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Algo since f verifies condition (2) of the theorem,
1F ()| < @@ (lwnl) < aP([2]),

and since f(x,) — f(©) a.e., it follows by Lebesgue theorem on dominated
convergence that '
F(a) = lim F(a,) _hmff ) A _jf Ydu,
N—00
thus completing the representation of F. The uniqueness of f iy verified
as in theorem 2. .
Conversely, if f is a real-valued continuous function on R satistying
conditions (1) and (2) of the theorem, then from Remark 2 it follows
that the functional F(#) = [ f(«)du is well defined on L, and is additive.
Next we verify that F is continuous. Let a, be a sequence in Ly converging

to #. Thus by lemma 1 since f is continuous, f(2,) —f(#) converges in.

méagure on sets of finite measure and further the inequality [ f(2,yz)dpu
< a [ D(|@yzl)dp implies that {f(zn)}n=, arve of uniformly absolutely
continuous L;-norms. Hence [f(2,)du - [fla)dy. Thus F(2,) > F ().

In conelusion it might be mentioned that the problem of representing
additive functionals on Orlicz spaces Ls, when the space is not of abso-
lutely continuous norm, is not considered here and it is conjectured that
non-trivial continuous additive functionaly do not exist in such spaces.

I wish to acknowledge my gratitude to Professor W. A.. J. Luxemburg
for the useful discussions I had during the preparation of the paper.
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Banach spaces of functions
satisfying a modulus of continuity condition *

by

ROBERT B. FRASER (Baton Rouge, La.)

1. Introduction and terminology. A function g:[0, co) — [0, ool
will be called a smodulus of continuity if it is monotone inereasing, con-
tinuous at zero, and zero at zero only. Note that it need not be subadditive.
For pseudometric spaces (X, d) and (¥, ¢), a funetion f: (X, d) - (7, ¢)
will e said to satisfy a modulus of continuity condition f (locally) if there
is some positive real M (and some positive real ) such that e(f(z), f(y))
< Md(z, y) (whenever d(x, y) < &) for all # and y in X. Obviously, such
a function is uniformly continuous.

Let F' denote the real or complex nunbers with the usual metric.
For a psendometric space (X, d), let Lip(X, 8 o d) be the set of bounded
F-valued functions on X which satisfy a modulus of continuity condition
B locally. When f(t) = ¢, we will denote the set by Lip(X, d). If only
one metric is being considered on X, we will denote Lip(X, fod) by
Lip(X, 8). It i3 known that if § is subadditive (so that fod is a pseudo-
metric) and the functions satisty the modulus of continuity condition
B globally, then Lip (X, fod) is a Banach space with a natural norm [4].

Let (X, d), (X, d') and (¥, ¢) be psendometric spaces. If there exish
M, e >0 such that d(z,y)< Md'(z,y) whenever d'(z,y) <e we in-
dicate it by writing d < d' Then to say that f: (X, d) - (Y, e) satisfies
a local Lipschitz condition can be denoted eof, €d, where fu(%,y)
= (f(=), fy)). It & €& and & < d, we say that d and d' are strongly
equivalent (in contrast to topologically or uniformly equivalent) and
denote it by d ~ d'.

We attempt to describe how the various spaces Lip(X, fod) are
related, if one considers different pseudometries on X or different moduli
of continuity. In the first section, we give a natural norm for Lip (X, fod),
under which it is a Banach space. Then we show that Lip (X, d) is con-

* This research was partially supported by a Center of Excellency grant at
L. 8. U. It forms a portion of the author’s Ph. D. Thesis, written under the super-
vision of Professor Solomon Leader.
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tinuously imbedded in Lip(X, d') iff @' <d. In the second section, we
show that if (X,d) is compact and %im t/8(f) = 0, then the unit ball
30
of Lip(X, d) is eompact in Lip(X, #). Finally, we investigate Lip (X, )
for compact spaces which are “uniformly locally starlike” and show that
(M {Lip (X, ﬂ)!}im tp (1) = 0} = Lip(X, d).

2. The Banach space Lip (X, fod). As usual, we denote sup {| f(v)| [ne X}
by [flle. For felip(X, fod), set

i = sop { 1L ) > o,

2.1. ProPOSITION. If feLip(X, f od), then ||fl; < oo.
Proof. Let ¢ M >0 be such [f(x)—f(y) =X M pod(w,y) whenever
d{z,y) < & Then

sup {%%;—f%j)l | d(z, y) > 0}
flw)—fl T@)—=Fy)
=SHP{WI(Z(J ) }\/Sllp{mﬂ d‘—— |0<(?( ,J) }
< 21l
< M
B VS

The standard arguments show that || - |5 is a pseudonorm for Lip (X, f).
Setting Ifll = [IfloV lIflls, we obtain a norm for Lip(X, #). It is well-
known that Lip(X, ) is complete when g is submddltlvo The I)lOOfb
remain valid when # is not subadditive, so we omit them.

We shall be interested in a particular subspace of Lip (X, ), namely
p(X, f) = {f<Lip(X, p)| If (@) —F(y)| is o(p(d(x,y)) as d(z,y) >0}
It is readily seen that lip(X, ) is a closed subspace of Lip (X, f).

2.2, LevuA. Let (X,d) be o pseudometric space and set d'(x,y)
=d(@,y) AL Then &' ~d and

@' (@, y) < sup{If (@) —F @) 1 fla V 1flo < 1}

Proof. Define f,(z) =d(z,2) A 1. Since |f,(@)—f.(y) < d(z,7),
we have ||fills V lfilo < 1. Now |f, (m)— fy ( ”J l =|d(z ,y) A1— d(?/, y) /\ 1]
=d(@,9) A1 =& (2, y). Thus sup{|f(@)—F(@)| | |fla 1flle < 1} = & (2, ).

That ¢’ ~ @ is obvious.

2.3. THnOREM. Let X be a space with pseudometrics d and e. Then
d <e iff 1a: Lip(X, @) - Lip(X, e) is a continuous imbedding.
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Proof. Let d <e. Then there exist K, 5 >0 such that a{w, )
« Ke(x,y) whenever e(z,y) < §. For feLip( X d),

i = sup {LEZTOL o)
A 3
= sup { i@ 7 w,i) ) e((; ;;')) [0 <e(m,y) < 8,dz,y) >0}
@) —F)
Vv sup lWF le(x, y) > 6}
< v 2 < oy i)

Hence feLip(X,e) and the identity is continuous.

Conversely, suppose Id: Lip(X, d) — Lip(X, ¢) is continuous. Let U
denote the unit ball of Lip (X, d). By continuity, there is an I/ > 0 such
that ||flle Vv {Ing.i M for every feU. In particular, feU implies that
(@) —fly) < Me(z, J) Setting d'(w,y) = d(z,y) A1, we apply (2.2)
to see thmt d'(z, y) << sup {If(@)—f(y)] 1fe U} < Jl]e(a:,y).”Since d~d
and d' €e, we have d <e.

2.4. COROLLARY. Let X be a space with pseudometrics & and e. Then
d ~ e iff Lip(X,d) = Lip(X, e).

Proof. Assume that Lip(X,d)= Lip(X,e¢). Then we have
Lip(X, d-+e)= Lip(X, d) = Lip(X, ). Since the norms of Lip(X, d)
and Lip(X, ¢) are comparable with the norm of Lip(X, d+4-e), we can
apply the closed graph theorem to obtain that all three spaces are norm
equivalent. Then apply (2.3).

The above result sharpens a result of Sherbert {6], p. 1392, by dropping
the restriction that the metrics be bounded. ’

2.5. COROLLARY. Let (X, d) be a meiric space and £,y two moduli
of continuity (with B subadditive). Then 1d:Lip(X,f) - Lip(X,y) is
a continuous imbedding if (and only if) lilfm;up B(8)]y(t) < oo.

Proof. The proof of (2.5) is obtained by substituting fod for d and
yod for ¢ in (2.3) and in (2.2).

Note that the assertion of (2.5) is considerably weaker than that
of (2.3). Unless subadditivity of f is assumed (or at least subadditivity
in a neighborhood of zero), we are unable to prove the converse of (2.5).
The inequality |fod(z, ¥)— Bod(, 2)| < fod(y, &) seems to be necessary
t0 construet non-constant functions which satisfy the modulus of eon-
tinuity condition g. We are unable to remove this restriction.
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3. Lip(X,B) when LimA(t)fi = 0. Glaeser [1], p. 91-97, has in-
120 .
vestigated Lip(X, f) when Limp(t)/t = 0 for the special ease of X Deing
150

a regular compact subget of E* and f# being subadditive. His proofs rely
on sophisticated results from the theory of distributions and the fact
that fcd is a metrie if § is subadditive.

3.1. TaEoREM. Let (X, d) be a compact metric space and im p(1) [t = 0.

-0

Then the unit ball of Lip (X, p) is compact in lip (X, d).
Proof. Let feLip(X, f) and ¢ > 0 be given. Then

If@)—=Ffw)l _ |f@)—Ff)l  pod(z,y)
d(z, ) B pod(z, y) d(w, y)
<o, y)/d(w, y) >0

as d{x,y) - 0. Hence felip(X, d).
Let W =X o (X x X — 4), endowed wiih the disjoint union topology.

For zmyfeLip( d define f*: W— F by f*(#) = f(2) for v« X and f*(x, ¢)
= (fle)—f(y))/d(z,y) for (a,y)eX XX—. I Tach felip(X, d) crt,n be
extended contmuously to W =X 0XxX by defining f =0
for zeX.

Since Lip(X, ) ~ Lip(X,8 A 1), we assume without loss of gener-
ality that f is bounded by one. Thus f(¢)/t is a bounded function, so that

Fo)—f) ﬁod v,9)
a@y <V Zn

< KI|fl, for some I > 0.

We see then that U = {f*||fllsV Ifle <1} is a set of uniformly
bounded continuous functions on W’. Restricted to X, the f* in U clearly
are an equicontinuous family. We will show that they are an equicon-
tinuous family when restricted to X x X.

Let e >0 be given. Choose 6 >0 so that d(z,y) < 36 implies
Bod(z, y)|d(x,y) < e/2. Choose 0 << 8 <6 so that o < 62 /4(1—]—5{
We will show that if d(e,u) < ¢ and d(y,v) < ¢, then [f* (e, y)—
—f*(u, v)] < e for any f*eU.

Case (i). d(z,y)<d (or A(u,v) < 8). Then d(u, )< d(u,x)+
+d(z, y)+d(y, v) < 38. For f*eT,

U* (@, y)—F*(u,y o) < If* (@, 9)|+ 1f* (2, )]

L@ —f)l pod,y) | fw)—F()| fod(u,)
STbodla,y)  dw,y) T fodluyn)  aw)

< Mflleef2+Iflleef2 <.
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Case (il). d(x,y)> 0 and d(u,v)> 6. Then

i@ f
d(z, y) d(u, v)

[ s f# < f) Slu)
[f* (@, 9)—F*(u, v)| < i@, ) — a(u, v) .
Now

f(@) fw)

a(z,y) d(u, v)

fla)  fw) |
d(u,v)  d(u,v) ]

d(@,y)  d(u,)

<f flo) __f(@)

< d(u, v)—d{w, y)| | d(w,2) |F(@)—Flw)]
AR TP T TR Sl Traee s T
e, w)tdly, v)  duw,a) & [1
\E(I u); y ?))'l- (ué ?) g—<('6—~!——§)(d('r, w)+d(y, v) < e/2.
Similarly,

i) “|
(e, y) ( )!

Since ¢’ does not depend on the particular f*«U, U is an equicon-
tinuous family. Hence U is totally bounded in ¢(W"), the space of bounded
continuous functions on W'. But de Leeuw [3], p. 57, showed that lip (X, d)
is isometrically imbedded in C(W’) under the mapping f —f*. Hence
the unit ball of Lip(X, f) is precompact in lip (X, d).

Let {f,} be a sequence of functions from the unit ball of Lip(X, )
such that f, —f in lip(X, d). Then

F@) =) _ . fa@)=f)

pod(z,y) s flOd(2, Y)
for (z,y)eX x X— 4. Hence f i§ in the unit ball of Lip(X, f), so the
unit ball of Lip(X, ) is compact in lip(X, @).

3.2. CoroLLARY. Let X, d and B be as in (3.1). Then Id: Lip(X, f8)
- lip(X,d) is a compact operator.

If X is a space with pseudometries d and &', we will say that d' is
o(d) if given ¢ > 0, there exists § > 0 such that d(z, y) < ¢ implies that
d' (@, y) < ed(», y). (Note the analogy to functions in lip(X, d).)

3.3, COROLLARY. Let (X, d) be a compact metric space and @' o metric
on X which is o(d). Then the unit ball of Lip(X, d') is compact in lip (X, d).

Proof. The proof is the same as the proof of (3.1), except that d' (», ¥)
is substituted for fod(z, y) wherever the latter appears.

3.4, COoROLLARY. Let (X,d) be a compact metric space and f, y two
moduli .of contimuity. If y is subadditive in a neighborhood of zero and
Elilﬂ(t)/y(t) =0, then Id:Lip(X,p) —lip(X,y) s a compact operator.
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Proof. Suppose y(t) is subadditive for ¢ < 4. Letting a(t) = y(¢) A s,
a(t) is subadditive for all t. By (2.5), Lip(X, «) is isomorphic under the
identity to Lip(X,y). Apply the proof of (3.1) again, substituting uod
for d.

The proof of (3.1) relies heavily on Ascoli’s theorem. Thus our results
are only valid if X is compact. It would be interesting to know if tha
restriction can be dropped.

4. M {Lip(X, f)|UmB(#)[t = co}. A mebric space (X, d) is a starlike
150

from a point p (in X) if given weX and ae(0, 1), there exists yeX with
ap,y)+aly, ) = d(p, @) and d(p,y) =ad(p,®). A space (X,d) is
uniformly locally starlike if tlhere exists 0 >> 0 such that the d-neighborhood
of cach point peX is starlike from p. Trivially, any convex meiric space
is uniformly loecally starlike.

4.1. LevmA. Let (X, d) be ‘o uniformly locally starlike metric space.
Let f be an F-valued uniformly continuwous function and f its modulus of
continwity. Then B is subadditive in o neighborhood of zero, and if B(f)]t
s ot bounded in that neighborhood, then Nmp () [t = oo,

>0
Proof. Let 6 be such that the 4-neighborhood of each point p is
starlike from p. If 6,8, < 6, then B(8,+ 8,) = sup {|f(x)—F(¥)||d(z, v)
< 6,46y}, When d(wx, y) < 6,+,, there exists a point z such that
d@,2) < 8, and d(z, y) < 0. Thus |f(2)—f(2) < B(61), [f(&)—F(y)l
< B(8s), and |f{(#)—f(y) < B(8,)+B(dy). Taking the sup over the left-
hand side, we have (6,4 6,) < B(8,)--(dy), s0 f is subbadditive.
Consider the sequence {2"f(1/2™)}%_,. Since A(2£) < 24(t) for 2t < 4,
we have 2"(1/2") < 2" (1/2"+") ultimately. Also for 1/2"™ < ¢ < 1/2"
< ¢, we have
2B < o) o< 2V AL 2.
Hence, i §(t)/t is not bounded, then llimﬂ(t)/t = oo,
>0

+.2. THROREM. Let (X, d) be a uniformly locally starlike metrio space.
Let f be an F-valued function on X. If for any modulus of continuity p such
that %imﬁ(t) Jt = oo, there ewists K > 0 such that

-0

[f@)—f) < Kfod(z,y) for all (w,y)eX x X,
then feLip (X, d).
Proof. Set a(t) = sup{|f(z)—f(y)| |d(=, v) <t}. Suppose f does
not satisfy a Lipschitz condition. Since f must be bounded, we may assume
that f does not satisty a local Lipschitz condition. Thus a(t) < Kt for

'f < 6 is untrue for any K and any & > 0. That i8, a(t)/t is not bounded
n any interval (0, é). By (4.1), lima(t)/t = oo,
i->0
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Let y(f) = [ta(®1. Then »(¢) is » modulus of continuity, and
limy(t)/t = oo. Thus there exists K such that |f(x)—f(y)| < KEy=dz, y).
£s0

Since a(f)ft - co as ¢t — 0, there exists ¢ > 0 such that [a(f)/t]® > 2K
for t < e. Then

(@) =F)l < Kyod(z, y) = K[d(z, y)aod(z, y) ]

aod(m, y) J*# .
< 3| == (2. 7 2 2 o
<3[4 o, podio, n1* = teoate,
Bubt a(t) = sup {|f(@)—Fy)| |d(x,y) <1}. The contradiction arose
from the assumption that f did not satisty a local Lipschitz condifion.
4.3. CoroLLARY. (M) {Lip(X, f) ll]imﬂ(t)/t = oo} 48 Lip(X,d) when-
—0
evor (X, d) is a wniformly locally starlike metric space.
It should be noted that the theorem is false if one comsiders only
a countable number of moduli of continuity 3,. By a result in [2], p. 12,
we can construct a function § which has an infinite derivative at %eTO0,
but satisfies lti.mﬁn(t)//)’(t) == co for each f,. The constructed function
—0

can even be chosen subadditive and piecewise linear.

The proofs given above depend strongly on the fact that (X ,d) is
uniformly locally starlike. This seems to be an unnatural restriction,
but we are unable to remove it.
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