). Let { De a finite-dimensional orthogonal projection
on H and let # denote the directed set (ordered by inclusion of the ranges)
of finite-dimensional orthogonal projections on H. The tame singular
integral operators corresponding to Z, are

(ZoQ ™), (f) = Emj meBz,fi(y)dn )| att.
ofn?
The a,pproxim;,te tame singular integral operators are the

Z2QE) = [ [ Tamfa)any)]a.
i "Hp

Tame operators have the advantage that they map tame functions
to tame funections. The following result has been applied in [2]:

THEOREM. Let Z, be a bounded singular integral operator on I*(H)
as described above. Let Q be a finite-dimensional orthogonal projection on
H and (Zo@), be the tame singular integral operator corresponding to
Z, which is determined by Q. Zy is the strong limit of the net {(ZoQ "), |Q «F}
as @ tends strongly to the identity through &.
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Proof. We shall assume that A4 (y) is either an absolutely integrable
odd function or an even tame function with H(A4) = 0; initially we shall
assume also that 4 is bounded.

One can see from. modifications of the proofy of the main theorems
of [1] that the tame singular integral operators (Zo@™'), are uniformly
bounded in ¢ and that the approximate tame singular integral operators
(ZoQ~")% are uniformly bounded in @, 6, and g. We shall begin our proof
by showing that if f is & boundedly differentiable tame function, then
(Zo@ Y)2(f) converges uniformly in @ for sufficiently large @ as 60
and o ¢ oo.

(ZoQ )% (f)— (Zo@ (NI < ZoQM)y (Nl+ I(Z 0@ ().
Sinee [ A (y)dn{y) =0,
Hp
2o = [ [ (Tamf—HA@man(y)]at.
8 "Hp
Since f is boundedly differentiable, |Tigp,f—fllp is dominated by
a constant multiple of ¢||By|| and by Minkowski’s integral inequality

[(Z0Q )8 ()l < const [ [ |[Bylldn(y)t.
5 Hp

Since E([IB(:/[]) is dominated by the Hilbert-Schmidt norm of B
(see [3]), (ZoQ@ M5 (f) tends to zero in p-norm as 6 and r tend to zero.

1200 85 Db < f ||| Tiamfit/ifp |4 (9)1an(y) by Fubinis theorom
B

and Minkowski’s integral inequality. Let V denote the finite-dimensional
orthogonal projection onto the base space of f. Suppose that @ > V.
Then Tippyf = (TtVBwf)Dp('; Z(Q——V)By), where Dy (%,y) = exp[(z, y)/p
— |lyl2/2p]. For the remainder of the proof we may assume without loss
of generality that f> 0. For each y in Hp, the functions on the right
of this last equation are independent positive tame functions. The first
is based on VH and the second is based in (@ — V) H. The produet is based
in QH; we write the normal distribution on QH as a product of the normal
distributions on VH and (Q—V)H and apply Minkowski’s integral ine-
quality to the integral over (Q—V)H to conclude that

R R
| [ Tttt < [ Towsifatitly.
e e

Set o = VBy||VBy|~", use the fact that f is tame and based in VH
and the fact that the normal distribution is rotationally invariant to
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F ]
i
| [ Zonsa]
i »
w RVE
© | IV Byl 2.t 2 »
= f [ | ( fley—1, &y.., Tp)exp|— — o— dt/tt dn(zy)...dn{zy).
—o o oy¥Byy p =P !

Let 1/p = 1je+1/3—1 (a, § >1) and apply Young’s inequality to get
(ZoQ@ Mg (Nly < 8(e, B) [IVByI*=?"I4 (y)dnl(y)
Hp

0, B) [1VByi=""an(y),
Hp

A\

—

8

where 6(o, R) tends to zero as g, B — oc and where 6(o, R) is independent
of Q. Let K, denote the kernel of VB on H. On Ki, VB is a one-one
finite-dimensional operator mapping into H. So there is a constant €
such that |y < C|¥By) for y in Ki. Write the normal distribution
on K{ in polar coordinates; if V is sufficiently large, the last integral
is finite. It is easy to see from the definition of V that we may always
choose V to be sufficiently large that this last integral is finite. Thus
as o and R tend to infinity, |(Z cQ"‘)f,R( f)llp converges to zero uniformly
in @ for sufficiently large @ when f is a bounded tame function.

Thus if f is a bounded boundedly differentiable tame function and
if A(y) is bounded, then

125 ()~ (Z2oQ@7) (Nl
<UZo(N—Z2 (Dl + 125 () — (ZoQ I (Dls+ (Z 2@ N5 () — (Z0@ ™ (Nllp-

For ¢ > 0 there is a d, and a g, such that first and third terms on the
right side of this last inequalify are each < /3 when g> g, and < 4.
Fix 9= 0, and 3 < §,. By the strong continuity of the regular representa-
tion of H aeting on L?(H) and by the hounded convergence theorem,
the second term on the right converges to zevo as Q tends strongly to the
identity through the directed set of finite-dimensional projections on H.
Hence Lm{(ZoQ "),(f)1Q<F} = Z,(f). Since the bounded boundedly

Q—1

differentiable tame funetions are dense in LP(H), Z, is the strong limit
of the net {(Z0Q "),1Q<F}.

Let A(y) be an absolutely integrable odd funetion or an r-power
integrable even tame function (» > 1) satisfying B (A4) = 0. For definiteness,
let 4(y) be 0dd. Let A,(y) be a sequence of bounded Borel measurable
0dd functions on Hgp which converge in L'(H) to A(y). Let Zy and
(Zo@Q ')y denote the singular integral and tame singular integral operators
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determined by 4, and let Z, and (ZoQ™), denote the singular integral
and tame singular integrals determined by 4. For f in L”(H),

1Z0()—(Z0Q™ (Nl
< N2 (1) =2 Db+ 125 (1) — (Zo @ 5Nl + 1 Z0 Q5 (N—(Z0Q™ ) (-

As has been shown in [1], the first and third terms on the right are
each dominated by a constant multiple of |4 —4,],. So for ¢ > 0 there
is an integer N such that for # > N, the first and third terms on the right
of this inequality are each < &/3. Fix > N. By the above argument
we know that the second term on the right converges to zero as € tends
strongly to the identity through #. Thus Z, is the strong limit of the
net {(ZoQY), [ «F} when A(y) is an absolutely integrable odd function.
A similar argument completes the proof for even r-power integrable
(v = 1) tame functions 4 (y) with E(4) = 0.

]
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Some remarks on the multiple Weierstrass transform
and Abel summability of multiple Fourier-Hermite series
by
CALIXTO P. CALDERON (San Luis)

INTRODUCTION

The purpose of this paper is to extend to the m-dimensional case
some theorems given in [2], [3] and [4] concerning the inversion formula
of the Weierstrass Transform and the Abel summapbility of Fourier-Hermite
series. The theorems of the present paper are referred to the measure

)

m
-3z
1

s

2
g_]‘z! de = e dﬁl...d-r7n,

case which is not included in [2], [3], [4] and [6]; on the other hand,
we also give maximal theorems with respect to Abel Summability of
multiple Fourier-Flermite series and to the inversion formula for the mul-
tiple Weierstrass Transform.

The first part of the paper is devoted to the study of theorems of
general character concerning differentiation of multiple integrals which
have to be used in the second part, the specific problem.

T would like to thank Prof. A. Gonzélez Dominguez who proposed the
problem to me and to Prof. A. P. Calderén for many helpful suggestions.

NOTATION

1. By « we denote a point (@, ..., ) of the Euclidean m-dimensional
space :

m

ij2

ol = 3 8)"
i=1

2. If 4 is an elementary measure defined on R™, it is an additive
funetion of the subsets of R™ which are finite union of m-dimensional
intervals. The variation W of 4 on a cube @ < R™ is defined in the following
way:

1 1
W@ = sup X (8, S=US8, 8in=0 i#i#j,
Scein =1
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