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Extensions of locally bounded convolution operators in I”-spaces
by o
G. 0. OKIKIOLU (Norwieh)

PART I

1. Introduction. Given any measure space (2, ./, w) we denote
by M(Q) = M(2, &, ») the class of all =/-measurable complex-valued
functions on 2, and by LP(Q) = ILP(Q, &, w) the class of all functions
fin M(Q) such that ||fl, = ([1fde)” is finite. The numbers p and p’

2

will be connected by (1/p)+(1/p) = 1. )

In certain situations involving the study of operators in -LP-spaces
it is convenient to show first that an operator is bounded on some subset
of the IP-space concerned; that is, given an operator T there is a subset
'S of I'(£2) and a constant k such that T maps § into L9(£,), and

(1.1) Tl < Elflls  (feS).

In cases where § is a dense subspace of I”(2), p > 1, the extension
of T to all of I”(2) can be obtained by applying familiar arguments.
There are, however, cases in which § is not even a subspace. For example,
if K,(f) represents the fractional integral defined on (—oo, o) by

(12) E(f)@) = [ i~al'f(t)at,

then it is not difficult to show that, for all symmetrically non-increasing
funetions f in P (—oo, oo), we have :

(13)  IE (Dl < Fpallfloy  (1/g) = (1fp)—a,0 < a < (Lfp) <1;

see for example [1], Theorem 383. The extension of (1.3) to all of
IP(—o0, co) can be justified by an inequality of Hardy and Littlewood
also contained in [1]. It is our aim in this paper to prove theorems giving
some conditions under which such extensions are possible. In fact, in
the special cases considered below it will be sufficient to know that an
inequality of the type given in (1.1) holds for a function satisfying certain
conditions. In Part I we consider operators in L”-spaces, and in Part IT
we prove estimates involving mixed norms, '
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We shall first prove a theorem which holds in a general measure
space, and which contains a little more than the extension theorem we
require. The main results will apply to operators which are representable
as convolutions in the sense introduced by O’Neill in [5].

The bilinear operator o defined on M (Q)X M (L) will be called
a convolution if the following conditions are satisfied: -

@4) (i) if feI}(R), geL*(Q), then o(f, g) exists (1) and
llo(f5 )l < 1l llgllas

(i) if feI"(R), geL” (Q), 1< p < oo, then o(f, 9)
llo (F; Plleo < 1 fllp gl -

Note. In O'Neill’s definition, condition (ii) is replaced by two con-
ditions involving the cases » = 1 and p = oo only. However, from Corol-
lary 1.8 of [B], it is seen that these conditions imply (ii).

Since |o(f, 9l < |flleo llglls, it follows by applying the Riesz con-
vexity theorem (Theorem XII of [8]), that

(i') for geILM®), feIP(2),p>1, we have [o(f, g)lp < [l gl

By applying the convexity theorem. once more to (ii) and (i), we
see that
(L5)  if feIP(Q), geI*(2),

then

exigts, and

p2l,qg=21,1fr)=(1/p)+

lo (£, Ol < il gl -

2. The general theorem. In this section we prove a general theorem
in some fixed measure space (£2, o, w). Let ¢ be a member of M(Q).
We define the operator T by

(2.1) I(N@) =olp; @) (fe M(Q),2e02).

‘We shall now define an operator closely related to 7 which maps
a class of functions in I*0(Q) into L%(Q) for some numbers p, and g¢,.

Given a measurable function y(z, ¢) on Q2 x Q2 we define the operator
¥ by

2.2) ?(f) (@) = f v(@, Of(H)do(t)

Ig—-1,r>1

(@eR, fe M(Q))

Further, let {us, ¢ >0} be a clags of non- negative functions in
INQ) ~ I7(Q), po>1 such that

(2.3) f Ugdo =1,
Q

where z is some fixed real number.

oallpy = 0"/ Ja4s]lp,

() ie. o(f, ) is a complex-valued function defined a.e. on Q.
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‘We impose the following conditions on ¢, v and {u,, a > 0}:

(2.4) (i) There is a non-negative measurable function # on Q and
a number 7y > 1 such that

{f[w(mt

Where, for some fixed number a >0,
(ii) f@ Uy (t) doo (B) < @ "“k1< oo,

(m) With (1/g0) = (1/po)—

a)do(@)f" < 600,

B < (1/p,), we have

a"1Po

[EZEA ”zzo <k “ua”z?o = Ty H“l”nn (a>0),

where ¥ is defined as in (2.2), and %, is a finite constant.
The following are the main results of the paper.
(2.5) TEEOREM. Let the functions @, v and the class {u,, a > 0} satisfy
conditions (2.3) and (2.4), and let the operator T be defined as in (2.1).

Further, let (1]g) = (1]p)—2, where )
P (14B—(1/po) e+ (1—(1/po)) (1—(1/ro)
1+a—(1/po) ’
and suppose that 1—min ((1/go), (1/re)) < (1/p) < 1. Then there is a finite
constant k& = kp(pg, 7o, @, f) such that :
o ({oe Q2:1T(f)(@)] > s}) < ks~ 718

As a corollary of Theorem (2.5) we have

(2.6) TEEOREM. Under the conditions of Theorem (2.5) we have, for
1—min((1/gy), (1/r)) < (1/p) <1, (1/g) = (1[p)—2

IT(Alla < kD, Dlifls . (FeI7(2)).

The proof of Theorem. (2.5) depends on a lemma which involves the
spliting of ¢ into two functions, one in L(2) and the other in Q).
The result is similar to that employed by Stein and Zygmund [6] in the
treatment of closely related problems; see Lemma 1 of [6]. _

(2.7) LmmMA. Let the conditions of (2.4) be satisfied. Then, given any
number a > 0, there ave funclions @, and @y such that ¢ = po+@y, and

gl < Tsa™,  lpally < Toa'™o.
Proof. Given any number a > 0, let

fu,,z(t {p(@)—y(z, 1)} do(t).

o(@) = p(@)— [ p(@, )ualt)dor (1)
2
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Then, by Minkowski’s integral inequality and condltlons (2.4) (i) and
(,u), we have

o< [ wlt ( [lp@—p(@, i do@) " do(t)
f U (1) 0 (t) dew (B) < Tya™*.

Now @y (1) = @ (2)—gy(2) = !P(u,,) (#). Hence, by (2.4) (iii),

Wpalley < o ltallay = e s, 0%,

(2.8) Proofs of Theorems (2.5) and (2.6).
First we prove Theorem (2.5). We shall write

Afry) = 1[p)+ L fre)—1, - (1/gy) = 1/p)+ (1 /g0)—
80 that, by the conditions of the theorem, we have
‘ 0<(fr) <1, 0< (g <1
f r, = oo, ¢; = o0, We have

IT (o < llo (@0, flloo+ Il o (@15 oo < (gl + N2/t ) 11k 5

and this gives the required conclusion. Suppose that r, < oo and g, < oo.
Then for's > 0, ‘we have -

{we Q:1T(f) (2)] > 25}
S {we:10(po, ) (@) >'s} © {weR:10(py, ) (2)] > s},

e
b=qa""

50 that
o{@eQ:|T(f) ()| > 25))
S of{ze:l0(py, @) > )+ o ({z: 10 (py, f) (2)] > s})
<sn f lo(pa; NI deo+571 f l0(py, )| do.
Hence by (1.5) and Lemma; (2.7), we have
o({eQ:|T(f)(2)] > 2) < 7 lpolled I+ 5~ oy 12 1 712
. ST f s M nbT A
Now we choose b so that
) ST fI = o7l smh b= P e
where ¢ is some fixed positive real number. From this we see that
b=¢ "mﬂl(ql—rl)g—/"l(ql—’l)”f””l(ql“‘rl)

whero mr=ra _ KR and (Lfm) = ary+ (g4 /o).
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Hence
o({oe2:|T(f)(@)] > 25})

L ™1+ ¢) KL= m) g~ (Pt ety - ) ”f”(’l+a'1ﬂl @ -T),

The required conclusion in the case r; < oo, g, << co is easily verified
by setting ¢ = ri+aury(gi—1ry) = P‘l””ﬂlx(]—‘l‘a* (1/p0) )

If either 71 =00 0T gy = 00, We prooeed as above, using the fact
that -

w({me!) lg (=) l > s}) =0 s> [|g\|,,,.

Now we consider Theorem (2.6). Let p(”, »® be two numbers such
that . )

'1—min((1/g0),'(1/r <1, 1pP <1,

and let 1/gt? = l/p D20 =
(1/p) = 8/p¥+(1

»2). Further, let the number p satlsfy

/p‘2 0<é<1 and let (1/g) = 6/g™+(1—68)/¢®

go that (1/g) = (1 /p — 4. Since, by Theorem 2.5, we have
o({we2:|T(f) @) > POl (6 =1,2),

the conclusion of Theorem 2.6 is an immediate consequence of the Mar-
cinkiewicz-Zygmund interpolation theorem; see [7], and also [8].

3. Convolution operators in ¥,. We shall now apply the main results
of section 2 to convolution operators defined on I” (B,), where E,,n >1,
represents the Euclidean space of dimension z, and « represents Lebesgue
measure in B,. We shall write di for dw(t). For & = (21, €y, ..., #,) e H,,
we shall write |z|2 for (#}-++ai+...+a2).

On M (E,)X M (B,), ¢ will represent the usual convolution operator
defined by

o(f, (@) = (Fg) (@ f fig

In this case the result (1.5) is the We]l known inequality of Young
(see [1], p. 201). :

Let ¢ be in M (E,). Then we define
(3.1) T = [ft)ele—

E’n

Further, we set v (s, ) = ¢(s—1), 50 that

(3.2) ¥(f)(a) = [fO)ple—n)at = T(f)(=). .
Eﬂ
- Then inequality of condition (2.4) (i) now becomes

{f](p =) —g(a)[da} " < 0).

—8dt  (zeBy).
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In constructing the class {u,, a > 0} we fix a function % >0 in
IME,) ~ IP(B,), p,=>1, such that [u], = 1. Then we define

u(8) = a "u(tfa) (a>0,teB,),
50 that ‘
Mol =1, Miallng = @™y,
Now we have
(3.3) THEOREM. Let ¢ be o measurable function on E,, and let the
operator T be defined by

T(H@) = [plo—f@)dt (veb,).
Eﬂ

Suppose that there is a non-negative fumction w in LY(H,) ~ IPo(m,)
Po= 1, with |ull, =1 for which the following conditions are satisfied:

(i) ( [ ip@—t—p(@)/oa)™ < o),
E’Il )
where 1y > 1, and, for some fiwved number o > 0,

b

(ii) o [6(H)ut)a)@t < Wk, < 0o (a>0).
(i) With (1/g,) in(llpa)*ﬂ, 0< A< (1/po) <1, we have
IT (walllg, < lalltalloys — #a(t) = a™"u(t/@), a>0.
Then there is a finite constamt k = k(p,, 7, a, §) such that
(@) if 1—min((1/g0), (1/r)) < (1/p) <1, (1)g) = (1/p)— 4,

7 = LFB—po)at(1—(1py) (1~ (1/r)
14+a—(1/p,) !

then
o({zeBy: |T(f) (@) > s}V < ks~ ||fn;

() i 1—min((Ljgy), (Lfry) < (1/p) <1, (1fg) = (L/p) A, then
Tl <Elfl,  (feI?(B,).

. Proof. In view of the comments made earlier in this section it is
easily seen that Theorem (3.3) is a consequence of Theorems (2.5) and (2.6).
(3.4) Remark. Conditions (i) and (iii) of Theorem (8.3) with p, = 1,
7o = o are rather similar to those given by Hoérmander in [2]; see [2],
p. 113114,
(3.?) An example. As we mentioned in the introduction, the main
conclusions of this paper ean be applied in giving alternative proofs
of the Hardy-Littlewood-Soboleff theorem for fractional integrals, We

.
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consider first the 1-dimensional case where
p) =1 0 = [lple—t)—p(@)de = ],

and k, is finite if 0 < « << 1. Note that here 7, = 1.

Now we set
et t>0
u(t) = . ’
0 it <0,
Then
at [ 0()u(tja)dt = ok, [ A = moa® (0 < a < 1).
—00 0

Also, with u,(f) = a™"u(t/a), we have K, (ug) () = a"K,(u)(z/a). -
Hence to justify conditions (i)-(iii) of Theorem (3.3) we only need to prove
the following

(8.0.1) LEMMA. If 0 <o <(1/py) <1,(l/ge) = (1/p))—a, then

”Ku(u)‘lqo < ku,p”uﬂpn-

Proof. For completeness we give a short proof which can be applied
to all symmetrically non-increasing functions. First we notice that

K, (u)(z) —_—flt—o:y““u(t)dt,

so that, by a theorem for homogeneous kernels given in [4],
0 0
( f [Ka(u)(m)lq‘de)l/g“ = ( / ’ | |t+m|°—1u(t)dt|“°dm)"‘°
—00 : 0 L]
< 1
< [[ demoie= (1 gyt @,
y .

Now let @ be a positive number, and fix a number m such that 0 < m
< 1. Then, on using the fact that » is non-increasing on (0, oo), we have

oo zjm
K, (u)(x) = f(t——m)“"lu(t)dt—l—f (t—z)* ut) dt+
xfm @
- + [lo—tu@di+ [ (a—1 " u(t)d
may 0

< (1—m)*? ft“-lu(t)¢t+a-‘((m/m)—m)°u(m)+
x/m

+ o~ (@—ma)* u (ma) + (2—ma)* " [ w(t)ds.
0


GUEST


236 © G 0. 0kikiolu

On using the fact that

<at f w(t)dt,
0
we see that

K, (u)(2) < (1— m)“~ ft"- dH-L(m a)a [ u(tydt,
0

where k(m, a) = a~*(m~1—1}+mLa(1—m) + (1—m)*",
The fact that

(f K. (u) (@ I«odm)"““/kuun,,,o

can now he VeI'lfled by applying the result of [4] once more; see Theorem 7
of [4].

From the above lemma it follows by applying Theorem 8.3 with
ro=1, § = e, that

(3.5.2) THEOREM. (a) If 0<ae<(1/p)<1, ‘(l/q) = (l/p)-’a, then

o({oe(—eo, 00) : [Ky() (@)] > s} < ks 7]l
(b) If 0<a< (l/p) 1, (1/g) = (1/p) —a, ih@‘b
. (e < L -

Observe that, in view of Lemma (3. 5. 1), we can make the number p,
of Theorem (3.3) arbitrarily close to 1.

(3.5.3) Note. The case p = 1 of Theorem (3 5. 2) (a) was proved by
Zygmund in [7] by a different approach.

(3.5.4) The n-dimensional form of K, given by
() () f lt~ml("“ it (seB,),

can be treated smlaa:ly It i .convenient in this case to choose

w(l) = ="l g
: - ”'t% “tzz - _tf‘
Sinee %(t) ==z"t¢ ¢ 2., ¢ » the n-dimensional analogue of
Lemms (3.5.1) ean be. obta.med by applying the 1-dimensional result n
times. . .
PART I1
. ESTIMATES INVOLVING MIXED NORMS

In “this part of the paper we. consider’ ‘boundedness results involving
mixed norms and prove results similar to those given by Hormander [1],
Chapter I, In particular, we apply the main conclusions 1n giving an
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alternative treatment of the maximal functions. of fractional order intro-
duced in [3].

4. Notation. In this part of the paper we retain the notation of Part I,
and introduce some additional definitions.

Let (2, #, ) and (4, &, y) be two measure spaces. As in Part I,
we denote the clasq of (.« X #)-meagurable functions on Qx4 by M (2 x4).
Further, given any function U in M (2 x4), we define the norm (o)

by
WO ={ [ ([ 10@, ) @y )" oo ()},
Qa4

)l

and denote by L¥(QXA) = L” the dlass of functions U such that
U)llg is finite. Also, given U = Ul(x, y) we shall write U, for T, y),
and (U), for {f|U (2, y)[rdy('l .

Again ¢ W1]l denote the convolution operator on M ()x M(Q) sa.ms-
fying the conditions of (1.4). By (1 5), it follows that if feI”(Q
gel’(Q), Q) = Ap)+Q/e)—1,p > 1,¢=1,r =1, then o(f, g) exists,

and
llo(fy 9)llr < 11 gl

‘We shall further assume that if Uisin M(Q2xA), then for each
fixed  in £, the function o(Uy, f)(2) is in M (A), and for 7 > 1,

(4.1) S e pray @< o (0, 171
4

5. The general result invoving mixed norms. We shall now prove
the mixed-norm analogue of Theorems (2.5) and (2.6). Given a function
U in M(2XA), we define. the class of operators {T), yeA} by

(5.1) T,(f) = o(Upf)  (yed,fe M(2)).

Also, given the class of functions {y,(z,1?), yeA4} we define the class
of operators {¥,, yed} by

(5.2) (@) = [wie, )fQ)dolt) (2eR).
3 _

Again we denogte by {h,;, o> 0} a class of non-negative functions
in M(L) such that, for some fixed number Py =1, we have

(5.3) M =1, Il = &% (a>0),

where u is some fixed real number, and &* is a finite positive constant.
We impose the followmg con(htlons on the above functions and
operators:
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(5.4) (i) For some fixed numbers » > 1, r,>1, we have

{J{[ i@, 0= Ule, nI"dy @) do (@)} < 0(1),

Q2 4
where 6 is a non-negative function in M () such that, for some fixed
number « = 0, we have
() [ha(t)0(t)doo(t) < B0~ (& > 0).
Q

(iii) For (1/ge) = (1/po)—F, 0< f < (1/ps), We have
NP hadllley < Fea bl = 0™ (a > 0),

where k is a finite constant.
Given the fixed number r > 1 of (5.4) (i) we now set

) , (1) (@) = { [ 11, () (@) ay ()} "
A

=13

(5.

Then we have the following results:

(5.6) TamoREM. Let the operator T and the classes {y,, y e A}, {ha, a > 0}
be defined as in (5.1)-(5.5), and suppose that the conditions of (5.4) are
satisfied. If 1—min ((1/go), (L/ro)) < (1/p) <1, (1/g) = (1/p)— A, where

4 = A= Qpo)) et (L— (1/ro)) (1~ (1/py)
1+a—(1/py) ’
then there is a finite constant b — k(po, ro, 7y a, B) such that

o({oeQ:T(f) (@) > s} < ks—2]|f]],.

(5.7) TEROREM. Suppose that the conditions of Theorem (5.6) are satisfied
and that 1——min((1/q0),, (l/r(,)) <(l/p)<1,(1]q) = (1/p)—4i Then there
i8 a finite constant k = k(p,, r,, 7y a, ) such that

ITNlle <Elfls  (feI”(2).

We shall require the following analogue of Lemma (2.7):

(5.8) LevMma. Let U in M(2XA) be such that the conditions of (5.4)
are satisfied. Then, given any number g > 0, there are functions V and W
such that U = V+W, and

”( V)r“ro < kla,‘}‘“7 ”(W)r”qo < ka’ltlﬂ")'

Proof. Suppose that

V(@:,9) = U, y)— [v,(@, t)h(t)doo (1)
2

I

nf (U@, y)—yy (e, ) ha () doo (2).

@
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Then by applying Minkowski’s integral inequality, we have
{[1I7@ nrav@l” < [r®{[ 10,9 —y,, DIy )} " de ().
A Q2 A

By applying Minkowski’s inequality onee more and using (5.4) (i)
and (5.4) (ii), it follows that

V)l < [ Ba() 00 der (1) < a0y
n
Now if we set W(z,y) = Ulz, y)—V(z,y) = ¥y (ha)(x), we see by
applying (5.4) (iii) that
(W )ellay < Fellally, = ka™™.

(5.9) Proofs of Theorems 5.6 and 5.7. For each number a >0,
we set U = V+W, where V and W satisty the conditions of Lemms (5.8)
Then by applying (4.1), we have

1(f)e) = { [ 1o(Ty, Pl ay )"
A

<{ [ eV p@r )"+ [ oWy, p@ray )}
A A
- <oV )@+ |5 (W), 1) (@)

To prove Theorem (5.6) we now proceed as in the proof of Theorem
(2.5); see (2.8) with (V), in place of g, and (W), in place of ¢,.

Theorem (5.7) follows from the Marcinkiewicz-Zygmund interpolation
theorem by proceeding as in the proof of Theorem (2.6). ’ '

6. Convolution operators in Euclidean space. We now consider the
mixed-norm analogue of the results inyolving convolution operators
on I”(H,) given in section 3. Using the notation of Part I we note that,
in the Buclidean case, the class of operators {Ty, yed} of (5.1) is given by

T,(N@) = [Ule—t,y)f)d,
B,
80 that
(6.1) (@) ={[| [ Ue—t,p)1wa
A Ey

i

"dy (y)}

As before, w represents the translation invariant (Lebesgue) measure
in B,, and we write do(f) = dt. Also, condition (4.1) is easily seen to
be a direct consequence of Minkowski’s integral inequality.

Now we set wy(x,t) = U(e—t,y), so that ¥,(f) =T,(f), and

I lley = 1T (£)lgy- Further, we define the class {a, a > 0} by

ho(t) = a~"h(t/a) (a > 0,tcH,), k>0, Al =1.
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Then on making suitable substitution in Theorems (5.6) and (5.7)
with —p = n, we have
(6.2) TamoreM. Let U be in M (B, X A) and, for some number r > 1,
let the operator T be defined as in (6.1). Suppose that there is a non-negative
. function h in L'(Hy) ~ I7(By), po>1, with Bl = 1, and for which ﬂw
followmg conditions ore satisfied:
(i) For some fized number ro>1, we have

{ [ 10—, 9)— U@, ) ay ()" o} " < 000),
H, 4

where 0 is & non-negative function in M (B,) such that, for some fived number
az= O we have
a ™ fh t/a)0 kla"“ (a>0).

(111) For (1/40) = 1/po ,0 << B << (1/py), there is a finite constant

ky such that
~n{py
1T (Ralllgy < BisMallny, = ko ™

where h(t) = a~"h(ta) (teB,).

Then there is o finite constant k = k(p o1 oy ¥y 0y B) SUCh that

(& > 0),

a) if 1—min((1/g,), (1/ry)) < 1fp) <1, (Lfg) = (1/p)—4,
1= (1+ﬂ {(1/po) )fl+( (1/100)) (1"‘(1/7‘0))
14+ a—(1/po) ’

oo B 1T (f)(@)] > s} < 2Rl
(b) if 1—min (1/gq), (Lfro)) < (1/p) < 1, then
1Tl < Fifls  (FeTP(B).

7. Maximal functions of fractional order. In [3] we introduced the
maximal function of fractional order defined for measurable functions
on E, by

(1) M () f e [ fa—nifay)"  (@eB,).
<y
The we]l~kn0wn maximal function a.ssociated with a measurable
function on &, corresponds to N, (f). We proved, by assuming the known
result involving N, (f), that if 7> > 1, (1/¢) = (1/p)— (1/r), then there
is a congtant % such that

IV (F)lle < Fl|fllo -

We shall now give an alternative proof of this in the case n =1,
1< p<r.< oo and prove'a substitute result similar to that known to
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hold for fractional integrals in the casé p = 1. Alse, we give an indicition
of an alternative treatment of (7.1) in the case n > 2.
‘When n =1, we have

(7.1.1) {H f U(z— t,y dy}”’
. . 8 oo .
where ‘ . o
o )_’1/.1:/ it 0<lal<y, R
P = 0 it 2| >y.

Now we define the function A(f) by ]
et i >0,
0 i <0,
and we set hy(l) = o—h(t/a), &> 0.

We shall now justify. the conditions necessary for the application of
Theorem (6.2). Firstly we notice that [U(z—1t, y)— U(z, y)} = 1/y if
either |z—i| <y < |w} or Im] <1/ < ]m—t, and is 0 otherwuse, so that

(7.1.2) .- o Ii(t)=

i -
tf (f [T (w—1,y)— U( ,y):'dy) °”dac}1”’°
= {r— 1)—1/r{ f“m“ﬂl_rﬁ !mP_rlro/rdw}l/ro

— m(llm (llfo)—{]ﬁ(,po , 7y

where k(r,,7) is finite if » > 1,7, > 1, (1/r)+ (1/r) > 1. It is clear that
if 7 < oo, we can fix a number 7, > 1 for whieh k(r,, ) is finite. Having
fixed r,, we set )

T 0(t) = IO (g, ),
go ‘that - oo ’ i

[ hal) 0@ = Ky, rya= [ e tingt+0ro-2gg
—~o o . h

= aMHIO=TEE )

Hence the number a of Theorem (6.2), condition (ii), is given by
a = (1[r)+(1]ry)—
Now it is ezm]y seen by making suitable eha.nge% of variables that
N, () (@) = ) N, (1) (@/a).
Hence for condition (iii) of Theorem (6.2) we now need the following
(7.2) LevMA. If (1/qo) == (1/po)—([r), » = po>1, then there is
@ findte constant Ty such that : '
RAC e e
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Proof. It is clearly sufficient to show that

[ wtie

@) [0da) " < Teg [y,

0
A similar estimate involving ( [ |N.(h)(x)"dw)'/% can be obtained
N —00

by making an obvious change of variables in the integral defining N, ().
Let # > 0 be fixed. Then, by using the inequality (w—l— bV < @M,
a>0, b>0, r>1, we have

o z+y
< (&[ iy_lzt:--i/ (

=I,41,.

z 24y
a7 +(f
0 Ty

rdy)l/f

Now since % () is decreasing on (0, co) we have, for 0 < ¥ < a,

T4y

v [ h()dt =2 [hlo—at-+y(1—t)+t(z—y))dt
z-y L]

1
< 2fh(w—a:t)dt
0

@

= 2g-1 f h{f)dt

Hence I, < 24011 f h(t)dt, and the fact that ||Iyll,, < k[, follows

from the known mequahty for homogeneous kernels ([4], Theorem 7).
Next we consider I,. Since h(f) = 0 for ¢ < 0, it follows by applying
Minkowski’s inequality that

= ([ | heoaf ag)”

<(/ \y—lw @)"+([l

o z4y »
= ([l [ Byaf ag]"+ - —1)~ et [ e
z T H

= I+ I,

yr

rd@/)

As in the case of I,, we have I]Imllqo < kllhll,,. Hence to complete the
proof of the lemms we consider I,

icm°®
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Let ¢ be any positive number sueh that (o—1)r+1 < 0. Then since
t <2+y implies that ¥y ° < (—=z)"% we see that

T

)

yh(t dt] dy < (fy(e'l)'dy)(f(t—w)‘eh i),

x

so that

Iy < ((1— @) r—1) Mgt 140 f )R (8) d.

By a.pplying the inequality for homogeneous kernels ([4], Theorem 1),
we see that

([ 1ol d) ™ < B
]
where

o0
k}k — {f t(u/r)_(1/110))/(141/”)(t___ 1)—91(1_(1/r))dt}1—-(ll").
i

Since the constant k7 is finite for any number o satisfying 1— (1/r)
> ¢ > 1—(1/p,), this concludes the proof of the lemma in the case p, < 7.
‘When r = p,, the inequality involving I, is a direct consequence of the
well-known Hardy’s inequality; again, see [4], Theorem 7.

(7.3) THEOREM. Lét feL”(—co, o0), let 1 < p < oo, (1]q) = (1/p)—
—(1/r), and let N.(f) be defined as in (7.1.1). Then there is a finite constant,
k= Ek(p,r) such that

(a) if I<p<r<oco (r>p if p=1), then

o({ze(—oo, 00): [N, (f) (@) > s})* < sk |fln;
b)if 1 <p<r < oo, then

IV (Nl < Bl llp-

Proof. From Lemma (7.2) and the earlier comments of this section,
we fix a number p, satisfying 1 < p,<r < co, and set o = (1/r)-
+(1fr)—1, B = (1/r) in Theorem (6.2), so that
_ 04 @m— @)/ + @ fro)=1)+{1— (/o)) (1~
(A [r)+ @ fro)—(1/po)
The condition on the exponent p of Theorem (6.2) (a) becomes
1—min((1/pe)—(1/r), 1fre)) < (1fp) <1

Since (1/ry) >1—(1/r) and since we can choose p, arbitrarily close
to 1, we see that the conclusions of the theorem follow from (6.2). We
note, however, that the case r = p of (b) does not follow from (a), bub

(1/270)) _
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‘ean be justified independently by an application of the mequmhty for
homogeneous kernels ([4], Theorem 1).

(7.4) Note on the n-dimensional case, n > 2. The n-dimensional form
of N,(f) can be treated by applying an argument similar to-that employed
in the 1-dimensional case. Firstly, we note that, on putting y for ¢ and dy
for ny™'dy in (7.1), we can express N,.(f) alternatively as

No(f) (@) = n.—w{ f b [ fle—naf ay}".
. <y
Henee in this case the function U(m, ) of Theorem (6.2) is given hy

T,y =
DY =0 if |z >y

val < yl/n

1/n

To obi:am2 the n-dimensional analogue of Lemma (7.2) we set
h(t) = w1,

Now if w, represents a unit vector on §,_, = {z eE,L: |#] = 1}, then

for teB, we can write ¢ = qw,, 1 > 0. Hence on expressing integrals
over B, in polar coordinates, we have

s

N.(h)(z) = n~" {}OJ/—l f f 7™ D (— nw, (hundn| dJ} "
b

71.-—1 0
) v
el (1 S QR Y g
? Spe1
and it follows by applying Minkowski’s integral inequality that
=5 Y
N(b) (@) <m-Ctom L] ’y—l [ Wz~ n""w,) an.' dy}‘!'dwn.
Sp—1 0 0

The estima.ﬁe involving

T oot

can be obtained by ploceedmg a8 in the proof of Lemma (7.2). Hence
the estimate involving ¥, (%) can be obtained by applying this 1- dlmenswnal
result n times, and then using Mmkowskl’s 1nteg13.1 mequallb‘y

r iyr . )
d } ]=1,2,...,fn,
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