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Universal bases
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A. PELCZYNSKI (Warszawa)

1. Introduction. A gequence (e,) is called a basis in a Banach space
Xife,eX (n=1,2,...) and each x in X can be represented in a unique
way in the form @ = } ¢ne,. A basis is called wnconditional if this series

n

converges unconditionally, i.e. if for every sequence (g(n)) with g(n) = +1
the series ) g(n)cne, converges. A basis is called normalized if le,] = 1

for n =1,2,... and seminormalized if

0< i—?f”en”é\ shlpllenl! << H-oo.

Two bases (2,) and (y,) in Banach spaces X and Y, respectively, are
said to be equivalent if a series 3 ¢, converges if and only if the series
o

%’anyn converges. If (n;) is an increasing sequence of indices, then the

sequence (e,,) is called a subbasis of a basis (e,). Clearly a subbasis (e,,)
i3 a basis in the closed linear subspace which it spans. A sequence (é,,)
is said to be a complemented subbasis of a basis (e,) if for every real sequence

o0
(¢,) the convergence of the seriex ) ¢,e, implies the convergence of the
o0 N=1
geries kzl Ony Oy

In the present paper we study the following concept:

Definition. Let B be a family of bases. A basis (e,) iy said to be
[complementably] universal for B if every basis in B is equivalent to
a [complemented] subbasis of (e,).

Tt is natural to ask whether, for a given family B of bases, there
exists a wniversal basis which belongs to B. The following theorem, which
is the main result of the present paper, gives a positive answer to this
question in the case of two important families of bases:

THEOREM 1. The following families of bases contain complementably
universal elements:

the family of all seminormalized bases,

the family of all seminormalized unconditional bases.
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It is easy to show that every seminormalized basis is equivalent
to a normalized one. This follows also from the proof of Theorem 1 beecause
the universal elements which we actually construct are normalized bages.
Thus Theorem 1 may be stated equivalently in a “modest” form with
the word “seminormalized” replaced by “‘normalized”. On the other hand,
if (x,) is a basis in a Banach space, then (|l "=,) is & normalized basis
in the same space. Hence the assumption of Theorem 1 that bases are
geminormalized is not .too restrictive.

The next corollary is a simple’eonsequ.ence of Theorem 1.

COROLLARY 1. There enists a separable Bamach space B [resp. U
with a. basis [an unconditional basis] such that every separable Banach
;sjmke with a basis [an unconditional basis] is isomorphic to « complemented
subspace of B [resp. of Ul i . :

We recall that a Banach space X is said to be isomorphic to a Banach
space- X if there exists an isomorphism (= a.linear homeomorphism)
from X onto X;. A closed linear subspace F of a Banach space % is said
to be complemenied in F if there exists a bounded linear projection from
B onto F. T '

Theorem 1 and Corollary 1 will be prdoved in Section 2. Section 3
is devoted to a study of Banach spaces which have universal bases. We
shall show that in the spaee C(0; 1) of continuous real-valued (or complex-
valued) functions on the elosed interval [0; 1] there exists a basis which
ig-universal for the family of all seminormalized bases. The same property
characterizes any Banach space with a basis which contains a cloged
linear subspace isomorphie to €'(0; 1). This enables s to show that there
exists a family of power continuum consisting of seminormalized bases
which are universal for the family of all seminormalized bases and are
such that every two of them span non-isomorphic Banach spaces. On the
other hand, we shall show that there exists & Banach space unique up
to an isomorphism, which has a normalized [unconditional] - basis com:
plementably universal for the family of all normalized [unconditional]
bases. Section 4 eontains some open problems and some remarks. We shall
show there that the family of all normalized shrinking bases (see Section 4
for the definition) does not have any universal element in the family
of all shrinking bases. - R

' 2. Spaces of norms and the proof of Theorem 1, Tt ™ denots the
space of all real sequences ¢ = {t1),4(2), .. ) Let m,: B® — R*® Be defined
by (7at)(3) = #(3) for i < m and (mnt) (1) = 0 for n < i. Put B* =g, (B®).
Cleaxly E* = R may be regarded as thé real line and RB™ as.the product
of &, copies of R’s. Furthermore, let I® = {te R*: [t(i)] < 1ford =1,2,:..}
and I" = I™ ~ E" Define ¢,cR> by en{i) =0 for i #n and é,(n) =1
(n=1,2,..). : : ' '

icm°®

= g(i)t(i) for 1R, whete g(i) = +1 (i=1,2,..
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- Let &, (vesp., %) denote the set of all non-negative functions p(-)
on R* (vesp. on (J R") satisfying the following conditions:
REENS

(@) p(t) = 0Hf 1 = 0; p(ct) = lelp(t); p{t+3) < Pty p(s) for t, s eR"
se U B*) and for c<R, : ‘

(resp. t,se
woomo. T m=1 )
(i) p(e;) =1 for i < n (resp. for+i =1, 2;:.),

- (iif) If-p(s) < 1, then seI®, .

(iv) plans) <p(s) for seR" and for m<n (resp. se|J K* and
=1

m=1,2,...).

The elements of %, and # will be ealled noriis.

A sign-automorphism is any map g: R® — R™ defined by _(gt) (i)
.). By @ we shall
denote the set of all sign-automorphisms.

Let us seb : :

Uy = {peBu: p(gs) = p(s) for seR";geG} (n=1,2,...),
U = {pe B:p(gs) = p(s) for se U B 9@}
N=1
Finally for » =1,2,...

4@, 4) = log[supp ()-(4(0)* -supa (1)-(p (1)),

and for p, ge 8, let

where 01" = {teI": max [¢(i)] = 1}.

t<n
LeMyA 1. dy is @ metric on B,,. The meiric space (Fy, d,) 15 compact.
Procf. The first assertion is trivial. To prove the second denote
by $ the restriction of a pe %, to 1" Then the family %, = {H: Pe By
consists of functions uniformly bounded (by 2n) and equicontinuowus.
(This follows immediately from the inequality |p(s)—p(f)| < p(s—1)
Kk

< 3 ls(4)—1(i)] < 2n for s, tedI" and for pe #,, which is a simple conse-
iz

quence of (i) and (ii).) Furthermore, if a sequence (,,) of elements of .@n
converges uniformly to a function f, then f = p. where $(0) = 0 and p(s)
= max|s(i)[-f(s-[max|e(4)|]]") for s # 0. Thus, by the Aseoli theorem
ign in . P
@n is a compact set in the space of all continuous real-valued functions
on 9I". Henee the map p — P from &, onto %, being obviously oneé-to-one
and continuous, is a homeomorphism. This completes the proof.
For a fixed index n and for p belonging either to %, with m >4
or to # we denote by J,(p) the restriction of p to E™
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Lemuma 2. The restriction operator J, has the following properties:
1) if m=n, then dlJu(D), Ja(9) < dn (D, q) for p, ge Bom;
(2)  In(Bnyr) = By Jnl@nyr) = U (0 =1,2,...); )
(8) if peBnyy and §e By, then there exists qe B,y such that § = Ju(q)

and dn(Jn(p)y Jn(q)) = d1t+1(17; Q). MO?‘GO’U@T, Zf pe‘%n-u and éG Uy,
then g may be taken from %p,,. ’

Prooi. (1) is an obvious consequence of the definition of d,, and yyy.
Clearly (2) follows from (3).
To prove (3), let

a=infp(t)-(g ()", b=swp)([{@©)"

teaI™ teal™

Then b>1>a>0 and dn,(J,,,(p), q) = logb—loga. Clearly, we
have

(4) lp<dm<atp()
Let us set

for teR".

¢ = {teR": 13 (1) <1},
P = {seR™": |p(s)| <1}
Let @ be the smallest convex set in E™+' such that
Q>Q, Q>aP, +o,,,¢Q.
Define ¢ as the Minkowski functional of Q,i.e.
¢(s) = inf{e >0[c'seq} for seR"+,
Observe that (4) is equivalent to the following inclusion:
(5) BPA E">( > oP ~ B
Thus

(6) Q~E"=(Q and bP >Q > aP.

Hence- ¢ satisties condition (i) of the norm because @ is a symmetric
convex neighbourhood of zero in E**%. By (6), J,(¢) = ¢ and

(7 blp(s) < qls) < atp(s)  for seR™MI.

Combining (7) with (1) we gets duy1(p, g) = dnlo(p), Jo(q)) = logh—
—loga. Co:}rtliltlf)n (iii) resfa,ted in terms of convex bodies means simply
that @ = I"*". Since p and § satisty (iii), we get aP < P = I Ly eI™

~

@ =I' < I"*, Thus Q = ™ equivalently ¢ satisfies (iii). Since e,.,<Q

icm
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and ¢ 6,1 ¢I""! o Q for |e| >1, we infer that ¢(¢,.;) = 1. Furthermore,
q(e;) = 4 (&) = 1 for i << n because ¢ satisfies (ii). Henee ¢ satisfies (ii).
Next we shall eheck that g satisfies (iv). To this end we firgt show that
(8) q(8) > q(7,8) = q (m,8) for seR™,

Let Ly, = {reR""': m,r = 0} . Then (8) is equivalent to the inclusion
(9) QOLy, > Q

(if T; = B (i = 1,2), then T1@7T, = {teR: t = t,+1y: tye Ty, tyeT,}.
Since p satisfies (iv), we have (P~ E")@®L,., > P. Thus, by (5),

(10) é®Ln+1 > (aP ~ R"Y®Lyn,, o aP.
Obviously
(11) Z) c @@L,,,+1 and j;en“e@@LMI.
Clearly (10) and (11) imply (9) and therefore (8). Combining (8)
with the assumption that ¢ satisfies (iv) for m =1,2,...,n we get
q(8) = §(7,8) = § (mnS) = g(mns) for seR™!

(because 7,m, = m, for m < n). Thus ¢ satisfies (iv).

Finally, we will show that if pe%,,, and § ¥, then ge%,,,. To
this end observe that our assumption implies that gP = P and ¢Q = @
for each ¢ in G. Since gm, = m,g, it follows from the definition of ¢ that
99 = Q. Equivalently, ¢(gs) = ¢(s) for se R"** and for geG. This completes
the proof. i

PROPOSITION 1. Let ¢ > 0. There exisis a sequence () such that
(12) &y 8 o finite subset of &y, [resp. of U],

(13) Appy 18 o e (1—27""")-net for Fn,, [resp. Uniil,

(14) Jn(dru.l) = &y,

Proof. Put 4, = %, = o/, (observe that %, = %, is a one-point set).
Suppose that for some m > 1 the sets «; (¢ < m) have already been defined
to satisfy conditions (12)-(14). Pick in %, [resp. in #,,,] a finite set,
say &, which is an £-27" !-net for %, [resp. for #,.,,] (this is possible
in view of Lemma 1). In view of (3) of Lemma 2 for each pair (p, §) such
that pe# and §e o7, we construct a norm ¢ = ¢(p,§) in Hm,: [resp.
I Wyyy] 50 that Jpp(q) = §-a0nd dinyr (Dy §) = du(Tm(p), 7). Since (by the
inductive hypothesis) =7, is an e(1—2"™)-net for %, [resp. for %]
and since & is a 27" 'e-net for Fn, ., [resp. for #,,,,], the set

Ay = {q = Q(p;{‘l’):QEAm;_'p"g}
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s an e(1—2"" et for B, [resp. for %, s].” Sinee Jm(q(p,g)) =g
for each Q(p; {[) in 'i’nu-ly we infer that Jm(&’mq 1) = Mm This eompletes
the induction and the proof of the Proposition.

Our next lemma is a modification of a 16%11111 of Gluaau and Kadee .

([10], Theorem 1).

LeMya 3. Let 1< k< n and let De B, and qe H#p.,. Suppose that

there exisis a sequence 1<iy <y < ... <l < ipy =n-+1 such that
&
q(ty =P (};t( ')ﬂfj) for t'f].ﬂ"’, ,
. =
3 » )
Bis) = ﬁ(}j stije;) for seR".

Then there exists ape By such that J,,(p) = P and

k1

a0 —p( Dltliey)  for 1B,

. . XN} .
p(s)}p(zs(i,-)e,-j) for seR™,
T=1 . . -~
Moreover, if Pe¥, and qe Uyry then v may be taken froni Wy
Proof. Let us set for. reR’, seR"™ and ¢ceR
. .

=D (S‘Z"U)@fjH q(r+ oy 1),

i3

IHr,s,¢)

p(8+ceyyy) =int F(r,s, e).
rs[(”
To show that p s&tmﬂes (1) obqerve that p may Dbe regarded as the
quotient norm of the quotient space X/Y, where. X is the space of all
pairs (s,1) (seR" teRY) Wlth the norm s, 9l = D(s)+q(¢) and

—{s 1) el s—i—Zt (7) e, =

F=1

05 t(k+1) = 0},
Next observe that

A k41
(18)  p(s) =p(s) for seR" and (2 ewi) = ¢(t) for teR”“”
Indeed, we have p( ) F(O 8,0) = D (s). Whﬂe for arb1tra1y wR"
we have
=2 fm?ij)ﬂ(v)%fv (5)— Zr(j)eij)ﬂ-q(r) = 5(s).

7=1 S g

icm
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Hence p(s) > P(s) and we get p(s) = (s). %mﬂaaly, if § = Z’t j)e,

for some teR then for arbitrary c<R we have
ok .
P (2 t(j)gl‘j"i' (?E;k+l) < 'F(t; S C) = Q(H— aek+1):
i=1
while for arbitrary reR* we have
k
Blr, Y t(5)er, ¢ ~p( V(t—r)( j)es,)+ g(r+ e )

j=1

=q{t—r)+q(r +06L+1) g+ cerys).

E . .
Thus p (21 el +ce,k ) 2= q(t+cer,1), and this completes the proof
j=1

of (15). Clearly (15) nnphes that 9 (e,..) = glery) =1 and ple,)
= p(e.) = 1 for m < n, because ¢ and P satisfy (ii). Thus p satisfies (ii).
From the definition of p and the fact that ¢ satisfies (iv) we infer that

P(s8+ceny) Zp(s) =p(s) for seR” and ceR.

Combining this inequality with (15) we conclude as in the proof
of Lemma 2 that p satisfies (iv). The last inequality also implies -that if
P(8+ ey ) <1 for some seR™ and for ceR, then #(s) < 1. Thus sef®
because P satisfies (ili). On the other hand, the definition of p-implies
that if p(s+e¢e,.1) <1, then there exists an reR® such that
’ = ke - T
Q(Z 7'(j)67+cek+1) <1
i=1
Thus le| < 1 (because ¢ satisfies (iii)). Hence p satisfies (iii) and this
proves that pe %, +. Next if ‘seR"', then (15) implies that for every
r<R* we have

(Zs i)e;— 29 ])elj\)%—q(r—}—s(n-{—l)ek“) :

I
(Z 8 (1) —7( e,j)

j=1

gr+s(mn+1)e,,)

(23 'Lj)e,——r)-l—qr—{-s(77+1)e,,+1)
=1
kg1 k1

oz Ystipe) =p( Y stivey).

B IR . =1 -
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F+l e
Thus _’p(s)>_’p(2 (fi,)ei) for seR™,
Finally, assume that Pe, and geU,,. For each geG pick ¢*in @
50 that g*(j) = g(ij) forj = 1,2, ..., k1. Then, since p ¢y, and ge %,
we get
k k

k
— Mg*n(iey) = blgls— Dr(de) r(i)es),
g=1 1

i=1 j=
glg*r+g(n+1)cer) = q(g*r+cenn]) = q(r+cerp).
Henee F(g*r, gs, g(n+ 1)e) = F(r, s, ¢). Therefore

P(gls+cenia]) = iI;eko(r, g8, g(n+1)c)
=it F(g*r, g3, 9(n+1)q)
grrerE

= inf F(T,s,c)

oreRE

P(s+cenyy).

Hence pe#,,.,. This completes the proof.

The next proposition gives in fact the construction of the universal
basis.

PROPOSITION 2. For every e > 0 there exists a pe % [resp. pe U] such
that for every e & [resp. § « %] there exists an increasing sequence of indices

iy <y <... such that
&
L]
(16) (L+eTO<p(D tliey) <A+F) (eB5h=1,2,..),
j=1
and
16a or 3¢ ) B
(16a) (213 i cf) fo SGkL;)l

Proof. Observe first that Proposition 1 implies that there exists
an inereasing sequence of indices 1 = N (1) < N(2) < ... and a sequence
(ga) such that

an it N(k)<n < N(k+1), then gye By [resp. gue %],
N(k+1)—1

(18) the set o) = Uk {gn} forms a log(l-e)-net for A, [resp. %],
n=N(k)

(19) Jie(Hiepn) = .

Next we shall define inductively a sequence of norms (pn) and a se-
quence of finite increasing sequences of indices (a(n)) such that

icm
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(20) Puc By [1e8D. PrneWnl,  Ju(Pui1) = pu;
(21)  HN(E)<n < N(k+1) and a(n) = {iy(n), is(n), ..., Gxm(n)},
then k(n) = k and Ty (R) = n;
(22) H1i<m<n NU)<m<N(I+1) and Ji(gn) =¢n, then i(m) =
=1;(n) for j =1,2,...,1(m)
ke
(23) i 1<m<mn, then .'Pn(z t(j)ei,(m)) = Q) (t) for 1eR*™ and
=1

F(m)

Dal8) > pn(Z sis(m))eym)  for scR™.

Let us set p; = ¢, and a(l) = {1}. Suppose that for some # > 1 the
norms p,, and the finite increasing sequences of indices «(m) have been
defined to satisfy conditions (20)-(23) for each m < n. Let us choose k so
that N(k+1)<n+1 < N(k+42). Then it follows from (19) that there
exigts an m such that gme o and Ji(guyy) = gn. By the inductive
hypothesis (condl‘mons (21) and (23)), we have % = k(m) < m < n and
i'or every teR"

Fe(m) ’
Pa( D) tieyom) = nlt) = gusa(®)
=1
and
k(m)
Pu(8) > pa( )

j=1

s(ii(m))aij(m)) for seR",
Thus we are in the position of Lemma 3. By this Lemma, there
exists a norm p’ in &, [resp. in %,,,] such that
k

» (Zt(j)ewmﬁt(kﬂ)ew) = guya(t), 1eR*,
f=1

and

3
(Zs (47 (m)) efj(m)-{—s(n-{—l) e,,.,.l) for seR™!.
T=1
Let us pub pgy; = p’ and a(n+1) = {iy(m), iz(m), ..., ix(m), n+1}.
Clearly, so defined p,,, and a(n--1) satisfy conditions (20)-(23). This
completes the induction.
Let us define the norm p by

p(t) =pa(t) for teR".

It follows from (20) that p is well defined and belongs to # [resp.
to ). Now pick ge & [resp. ge ). It follows from (18) that there exists
a sequence (g;) such that
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(24) G = e L (B=1,2;..);
(25) & (g5, Ji(0)) < log(1+e).

Obqerve thafﬁ without 10%& of gencr: &htv Wwe may also 'm%ume Lhat

(2()) T (qn) =g for k<

(Indeed, let (gn) be an arbifrary sequence of norms such that Qe oLy,
for w =1, S By (19), Julgn)e 7 for n= k. Henoe the set F, =
U {J( qn} is finite and therefore compact in the diserete topology.

nxk

Thus the Cartesian product F = P&, is compact. Let
Z, = {(gt) eF: Ti(g) = i for k< n}.

Then (Z,) is a decreasing sequence of non-empty. closed subsets
of F. Thus, by compactness of F, there exists a sequence (g;) in F which
belongs to all Z,; equivalently the sequence (gy) satisfies (26). By
definition of F, for every index % there exists an index n = n(k) such

that Ji{gn) = qr and g 7,. Hence, if the sequence (g,) satisfies (25);

then (by (1))
(lk(q;c/, Jk(&)) = dx(ch Qm Jk(J Q) ) < dm(Qm; m )) < 108‘(1—1 )

Hence the sequence (¢ ) satisfies conditions (24)-(26)).

Finally, we define the increasing sequence of indices i, < i, <
by @ =mn; (k=1,2,...), where n; is defined by (24).

It follows from (26), (21), (22) and (QL) that u(nk = {fyy Gay +ery b}
Thus, by (23), we get (16a) and -

I ) o
27 p(z ])(’l) Dy, (Zi el) = qn, ) qk() for teR"'.
Combining (25) with (27) we obtain (16). This complates the proof,:
Proof of Thegrem 1. Fix & > 0 and denote by B=1 the normed
linear space (U B, ?), Where peB [1esp pe «] is that of Pmposxtmn 2.

Let B = F, denote the complemon of B (We} identify B with its cano-
nical image in B): The unit vectors (¢;) form a hasis [resp. an uneconditional
aus] in E, because the linear eombmfutmm of (e ') are dense in F and,

- m y : :
A p(Zaiei)gp(Zciei) f_or re&l,cl,c“...

AR

0n+m (71' n =.1 2 vee)e

[Moreover, if Pew, then p(Z‘ cte;) >p(g(2' ém)) for geG] (cf. eg [o]"

icm°®
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p. 127, and [11]). We show that this basis is complementably universal
for the family of all seminormalized bases [resp. for the family of all
seminormalized uneonditional bases].

Let X be a Banach space with a seminormalized basis [resp. a semi-
normalized unconditional basis], say (#;). Let

o= infi[ﬂﬁjl] and b= sup}]m,']l.

Then 0 << @ <b < oo, because the basis is seminormalized. Let us set

N=1

i) = sup (ma,x ( Hgt(j)mj”-b‘l; |t(n)|)) for te ) B

[resp. §(f) = supsup (m

geG  n

ax ( ‘|__§i‘ gt(§)a- 075 () Tor tEQQIR"].

Since (#;) is a basis [vesp. an unconditional basis], there is a K> 1

such that
n
sup Hgt(j)mf

[resp. sgpig;p Hé‘; gt(j)ij < K”é’t(j)mj“ for te IQI R"]

<KH]§1t(j)w,H for telgjl B

(cf. [5], p. 69, and [11]). Hence

1)l < 2K D 4(3)a)]
j=1
Thus we get

b Ilzm o <

We omit the standard verification that §e £ [resp. ée %]. Next we
apply Proposition 2 to define the increasing sequence of indices ¢, < i, < ...
for which inequalities (16) and (16a) ave satisfied. Combining (16) with

n

(28) we get
b | 1) < w (3t e

7=1 F=1

(28) <21fa“1]|§’t xJH forteR" (n =1,2,...).

< 2Ka~'(1+e) ”i‘t(j)w,-ﬂ for teR* (n =1,2,...).
j=1

Clearly, the last inequality and (16a) imply that the basis (z;) is
equivalent to the complemented subbasis (¢;.). This completes the proof.

Studia Mathematica XXXII, z, 3 n
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Proof of Corollary 1. This Corollary is an obvious consequence
of Theorem 1 and the following well-known facts:

Lmanva 4. If @ basis () in a Banach space X s equivalent to a subbasis
(er) of @ basis (e) in & Banach space I, then the operator w:X — B

defmed by -
o0
°
g = Zc,-e;j for = Z oatye X
j=1 7=1

is an isomorphism from X onio a closed linear subspace of B which is spanned
by the subbasis (ez)

Lmneua 5. If (eq) s a complemented subbasis of a basis (e;) in a Banach
space H, then the op('mtm P: E—F defined by

Pr = Z eye;;,  for w = Eciei
j=1 i=1

is a bounded linear projection from E onto the closed linear subspace which
is spanned by the subbasis (81-7.).

Remark. Observe that & basis (¢) is unconditional if and only
if each of its subbases is complemented (cf. [5], pp. 58-59 and 73). Hence
a universal unconditional basis is automatically complementably uni-
versal.

3. Banach spaces which have universal bases. We recall that a Banach
space E iz said to be isomorphically universal for all separable Banach
spaces if each separable Banach space is isomorphic to a closed linear
subspace of F.

THEOREM 2. Let B be a Banach space with « basis. Then the following
conditions are equivalent:

(0) there exists a semi normalized basis in B which is universal for
the family of oll seminormalized bases;

(00) E is isomorphically universal for all separable Banach spaces.

Proof. The implication (o) = (00) is easy to prove. Since the space
€(051) has a basis ([5], p. 69) and is isomorphically universal for all
separable Banach spaces ([5], p. 93), this implication is an obvious conse-
quence of Lemma 4.

Proof of the implication (00) = (0) is much more sophisticated.
The erucial point of the proof is the following faet: :

PROPOSITION 3. The space O(0;1) has a normalized basis, say (%),
which is umiversal for the family of all semimormalized bases.

The derivation of the implication (00) = (o) from Proposition 3. Letb
E De a Banach space which is isomorphically universal for all separable
Banach spaces. Then E contains a subspace isomorphie to C(0;1).
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Hence, by [15], there is another subspace of B, say E,, whieh is isomoerphic
to G(0; 1) and is complemented in E. Thus F is isomorphic to the Cartesian
product B,&C(0;1), where F, is the kernel of a projection from ¥ onto .
Since C(0;1) is isomorphic to its Cartesian square ([1], p. 184), E is
isomorphic to the space B,®C(0; 1)@ 0(0; 1) and therefore F is isomorphie
to the space F@C(0; 1). Now let (¢) be an arbitrary basis in B. We define
a basis (2;) in the space E®C(0; 1) by

0,2) (j=1,2,..),

where () is the basis in ¢(0; 1) of Proposition 3. Finally, if % is an
isomorphism from E®C(0;1) onto F, then the basis (¢;) defined by
6, =uw; (¢ =1,2,...) has the desired properties.

Before proving Proposition 3 we recall that the Schauder basis
(Pa)izo in €(0; 1) is defined by (cf. [4] and [7])
Po(t) =1, P () = ¢,
0 for t¢(27" " (2r—2); 275 (21),

for ¢ = 27""1(2r—1),
linear for the other ¢

(r=1,2,..,

Doy = (6, 0), &gy =

Pa (1) =

25k =0,1,2,..).
For every « in C(0; 1) we have 2 = fﬁl(m)@n , where the coefficient
functionals f,(-) are defined by (ef. [4—7]1= E’Z’ N
Jolw) = 2(0),  fil2) = w(1)—=(0),
fepr(@) = 2 275N 2r—1))— 27 2 (27 (2r — 2)) — 2~ & (2r2 ")

(r=1,2,...,2% k=0,1,...).
Let us set
Dy = {0},
ok or.1

Dy = U (27 v U p27")
V=0 Pa=]

Clearly, we have
LemMwA 6. Let 0 (0;1). If for o certain inde«: n we have x(t) = 0

Jor all teD,, then fi(z) = 0 for k <

Dy = {0} v {13,

(r=1,2,...,25%k=0,1,...).

<My 4o T = Z‘ fk (@) px-

Now we are ready for the proof of the mmn Iemma, We recall that
& Dhasis (x,) in a Banach space X is said to be monotone if

n n+l
”2050% < HZ Ci%;
i=1 =

(€15 Cay ennylp el o =1,2,...).
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Tmmma 7. Let (#)5, be a mormaliced monotone basis in a Banach
space X, then for every ¢ >0 there ewist an isomeiric isomorphism
w: Xes 0(051) and an increasing sequence of indices 1 = ny <<my <...

into

such that
< 2%,

v o
uty = Z Tilumr)piy H 2 Jiuwr) p;
'L=“‘k-l+1 1=ﬂk—]-1
Proof. Let 4 < [0;1] be an arbitrary set homeomorphie to the
Cantor discontinuwum and such that 4 ~ D, = @ forn =0, 1, ... By [5],

p. 93, there exists an isometric isomorphism w: X preves 0(4). Let us put

for convenience: %, = 0eX, y, = 0eC(0;1) and n, = 1. Next we define
inductively a sequence of functions (y:) in C(0;1) and an increasing
sequence of indices (ny) such that

(way)(t) - for ted,

(29) yu(t) =40 for teDy, ,, (k=1,2,...)
linear for the other 7,
(30) | Y fwe| <2 @=1,2,...
Te=fpt1
We set

(4] [=~]
up = 2 cryr for o= Z cr&reX.
k=1 k=1

Clearly, in order to prove that % is an isometric isomorphism from X
into €(0;1) it is enough to check that

k
@) | Y e

Formula (31) is obvious for & = 0 because ¢, = 0 and o, = 0. Suppose

that (31) holds for some m = 0. Choose arbitrary real numbers ¢, ¢, ¢,
m

ceey Gmyy and put =Zcim¢; Cmy1 = ¢. Since each y; is an extension
L=<

k
ul
|=H_/Zc.;cci (Coy Cryveeytp real; £ =0,1,...).
=0

of wz; and since w is an isometric embedding, we have

(32) [luz+ cym+1|| = StuAp [(uz - c‘.’/m-{-l) @) = wz+ CUWDnyy. all

= |2+ oo 1l

On the other hand, formula (29) implies that the function uz+ cym4y
is linear on each interval of the set [0;1]\(4 u D,,,). Therefore

(83) ot eympll < SUp | (W04 Y ya) (2)]
tedw Dy,

= max{Sup|(uo-+ eymy) ()], SUD (w04 eYny) (1))

€Dy, m
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Sinee us+ cYmy, 18 an extension of the function w(w-+ CTpyq), We geb
(taking into account that w is an isometry)

(34) StUAP [('u'w"‘c.l/m-x-l) (t)\ = llw (w+ c‘ruH—l)” = ”-DTL (mm—)—l”-
Since ¥,,.1(t) = 0 for teD, , we geb
(35) SUD (4 + exmya) (8] = sup |(ua)(t)] < Jlua].
tED"m. & Man

It follows from the induc{give hypothesis and the monotonicity os
the basis (z;) that
(36)

Jul] = el < o+ ez ya ]

Jomparing (33) with (34), (35) and (36), we get |luz+cyn..d <
o=+ exmiafl. Hence, by (32), fus+ cypid] = @+ c¥myili. This completef
the induction.

Finally, observe that y, = uay, (5 =1,2,..

for teDy, ,. Thus Lemma 6 implies that

). By (29), (uz)(t) = 0

el
we= 3 filusgi.
te=np_1+1

By (30), we get
” 2 fz‘(“mk)%” < 27Fg,

li=mg+1
This completes the proof.
The next lemma is an obvious consequence of Lemma 7 and of [3],
Theorem 1.

LemuA 8. Each monotone basis (xz) in ¢ Banach space X is equivalent
to a sequence of disjoint blocks with respect to the Schauder basis in C(0; 1),

i 1 k23
Yr = ” ) 2 fi("l-’vla)%! ) Z Fi(ume) i,
=gy +1 i=np_1+1

where the increasing sequence (ny) of indices and the isomeirically isomorphic
embedding w: X — C(0; 1) are those of Lemma 7 (with 0 < & < 1).

Finally, we need the following recent result due to Zippin ([17],
Lemma 3):

LEMMA 9. Let (e, be a basis in a Banach space B. Let (n3)fmq,
with ny = 0, be an increasing sequence of indices. Let

n
Y = e 0 (B=1,2,..).

G141
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Then there is a basis in B, say (6u)iy, such that bu, =7, (h=1,2,..).
Moreover, if |¥u]l =1 (b =1,2,...), then [le,]] =1 for n =1,2, ...

Proof of Proposition 3. Since every basis is equivalent to
a monotone basis ([5], p. 67), it follows from Lemmas 8 and 9 that every
normalized basis is equivalent to & subbasis of a normalized Dasis
in C(0;1). In particular, the universal basis for the family of all semi-
normalized Dbases (constructed in the proof of Theorem 1) is equivalent
to a subbasis of & normalized basis in C(0; 1), say (). Clearly () is the
desired Dbasis in €(0;1). This completes the proof.

COROLLARY 2. There exist 250 normalized bases which are wuniversal
for. the family of all seminormalized bases and which span mutually non-
isomorphic Banach spaces. Hence these bases are mmutually mon-equivalent.

Proof. According to Theorem 2 and Lemma 4 it is enough to show
that there exist 2% mutually non-isomorphic Banach spaces which are
isomorphically universal for all separable Banach spaces and which have
bases. For 1 <a< +oo let X, = C@al,, where ¢ = ((0;1). Clearly,
each X, is isomorphically universal for all separable Banach spaces
because it contains a closed linear subspace isometrically isomorphic
to C. Since both spaces € and I, have bases, X, also has a "basis (ef. the
derivation of the implication (oo) = (o) from Proposition 3). Finally we
shall show that if « == g, then X, is not isomorphic to X;. To this end
we shall show that if « 5% j, then X, does not have complemented subspaces
isomorphie to l;. (Clearly the subspace 0@l; of X, is complemented in
Xy and is isomorphic to I;.) Let u:l; — X, be an isomorphic embedding
and let P; and P, denote the natural projections from X, onto its subspaces
C@®0 and 0@, respectively. Let Iy, denote the subspace of I, consisting
of those sequences whose first # coordinates are zeros. By a result of
Banach ([1], p. 205), the restriction of Pyu to Is, does not have any
bounded inverse (n =1,2,...). Hence there is an @yelp, such that
1Pruzy| < n™' and |my) =1 (n =1,2,...). Observe that, by the well-
known characterization of the weak convergence in I,, the sequence
(za) wealdy converges to zero. Now suppose that there exists a bounded
linear projection, say P, from X, onto wuly. Then

(37) ULy = Pum, = PP uz,+PPyux, (n=1,2,...).

Let v denote the restriction of PP, to C@0. Clearly v may Dbe re-
garded as a bounded linear operator from ( into the space ul; which is
isomorphie to ;. Since lg is reflexive, v is weakly compact (cf. [6], p. 482,
for the definition). Thus, by a result of Grothendieck [9] ([67], p. 494),
v takes weakly convergent sequences into convergent sequences. Since
the sequence (w,) weakly converges to zero, the sequence (P,uz,) has
the same property. Since oP, uz, = PP.P,ux, = PPyuz,forn =1, 2, ...,
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we infer that lim PP; um, = 0. Since |[Pyua,) < n~' for n = L2,..,
n

‘ we get limPPyuw, = 0. Thus, by (37), limux, = 0. Hence limaz, = 0
n K {3

13 K
beeause u is an isomorphic embedding. But this eontradicts the condition
lenll = 1 for » =1,2,... That completes the proof.

Observe that complementably universal bases for the family of all
normalized bases exist neither in C(0;1) nor in the spaces X, of
Corollary 2. Indeed, it follows from the proof of Corollary 2 that the
space X, and therefore '(0;1) (being a complemented subspace of X)
do not have complemented subspaces isomorphic to I,,. Hence the desired
conclusion follows from Lemmas 4 and 5.

Next we shall show that there exists o Banach space unique up to
an isomorphism, which has a complementably universal basis for the
family of all normalized bases. This will follow from Theorem 1 and the
fact that all normalized bases which are complementably universal for
the family of all normalized bases are in a certain sense equivalent., The
same result holds for unconditional bases.

To formulate the next theorem we shall need the following concept:

Definition 2. Bases (¢,) and (y,) in Banach spaces X and Y
respectively are said to be permutatively equivalent if there exists a per-
mutation o(-) of the set of indices onto itself such that the sequence
(#5m) 18 @ Dbasis in X and the bases (#,m) and (y,) are equivalent.

Observe that a basis (#,) is unconditional if and only if for every
permutation o(+) of the indices the sequence (7,y) is a basis (ef. [5],
. 73).

One can easily see that the relation of permmutative equvalence of
bases is reflexive, symmetric and transitive. In the sequel we use German
letters x,y,3 for denoting the equivalence classes with respect to this
relation. )

Now we are ready to state the next result:

THEOREM 3. Hvery two seminormalized [unconditional] bases which
are complementably universal for the family of all seminormalized [un-
conditional] bases are permulatively equivalent. Hence they span isomorphic
Banach spaces. : .

The proof of the theorem requires some lemmas and notation. We
recall first the following well-known result (cf. [2], p. 127, and [11]):

LeymA 10. Let (x,) be a sequence of non-zero elements of a Banach
space X. Suppose that linear combinations of x, are dense in X. Then

(@) () is a basis in X if and only if there exists a K > 1 such that

(38a) HZWJCN:I ] < K“:ivmcimi
i=1 =1

(c;real;i =1,2,...,n+m;n,m=1,2,...)
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(b) (2,) s an unconditional basis in X if and only if there exists a constant

K*>1 such that

"Zg i) ey l < K*Hié:;ciwi

(¢; real; g(2) =

(38Db)

+1i=1,2,...,n;n=1,2,...).

I X and Y are Banach spaces and 1< a < 4-co, then (X¥o@¥),
denotes the Cartesian product of X and Y with the norm ||(z, )|
= (Jol*+ Iyl I (Xa)eeq is & (countable) family of Banach spaces,
then by ( P X,), we denote the Banach space of functions x = (:70((:5)),,s 4

aed

such that #(a)eX, for aed and x| = (Z lz (e

The next two lemmas enable us to deﬁne operations of “addition®
and of “infinite power” on the equivalence classes of permutatively
equivalent bases. For this purpose we need only a special case of Lemma 12
(with X; = X and #) = o for 4,5 =1,2,...). However, in the present
formulation Lemma 12 will be applied in the proof of Theorem 4.

Lenvwa 11, If (@) and (y;) are normalized [unconditional] bases in
Banach spaces X and Y respectively, then the sequence (ey) defined by

W) < +oo.

(39) ey = (#:,0), €= (0,y) ({=1,2,..)

18 a normalized [unconditional] basis in the space (X @Y), (1 < a < —+o0).
Moreover, if (;) and (y;) satisfy (38a) [resp. (38b)] with o(mstmzfs K, and K,
respectively [with Ky and K3 respectively], then (ex) satisfies (38a) [resp.

(38b)] with the comstant max(K,, K,) [resp. max (KY, B].

Leava 12. If ( ("“) ) i8 & normalized [unconditional] basis in a Banach
space X; satisfying (38a) [resp. (38Db)] with a constant K, [resp. Kf]
(1=1,2,...) end if supK < oo [resp. supKi < +oo], then the sequence
(ex) defmed by

for i £ N+41,

1<)
for i = N+41; t<i<

. 0
8N2+j(@)==‘$w+]) N+1; ¥N=0,1,...),
7

(40)
oy i) = tO fori #£j—N—-1,

v .
WYY for i = j—N—1 W4+1<jig

AN +1; ¥ =0,1,...)

8 a normalized [unconditional] basis in the space ( P X)), satisfying
1<i< 400

(382) [resp. (38b)] with the constant supK [resp. sup K;].

The proof of Lemmas 11 and 12 eonsusts in verifying the cnssumptions
of Lemma 10. We omit the details.

icm°®
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Let (@;) and (y5) be normalized bases in Banach spaces X and ¥
respectively. Let x and 1 denote the equivalence classes of all bases which

_ are permutatively equivalent to the Dbases (2;) and (y;) respectively.

Then by x+y we denote the equivalence class of the basis (e) defined
by (39). By ¥* we denote the equivalence class of the hasis (e;) defined
by (40) in the Banach space (1 .P X;), where X; =X and mjﬁ") = g; for
Ll 400

4,j =1,2,... One can easily see that the definition of the classes x-4-1
and ¥* does not depend on the particular choice of representatives from
the classes x and y.

Lemuma 13. The operations “4-” and *
erties:

oo’ have the following prop-

(E+1)+3,
= x*°4-y%.

+(+3) =
(x-+p)”

If an element of a class v is & complemented subbasis of a basis belonging
to & class x, then there exisis a class 3 such that x =1 + 3.

We omit the direct verification of this lemma. We only mention
that to prove the second part of the Lemima we use Lemma 3.

Proof of Theorem 3. Since every seminormalized bagis is equivalent
to a normalized one, in the sequel we restrict our attention to the case
of normalized bases. Liet x be the equivalence class of a normalized
[unconditional] basis which is complementably universal for the family
of all normalized [unconditional] bases. Then, by the second part of
Lemma 13, for the class x™® and for a elass y of an arbitrary normalized
[unconditional] basis there are classes 3 and 3, such that

i+ = Y+x,
(41)
4 = 2%,

¥ =1"+3 =943

Thus using (41) we get

¥ =12"+3 = (0+3)"+3 = 0"+ +3 = 9+ (™3 +3) = y+x.

Now assuming that y is also a class of a normalized [unconditional]
basis which is complementably universal for tlie family of all normalized
[uneonditional] bases we find, by symmetry, that y =zx-+y. Hence
¥ == 1), This proves the first part of Theorem 3. The second part of this
Theorem is an obvious consequence of Lemma 4.

COROLLARY 3. Buvery two seminormalized unconditional bases which
are universal for the family of all seminormalized unconditional bases are
permutatively equivalent. Hence they span isomorphic Banach spaces.

Proof. This is an immediate consequence of Theorem 3 and the

Remark to Lemma 5.
We shall denote by B the Banach space unique up to an isomorphism,
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which has a seminormalized basis complementably universal for the
family of all seminormalized bases. By U we shall denote the Banach
space unique up to an isomorphism, which has a seminormalized un-
conditional basis universal for the family of all seminormalized unconditio-
nal bages. Our next corollary shows that the property described in
Corollary 1 also characterizes B and U wuniquely up to an isomorphism.

CoROLLARY 4. Let X be a Banach space with o basis [resp. an uneon-
ditional basis]. If every separable Banach space with a basis [with an un-
conditional basis] is isomorphic to a complemented subspace of X, then X
8 isomorphic to B [resp. X s isomorphic to U].

Proof. Let 1 denote the equivalence class of a normalized basis
in B which is complementably universal for the family of all seminormal-
ired bases and let x be a class of & normalized basis in X. Then, by
Theorem 3, y = y+1y = y+=x. Thus, by Lemma 4, the spaces B® B and
B@X are isomorphic to B. On the other hand, by the assumption on X, s
there exists a Banach spaece Z such that X is isomorphic to the space
B@Z. Since B is isomorphic to B@ B, we infer that X is isomorphic to
B@(B®Z) and therefore to B®Z. Hence the spaces Band X are isomorphie.
The proof in the case of U is analogous.

4. Concluding remarks.

1° Theorem 1 provokes the following:

ProBLEM 1. Does there exist a universal basis for the family of all
bases?

2° We recall that a basis (z;) in a Banaeh space X is called shrinking
(151, p. 69) it

, ngn(sup{w*(zn bl =152= }jckzh})

k
for every bounded linear functional * on X.

In contrast with Theorem 1 we have

THEOREM 4. There is no’shrinkm‘q basis universal for the family of

all normalized shrinking bases.

.Pltoof. Let ., denote the first uncountable orcdinal number. We
deﬁ:ne inductively a family (X,) of Banach spaces (indexed by countable
ordinal numbers 0 < ¢ < w,) as follows:

Xy=1l; i#ae=0b+1, then X, = (Xp@ly)y;
it @ is a limit ordinal number, then X, ={ P X),.
o<<h<a
Sinee the unit vector basis in Iy i3 @ normalized unconditional basis
satisfying (38b) with E* = 1, it follows from Lemmas 11 and 12 (by
easy transfinite induction) that each X, has a normalized unconditional

Universal bases ' 267

Dbasis satisfying (38b) with K* = 1. Since all X, are reflexive, the bases
are shrinking ([5], p. 71). Now, by a recent result due to Szlenk ([16],
p. 121-122), if & Banach space F contains for every a < w, a subspace
isomorphic to X, then the space E*, dual to B, is non-separable. Thus
the desired conelusion follows from Lemma 4 and the fact that if a Banach
space B has a shrinking basis, then F* has a basis, and consequently E*
is separable ([5], p. 70).

- We conjecture that a similar result to Theorem -4 holds for boundedly
complete bases (¢f. [5], p. 69, for the definition)

3° Let us observe that the Schauder basis (¢u.,)2, in €'(0; 1) (defined
before Lemma 6) is not universal for the family of all seminormalized
bases. In fact, subbases of the Schauder basis represent only a very narrow
class of bases. It is an obvious consequence of the following result:

PrROPOSITION 4. Hvery subbasis of the Schauder basis in C(0; 1)
contains a subbasis cquivalent either to the unit vector basis in the space
¢y or To the basis (1,1,1,...),(0,1,1,1,...),(0,0,1,1,1,...),... in the
space c. -

The proof of this Proposition is similar to the proof of Proposition 8
and Lemma 4 of [14]. .

ProBLEM 2. Does there exist in ¢(0;1) an orthogonal system which
is a universal basis for the family of all seminormalized bases?

4° The next problem is closely related to Corollary 1.

ProBLEM 3. Does there exist a separable Banach space ¥ such that
every separable Banach space is isomorphic to a complemented subspace
of B? .
One can easily show (by an argument similar to that of Corollary 4)
that if there exists such an ¥, then it will be unigue up to an isomorphism.
Moreover, if E has a basis, then it will be isomorphic to B. Clearly, the
negative answer to Problem 3 implies (by Corollary 1) the existence
of a separable Banach space which does not have any basis.

5° The last two problems concern the space U-{of Corollary 4).

ProOBLEM 4. Are all normalized bases in the space U permutatively
equivalent ?

PrROBLEM 5. Let a Banach space X with an unconditional basis
contain a closed linear subspace isomorphic to U. Is X isomorphic to T?

In connection with Problem 5 observe that there is no “unconditional
analogue” of (Zippin's) Lemma 9, as is shown in the following example:

Example. Let 1 < a < 2 and let (z,) be an unconditional basis
in the space L, = L,(0;1) (e.g. the Haar basis [13], [8]). By a result
of Kadec [12] for a fixed f with ¢ < § < 2 there exists a sequence (f)
in I, which is equivalent to the unit vector basis in l;. Clearly the se-

-
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quence (f,) weakly converges to zero. Hence, by [3], p. 156, there is
a sequence of blocks (z;) where

m(k)
Y = Z "%}‘"wi, 0=m(0) <m(l) <m(2)<...,

i=nb (—1)--1

which is equivalent fo a subsequence (f,,). Thus, by the well-known
property of the unit vector basis in Iy, the sequence (2) is equivalent
to the unit vector basis in Ip. Since for 1 < a < f < 2 the space L does
not have complemented subspaces isomorphic to I (cf. [12]), Lemmas 4
and 5 imply that there is no unconditional basis in I, having a subbasis
equivalent to (z).

This example answers in the negﬂ.ﬁve a question of Ivan Singer.
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Additive functionals on Orlicz spaces
by

K. SUNDARESAN (Pittshurgh, Penn.)

This paper is concerned with obtaining integral representations
of a class of non-linear funetionals on Orlicz spaces. These funectionals
are known as additive funectionals and their representation has been
studied in Martin and Mizel [6], Mizel and Sundaresan [7]. For the
importance of this class of functionals in generalized random processes
we refer to Gel’fand and Vilenkin [2]. Further the representation theorems
obtained here are of intrinsic interest and provide generalizations of
results established in Halmos [3], Bartle and Joichi [1] and Krasnosel’skii
[4].

We start with few definitions, remarks and establish a theorem
useful in subsequent discussion.

Throughout this paper (I, X, u) is a complete non-atomic totally
o-finite positive measure space. @ (with or without a suffix) denotes
a continuous non-zero Young funetion. L, denotes the Banach space
of real-valued measurable functions f on 7T such that for a positive number
K (depending on f) M (%f) =Tf & (k{f])dp < oo equipped with the norm

Il = inf{-;-] £>0, e <1}

For a detailed discussion of this class of Banach spaces and for the
undefined terms in this paper we refer to Luxemburg [5].

Next we proceed to define additive functionals. Throughout the
rest of the paper [fdu denotes the definite integral T{ fdu.

Definition. Let & be a linear space of measurable functions on
a measure space (T, 2, u). A real-valued function F on & is said to be
additive it (1) F(z+y) = F(2)+ F(y) for o, y<F such that u{tlz(t)y(?)
#0} =0 and (2) F(z) = Fly) if 2,y are equimeasurable functions in
#, i.e. (o™ (B)) = uly~"(B)) for all Borel sets B in R, the real line.

Remark 1. If #,y are integrable equimeasurable functions, 113. is
verified that [ wduy = [ ydu and further if f is a Borel measurable function
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