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A modern version of the E. Noether’s theorems
in the calculus of variations, IT

by

J. KOMOROWSKI (Warazawa)

INTRODUCTION

In this part (for the part I, see [2]) we investigate the consequences
of the invariance of the integral functional # with respect to variations
given by vector fields belonging to an infinite-dimensional subspace
of Ty At first we formulate the Second Theorem of Noether for a simple
case and then its general variant.

PRELIMINARIES

Let M Dbe a vector bundle with a base E (an orientable, n-dimen-
gional differentiable manifold of class O%) and with a standard fibre
F =R". By J we denote the jet-bundle of order j generated by
cross-sections of the bundle M. For the sake of simplicity we have limited
our considerations in part I to the case of m =j = 1.

Therefore, in the preliminaries we have an opportunity both to recall
the results of the previous part and to give their brief formulation in the
general case.

Let I'(M) be the set of cross-sections of the bundle M with the
relatively compact domains. By D, (vesp. R,) we denote the domain
(resp. graph) of a cross-section ueI'( ).

An integral functional is a function on I'( M) defined as

(1) T(M)su - Flu): = f.?ueRl,
Dﬂln

where %, is given by a differentiable map
Ja[ulp = L([ul) e A T5(B) & A T*(B)
as n
Bsp - Zu(p): = L([ulp)e A T*(B).
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The real algebra spanned by the integral functionals is denoted by #.
We define a vector subspace Ty as

Ta: = {X DM, T(M): A (w(m) = a(m)) = (mXn =4 Xo)} .

m,m'e M

Let uel'(M) and X Ty ; then in a neighborhood of R, = M there
exist integral curves ¥ of the vector field, where ¥ is a differentiable
map

J—e, e[ XR,2(t, m) » Wi(m)e M.

Thus we have obtained a functional, ¥,, on # defined as

d
(I XDt = '(E/(Nc)h;ov
where w;eI'(M) is given by
Ry: = P(R,).

We have also a vector field Xel(it,T(J)), where %:= {[ul,ed:
peDy} and the vector X[,qpeTMp(J ) is represented by a curve

1—¢, e[3t = [%Lawyuemy < -

It has been shown that both X, and X depend on X |5 0111y‘. Hence
we have three maps: *

Ty>X - hy(X): = XlRu’

Ty>X >Ioh(X): =X,
Ty>X -Holoh,(X): = %,.
Let us define vector spaces Wiy (u): = By (Tar),
Wolu): = Toh(Ty), Wi = Holoh,(Ty).

It. can be seen that for every wel'(M) the maps hy, H are homo-
morphisms and the map I is an isomorphism. We define'maps Mgy iy AN

Eop — my(p): = [ul,ed,
is[u]p —’iﬁ([u]p): = [u]sz-

If XeH '(%,), then

@) (Fy ) = fnsoi:;:EQ,
Dy X

icm

©
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where €el'(J, A T*(J)) is the lift of L (see (1) in the first part), and
XeI'(J, T(J)} is such that

Je

/\ (76(])=1)€Du) = (3‘5*&,‘ = W*X[11]2,)'
J

1

The vector spaces T and [I'(B, A T"(B)) have the structure of
a module over the ring C*(E). n

The integrand in (2) defines a map from Ty to (B, A\ T (B)),
where X = Toh,(X). This map can be uniquely expressed as the sum
of ’t‘wo maps [Z,] and AV (%), where

Ty> X — [L)x (B, A\ T (),
n—1
Ty> X me(gu)ép(E7 A T*(E))

and the first one is linear in the sense of the module structure, i.e.

(3) [Lulxsr = [Lulx+[Zulr,
(4) [ Ly Jjonx = [[Lulx
for X, YeTn,feCO(E).
It can be shown that [£,]x depends only on the vertical component

X, of hy(X); by horizontal vectors we mean vectors tangent to E,..
Thus (2) can be written as

(FyHoToh (X)) = [ [Zulx+d¥ (L)
D‘M

THE SECONDP NOETHER’S THEOREM (SIMPLE CASE)

Let
8= {X;ely: Xy = az*j37+:z*(§f)X1,feO°°(E)}

where X, X ey, ¥ s[‘(E , T(E)), are fixed vector fields. Let us notice
that for X eTy, YeI'(E, T(E)) , feC™(E)

(£N[Lu)x = £f[Lulx—f £[ZLulx
¥ Y 4

= Y _|df[ZL,]x+d(¥ ] f[ffu]x),—f;lj' [Zu]x = d&( Y.Jf[-%]x)—f;f [Zulx.
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Hence, if Xy, then

(FyHoIoh (X)) = [ [Zalx,+dNx,(L0)
Dy

= f [Lulwsx+ [gu]n‘(lf;f)xl +AdN %, (L)
D1&

= f %5+ (£0)[Lx+ A4 x,(L)

f F([Lule— £1200x)+ f K x (L) + Y| f 0]y,

Dy
Taking into account that f is arbitrary and can vanish, together with
its derivatives, on 0D,, we get
THE SECOND NOETHER'S THEOREM
( FF is invariant at

a point wel'(M) with | = ([Lylx— £ [Lulx, =0).
respect to every X;eS. ¥ v

THE SECOND NOETHER’S THEOREM (GENERAL CASE)

& 7
Let Y =(Yy,..., Y)e[]I(B, T(B), wel(E, A T*(E); then we
define .

£o:=£...£o, Y ':=(=Y,...,—Y).
T ¥, T
k
It is easily seen that it Ye[]I'(E, T(B)), f<C*(E (L‘ /\T’k )

wel(B, /\T‘ (B)), dim B =mn, then there exists an «'el’ (E /\T*( )
such that

(5) Eflo=F£ ot+do'.
T r-1

Let r be a positive integer; then, with the notation

»

k
Y: = (Ty,..., T,.)en(nr(Ey T(E)))a

k
71
where Yie[JI(B, T(B)), k=1,...,r, and &:= (X, X,,...,X,)e]] Ty,
we define
&t = (Y7, ..., Y7Y,

741

(e = ((4lx, [Zulxy, - [Lalx,)e [ [ (B, AT ().

©
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IE (0, @1y erey @p)€ f]r(E /\T B), 1=0,1,...;n, then
(6) E(wy gy euny )t = (0, £qy ...y £0).
¥ T Ty
r+1
An element (0, w,...,w)e[]I'(E, /\ T*(E)] will be denoted, for
simplicity, by . Because of C*(E) =~ I'(B, /\ T*(B)), it follows from (6)
that

rel

= € (B
£ =y £1,0s D[] D)

Let A and B be vector spaces with an external operation AXB
>(a, b) — abeB; then we define

k k
(alf): = D asbyeB  and o= Naed,
=1

i=1

k k
where o = (ay, ..., ax)e[]4, = (bi,.1,be)e[[B, k=1,2,... Thus for
feC®(E) we have

(@ £112) = 2'fX+ D" (£f) XueTar.
¥ %=1 T

r ok r+1
Let s be a positive integer and %ie kn ([17(B, T(B))), Zie[] Tar,
=1

i=1,...,s are given; then we define
1= = * £ &) eTar: feC(E);.
§: ={X = 3" 119 <ot 107 (B)]
It is easily seen that § is a vector space.

Now we can formulate
Tar SECOND NOETHER'S THEOREM.

FeF is invariant at
o point wel'(M) with| = (Y0 £ [Lulw, 5 0).
T Lg/;l

respect to every XeS.
Proof. Making use of (3), (4) and (5) we have

(Ll = 3 ( £110%0s) = 2 1z, [ulz,)+ do,

i
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N1
where «el'(B, A I*(#)) depends on f and suppo < suppf. Obviously
supp A x(Fy) = suppf. Thus

(FyHoToh (X)) = [[Z)x+d N (L)
y

U
= f f
Du
Since f is arbitrary, the proof is completed.
The identity obtained is called the generalized Bianchi identity.

D0 & (Lt [VxlZa)to.

Ty oD,

Remark. It iy easy to notice that the set ¢ of “parametier” functions
must satisty only the following conditions: 1° ¢ < CP(H#); 2° the set
{suppf: feC} form a basis of neighbourhoods in 4.

EXAMPLES

We shall apply both theorems of Noether to electrodynamics.
1. Let F be the Minkowski space (a Riemannian manifold) with
2

o Riemannian metric geI'(H,®T(H)). There is a canonical field 4 of
4-forms on & which can be defined with a coordinate chart as

A = |det({g, de'@de)Pdat A L. A dat

We define the automorphism (forming a dual) of the algebra of
tensor fields on E. 2
1 At; first let us denote by g* such an element of I'(E, @ T*(B)) that
alg®g™) (of. [1]) is the unity of the algebra I'(E, T(B)® T*(B)) with
& product given by ab = ¢i(a®b), where a,bel' (B, T(E)® T*(B)).

th vel (B, T(B)) and v*<I'(B, T*(E)); then the dual elements &
and v* are defined as

i =c(g*@n), T =dger’).

Sln'ee‘ ~ hfm to be an automorphism. of the algebra of tensor fields,
our definition is complete. It is easily seen that § = g

2. In the tqheory called electrodynamies by states we meun sections '

of the bundle A T™(@) which satisfy the condition dF = 0 (the’first pair
of the Maxwell equations), where @ is an open domain in H. For simplicity
we assume that ¢ is eontractible. Thus for every electromagnetic field F
there exists a global potential wel'(€, T7(0)) such that F = du.

In the following we shall deal with potentials wel (0, T*(0)) as fun-
da,mental elements of electrodynamics. However, the resu,l‘r.s which have

e _®©

icm
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a physical interpretation will be formulated by using Fel'(0, A\ T*(0).
So we state M = T*(0).
In the fundamental structure of electrodynamics we have the varia-

tional principle given by the Lagrangian
— 4
JHM [u]y — L([uly): = {du, dud, dye A\ TH(0).

If we consider electromagnetic fields in the presence of currents we
add to the above Lagrangian the map

T M) (1], — Ly ([uly): = Gy whp dpe A TH(O),

where a current jeI'(¢, T(0)) is given.

We state K = L-+L, for électrodynamics with currents.

Tiet X e Wy (u); then we have a deeomposition of X into the field
tangent to R, and the vertical field X, . Since X, (u,) is a vector tangent
to the vector space My, it can be represented by wpe M,. Let weI'(€, M)
Dbe the field representing the vector field X ; then [w]el” (0, JH(DD)) is
the field representing the vector field X, : = I(X ) Wy () in a similar way.

Since )

—
Zy(p) = L(luly) = {Auy dury Ay,
we have —
L([uly) = <du, dupym” Ay,
where z: JY(M) — E.
We notice that £a*4 =2 £ 4 =0
Xy WXy
Thus

a4 — )
( £8)([ulp) = 7 Ldu+tdo, du+itdod)_
X

= 2¢du, dwd 4.
It is easy to verify that the map
(0, M) @ 2, Aoy A+ 44 Tu@0 © 4
is linear in the sense df the DiOd’l’lle structure (I'(0, ill), ce(o). (>

. denotes complete contraction, Le. (du@w@d) = coc(du®@w®4). Thus
el —
[ZLulx = [Fulx =2 Ldu, do) 4+ 4d{du@wed)
and the Noether expression has the form
' — —
N x(Lu) = 4o@du@d)+{du, du) ¥ _14,

where Y = m X.



GUEST


188 J. Komorowski

In the presence of currents we have
[')(u]X = [$MJX+ <J1 (‘)/\ 4.

3. Malking use of the First Theorem of Noether we get the energy-mo-
mentum. conservation law in electrodynamics as a consequence of the
invariance of the action functional with respeet to translations in .

Let aeI'(E, T(E)) and ¢,: B — B be the diffeomorphisms generated
by a.
We assign to a<l'(B, T(E)) a field A<Ty as follows: the vector
AupeTup(M ) is given by the curve

t— ?ii(”p) = ('l’ttu)w(v)mwwm)‘

It can be seen that A is projectible and 7.4 = a.
Let uel’; then the field &, (A4)e W, (x) has the vertical component 4 |
represented by — £Luel'(0, M) (cf. 2). This can be shown as follows:

let feC®(M); then
d

Chy(4), df>up = T ((‘Pi tu)wi(p)){h‘o
d " d
= (02 1)) o+ E‘f(u"’t(”mi"“
<A_L ’ df>1tp‘(‘ <Zy df>u,2,:

where the veetor field Z is tangent to R, and the field A, is given by
the curves ¢ — (¢*,), which determines, in the vector spaces M,,pe0,
the vectors (— £ u),e,. Thus from part I we have

a

It

HalZ) = N, (L4 ambois

= 4{du® L£u®d) -+ {du, duda_l4.
a

. Ifa,i=1,..,4, are independent translations in I, then from the
First Theorem of Noether we get the energy-momentum conservation law

AV 4(Z)=0on 0, i=1,... 4.

4. Now we are going to find the generalized Bianchi identity in
electrodynamics, connected with the gauge invariance.

The gauge transtormations determine vertical fields X, eTyy, feC®(H)
represented by df<I'(0, M) (of. 2).
 Let Ygel."(i(ﬂ, T(B)), i=1,...,4, form at every point pe® a base
n T,(E); let w'el'(0, T*(B)) be such that (¥, 0" = 6%, and let X;eTy
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be the field represented by o', =1, ..., 4. Since df = ( £ fw*, we have

i

.-(Yf = 2(7‘5* £ f)Xl

7 ¥y 4
In accordance with the previous notation
@¢=Y1=Yi, %‘iz(o,x’[),

X, =) " £ f12),

‘y‘E-l = T’i_l = —¥i, [Eu]fi = (0, [gu]%i)y
=1x = * £ 71T feO2(B)).
8 =%, ;(n £ 1105 }
It follows directly from the definitions that
N0 £ [Le, = D)0 £ (0,[4]x)
[ 7ok T opt
= gew, - £ dx) = - Z £ [z,
= — Y £ (2, do®) 4+ 41 Qe o' 0 4)).
T i

Thus as a result of the Second Theorem of Noether we have the
identity
£[ZLJx, = 0.
(1) Z £ (%,

‘We recall that this relation holds for every poten.tiaxl. wel' whether
it describes a real electromagnetic field (i.e. a field satisfying the Euler-

Lagrange condition) or not. o )
gTUs?ng identity (7) we can get the econtinuity equation for a current.

For this purpose we return to electrodynamics 'with currents. Let
a potential ueI' describe a real electromagnetic field; then for every

X eTy we have
[Hulx = [Lulz+ G, 004 F 0,

where wel'(0, M) represents X, . Obviously

0F 2 é[‘%fu:‘xi = Z ;‘:';[yu]xﬁ‘ Z ;‘Jﬂ(j,m%d.
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Hence taking into account (7) we get the continuity cquation

D £, 0l d =0,
. ¥; 0

7
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A differentiable structure
in the set of all bundle sections over compact subsets

by
J. KIJOWSKI and J. KOMOROWSKI (Warszawa)

In several branches of mathematics (e.g. in the caleulus of variations,
mathematical physics ete.) we have to deal with sets of maps, e.g. with
families of parametrized curves or, more generally, with k-cubes in a finite-
dimensional differentiable mamifold.

The case of the set of CF-maps from a compact Banach C*-manifold
into & separable Banach ¢®-manifold has been investigated by Rells [1,2].
He has shown that this set has the structure of a C™-manifold modelled
on a separable Banach space.

A particular case was worked out by Palais [5]. The construction
of the Hilbert manifold of parametrized curves was one of the main items
of his general Morse theory.

The ahbove-mentioned results are inadequate for many important
problems. For example, in the modern formulation of the clagsical field
theory the states are described by sections of the respective bundles;
besides, the compact sections play a fundamental role.

In the present note we prove that the set of compact sections of
finite-dimensional differentiable bundle can be naturally equipped with
the structure of a differentiable manifold modelled on a Fréchet space.
Some other probleras of this kind are solved, e.g. a differentiable structure
in a set of non-parametrized curves or, more generally, in a set of compact
submanifolds; the results will be published in this journal.

We want to emphasize that in the construction of a differentiable
structure in such sets there are difficulties which do not occur in “para-
metrized® cases. The set of homotopie (*-submanifolds which are
boundaries of relatively compact domains in a given finite-dimensional
C*-manifold has a canonical structure of a topological manifold modelled
on a Banach space (*(Q), where Q is one of those C*-submanifolds, but
the coordinate maps are not differentiable (the formally calculated deri-
vative of a coordinate map contains differential operators; cf. Remark
on p.200). To overcome this difficulty, in the present paper we consider
C™-submanifolds and we take as a model space the space C*(L) in
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