>

A. Buraczewski

References

[1] A. Buraczewski, Determinant theory of generalized Fredholm operators,
Studia Math. 22 (1963), p. 265-307.

[2] — On & certain property of determinant systems, Coll. Math. 10 (1983),
p. 325-330.

[3] R. Sikorski, Remarks on Lesmiski's delerminants, Studia Math. 20 (1961),
p. 145-161.

UNIVERSITY OF SCIENCE AND TECHNOLOGY, RUMASI GHANA
UNIVERSITY OF CALIFORNIA, BERKELEY

Regu par la Rédaction le 5. 12. 1967

icm°®

STUDIA MATHEMATICA, T. XXXII. (1969)

On functions and distributions with a vanishing derivative
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J. MIKUSINSKI (Katowice)

1. The main purpose of this note is to give some existence and
unicity theorems for the equation f™ = 0, where f is a distribution or
function of g real variables, and f™ denotes the mixed derivative of
order m = (piy, ..., ig)- The results presented here are closely related
to papers [3] and [4].

We shall first fix the notation. If z = (&,, ..., &) and 8 = (o1, ..., 0g),
where & are real numbers and o; are non-negative integers, then we use
the notation 2° = £ ... £% (it & = 0 and ¢; = 0, then we read &7 =1);
thus the “power” of the vector  to the veetor exponent s is a real number.

By a polynomial of z of degree m we understand Y a,°, where the
o<sm

coefficients «s are real numbers.

Let I = (4, B); in other terms, we assume that 4 = (4,,..., 4g)
and B = (B;, ..., B,) are given points of the g¢-dimensional Euclidean
space RY, such that A; < B;, and I is the set of points « satisfying
A<z<B ie, 4; <& <B; (j=1,...,q). Given the order m = (s,
.ory i), We assume that, for every j =1,..., ¢, the interval I is cut by
u; different hyperplanes & = &p, ..., & == &3 the intersection of the
hyperplane & = & with I will be denoted by Hjz. Throughout this
section, we assume that the interval I, the order m = 1y +++y o) and
the numbers & (j=1,...,¢; k=1,..., ) are fixed. If ;=10 for
some index j, then we understand that no number & with that index j
is given. The union of all Hy, will be denoted by U. Thus we may say
that U is the intersection of I with the union of all hyperplanes & = .

By #, (0 < s <m) we shall understand @5 = (§,01,..-, £,04), Where
£, denotes &. We see that the set of points # = =, is & hyperplane whose
number of dimensions is ¢—sgno;— ... —sgnoy, where sgno; = 0, if
0; =0, and sgno; =1, if o; > 1. Thus, in particular, z, denotes the
variable #. The intersection of the hyperplane & = @, with I will be
denoted by K,. In particular, K, = I. Evidently, it § %0, then K, is
included in some Hj;. This implies that the union of all K is U.
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TuroREM 1. There .are polynomials ws(x), 0 <s <m, of degree
K (T, ey Tg) With 75 = (py—1)sgno;, wy(x) =1, such that, for every
function f, continuous in I, the equality

(1) fNe)y=0 I
(where the derivation is understood in the distributional sense) tmplics
@) D w@fle) =0 in 1,

(B2
and conversely.

Proof. By a-direct verification, it is easily seen that (2) implies (1).
Thus we have to show that (1) implies (2). We shall first prove this fact
for functions f which have their derivatives continuous up to the order m.

Let My = (ﬂkl; ciey [LL]{,I), where M = M for j < k and M = 0 for
j > k. In particular, we have m, = 0 and m, = m. Evidently, assertion
(2) reduces, for m = m,, to f(x) = 0, as well as (1). Thus the theorem i3
trivially true for m = my. Assume that (2) holds for m = m,_, with
some 1 < p < ¢ We shall show that (2) then holds also for m = m,.
We may assume that u, > 1, because in the case u, = 0 there would
be nothing to prove.

Let g = f“r?), where ¢, denotes the vector whose p-th coordinate is 1,
and all the remaining ones are 0. Then f"» =0 implies g"»—1 = 0,
thus

> ws(@)g(@) =0
Ogsgmp__l
for some polynomials w, which depend only on the numbers &; with
j <p-—1. We may also write

3) Swa(a)fUr ) (2,) = 0,

8eZ
where Z is the set of all s satisfying 0 <C § < m,_;. Since the polynomials
wg(x) do not depend on £&,, we obtain, integrating (3) u, times with
respect to &,
4) QWWMF#N%Jn~m=m
where g; are unknown funetions of x which do not depend on &,. We
can determine g; in the following way. Substituting in (4), &, = &, with
1=1,..., uy, we obtain
(5) Bi— 8 Guyer—e— o = 0,
where

Bi= D wi(a)f(@+icy).
8eZ 3

Funclions with vanishing derivative 11

We can solve the system (5) in gx, because in its determinant (E;,il,
which is a Vandermondean, all £, ..., Em,p are different. If a;; denotes
the quotient of the subdeterminant adjoint to the element &,; by the
determinant itself, then we obtain

g = aI;;S’l-’r...%a,Lp,AS,}p.

Hence we get '

y
Hy—1 T piy-1
i g;tz,—1+-'-+go=§_{( o ai,ﬂp—1+---+ai,o)Si
i

“p
= — 2 2 ws+ic1,(x)f(‘”x7.ie1,)y
i=1 &z
where
ws-;uiey(m) = _(E;;p_l ai,yp—1+- o+ “i,o)u’s(m) .

Replacing s+ ie, by s, we obtain

Hy
(6) 0 gyt o= — 3
1=1 4Z;

we () f(®s),

where Z; is the set of all s satisfying ie, < 8 < my_1+1€y.

Now, we observe that the sets Z, Z,, ...,Z,‘I7 are disjoint and their
union is the set of all s satisfying 0 < s < m,. Thus, substituting (6)
into (4), we obtain the equality

ws(2)f(s) = 0.
o8y,
By induction we obtain the required equality (2).
It remains to generalize the result to arbitrary continuous functions.
Let 6, be a delta-sequence (see [2]) and let f,, = f* d,. Then fi = 0%6,, = 0.
Sinee the functions f, are smooth, we may apply the just proved case
and write
Z We (@) fu (@) = 0.
ogsgm
But the sequence f,(z) converges almost uniformly to f(z), thus
also fu(rs) converges almost uniformly to f(zg). Thus, letting n — oo,
we obtain (2). )
Remark. In the sum (2), there is an element with s = 0; this ele-
ment is w, (@) f(x,), i.e., f(x). We therefore may write

flo) = — D w,(@)f(@s),

S’
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where Z' is the set of all s satisfying 0 < s << m, s ;¢ 0. Equality (2) says
that the values of the function f(x) are expressed, in the whole interval
I, by its values on U. It is important to rem mber that the polynomials
ws do not depend on the function f; they depend only on the choice of
hyperplanes & = £;. This remark implies

COROLLARY. If fu(n =1,2,...) are continwous functions in I, such
that £ = 0 and the sequence f, converges uniformly on the set U, then it
converges uniformly in I to a function f satisfying fo =0 in I.

2. In this section we are going to state an existence theorem and
a unicity theorem for f = 0.

THEOREM 2. Let I, ..., I, be open intervals such that I = I, ~ ... n
AL #0ad leg K =1, ..o L, If f is a continuous function on the
closure K of K such that f™ = 0 in K, then f can be extended over the whole
space RY so as to satisfy ™ =0 in R"

Proof. It is known that f can be extended to some continuous
function % in RZ That function will satisfy 2" = 0 in K, but not neces-
sarily outside K. Let us consider hyperplanes & = &y, cutting I, as in
section 1. We put

g(z) = —Zws(w)h(ms) in R
8eZ’

Sinee % is continuous in R? so is g(x). It is easy to see that g is the
required function. In fact, we have g™ = 0 in R%. If yeI, then y Dbelongs
to some interval I;. Since g = h on the intersection of I; with the union
of the hyperplanes & = &, and A™ =0 in I;, we have g = h in I;,
which follows from Theorem 1. Hence g = f in I; and in particular g(y)
= f(y). Since the point y is arbitrary in K, we have ¢ = f in K, which
completes the proof.

The extension of f, ensured by Theorem 2, iy not unique in general.
However, it is possible to determine a domain of unicity. Let us denote
by P;(z) the straight line parallel to the axis of &; and passing through .
Given any set @, we shall denote by G the set of all points @ such that
G~ P;(z) # 0 for j =1,..., ¢. Evidently, @ < G*. Tf @ is open, so is G".

THEOREM 3. Under hypotheses in Theorem 2, the ewiension of f is
unigue in K*.

Proof. Let y be any point in K* and I’ an open interval such that
yel' and I' ¢K*. Finally, let L be the least open interval including I’ and
I. If W is the intersection of L with the union of the hyperplanes &; = &y,
then W < K; this purely geometrical property can be easily deduced
from the definition of K*. Since the values of f are given on W, f is uni-
quely determined in I, by Theorem 1. Thus, in particular, f is uniquely
determined at y. Since ¥ is an arbitrary point of K, theorem 3 is proved,

icm
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3. So far, we have considered functions, only the differentiation
was understood in the distributional sense. Now, we are going to state
some theorems on distributions. The theorem in this section will be of
type “sticking distributions” and will have nothing in common with
the equation f™ = 0. However, its proof will be based on the results
of the preceding sections.

TuEOREM 4. Let I =I, v ...uly, J =Jyu...uJ,, where I; and
J; are open intervals such that I, ~ ... Ay~ din oo dp Z 0 If f and
g are distributions in R" such that f =g in I ~ J, then there is a distri-
bution h in RY such that h=f in I and h =g in J.

Proof. Assume first that I and J are bounded. Then there is an
open bounded interval B including I and J, and there are continuous
functions ¥ and & on B such that F® = f and ¢ =g in B for some
order k. Then the difference P = F—@ satisties P*) = 0 in I ~ J. Sinee

1mJ=UI¢nLj)J7-=Lj)(I,¢nJ,-)
% .

and

m(Ilf\Jj) = OI;(‘\ Qe]j #0,

g
we may apply Theorem 2 to the set K = I ~ J and to the function P.
Thus, there is a continuous function ¢ satisfying Q" = 0 in R? such
that Q =P inI ~J. Let H =G+Q on J. Then H=F in I ~J. Thus
we may put H = F on I and we then obtain, as H, a continuous function
on I wdJ. This function can be extended continuously over the whole
space R? Then the distribution b = H™ hags the required properties.
Tn fact, since H = F on I, we obtain » = F® =7 in I. On the other
hand, since H = G+Q on J and ¢ =0 in R’, we have h = a® 4 o®
=g+0 in J.

Now, we drop the provisory assumption that I and J are bounded.
Let By, By,... be a sequence of bounded open intervals such that
Bi~nlin~... ~J, 50, B, = By, and lim B, = R". Since

ALy Jim ...
BiAal=B~rL)uv...u(Bn~l,
Bind =B ~d)v...u(Bindy)

and

BinI)n .o~ (B~ L)~ (Bi~ndy) e n(Brn Jr) #0,

we may apply the case just proved and state the existence of a distri-

bution R, in R? such that hy =fin By~ I and h, =g in B~ d.
Applying again the case just proved to the sets B, ~ I and B,, we

state the existence of a distribution &, in R* such that &, = fin B, I
and %, = h, in B;.
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Now we consider the sets I' = (By~I)w B, and J' = By~ J.
Bvidently, I' ~J = (By~n I~ d)u (B, ~nJd). Wehavek, =ginI' ~ J".
In fact, ky =h, =g in Bynd and ky=f=yg in By~ I~ J. Thus
there is a distribution %, in R* such that Ay = h, in By, hy = fin By ~ I
and h, =g¢ in B, ~nJ.

Assume that we have already defined hy, ...,

=fin Bi~nI and

h,, so that

(1) hy=h;_, in B;_y, hi=y¢ in B;nd.

Then we define k., as follows. There is a distribution %, such that
kn=Ff1in By, ~I and %k, =h, in B,. We consider the sets

I"=Buayn~nI)oB, ad J =B,,~J.

As before,

I'"~"d = (Bu~nI~nd) o (BynJd).

Wehavek, =ginI' ~J" fork, =h, =gin B, ~Jand h, =f =g
in By.; ~ I ~J.Thus there is a distribution %, , in R? such that by, = k,
in I' and h,., =g in J''. This implies that by, = h, in By, by =f
in By~ 1 and by =g¢in B, ~J. ”~

By induction it follows that there is an infinite sequence of distri-
butions hq, &y, ... in R? satisfying (7). Since lim B, = R’, we obtain
the required distribution, on letting % = lima,. ®

4. The preceding “sticking distributions” theorem will now be used
in order to prove the following existence theorem for f™ = 0:

TurorEM 5. Let K be as in Theorem 2. If f is a distribution in R?
such that ™) = 0 in K, then there is a distribution g in RY such that g = f
in K and g™ =0 in R™

Proof. Assume first that K is bounded. There is a function F,
continuous on K, such that F® — f in K. Evidently, F(k+m) = 0
in K. Thus, by Theorem 2, there is a function @, continuous in R’ such
that ¢ = F on K and ¢**™ = 0 in R Letting g = 6", we have al-
ready the required distribution.

Now, we drop the assumption that K is bounded. Let B,, B, ...
be a sequence of bounded open intervals such that By ~ I, A ... ~ I, % 0,
B, c By, lim B, = R". Applying the case just proved to the set B, ~ I,
we see that there is a distribution g, in R? such that ¢, =f in B, ~ K
and ¢{"™ = 0 in R%

Assume that we have already defined distributions g, .
that

(8) g =gi_y in B; 4,

voy P 8O

gi=fin B;nE, ¢™=0i R

Then we define ¢,., as follows. We consider sets B, and B, o I
The distributions g, and f are equal in the intersection By~ (B~ K)

AN
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= B, ~ K. Thus there is a distribution % in R? such that b =g, in B,
and b ==f in By, ~ K, by Theorem 4. Bvidently, 2™ = 0 in K =
B, v (B, ~ K). Since the set K’ is bounded, there is a distribution Jui1
in R" such that g,,, =% in K’ and ¢, = 0 in R’ Evidently,

Jnir = Gn in By, [/} =fin Bn+1 ~ K, y;{i)l =0 in R%.

Thus, we have proved by indunction that there is an infinite sequence
of distributions ¢,, g;, ... satisfying (8). The distribution g = limg, has
the required properties.

The preceding existence theorem can be completed by the following
unicity theorem whose proof is also based on the “sticking distributions”
theorem:

THrROREM 6. Under conditions of Theorem 5, the distribution g is
determined uniquely n K.

Proof. Assume that there are two distributions g; and g, such
that g, = g, = f in K and ¢{™ = ¢f™ = 0 in R Let B De any bounded
interval such that B ~ I; ~ ... ~ I, # 0. Evidently (B ~ K)* = B ~ K"
There are continuous functions G, and &, on B such that G =g, and
G = g, for some order k. Let G = G,—G,. Then G =0in BAK
and G**™ = 0 in B. By theorem 2, there is a continuous function H
in R such that H = G in B ~ K and H® = 0 in R% Of course, H**™ =0
in R This implies, by Theorem 3, that H = ¢ in B ~ E*. Hence 6% =0
in B ~ K* and, consequently, g;—g, = G¥—G" =0 in B ~ K*. Thus
the distribution ¢ in Theorem 6 iy determined uniquely in B ~ K*. Sinee
we may take B arbitrary large, g is determined uniquely in K.

5. In this section we shall discuss a simple example in the particular
case ¢ = 2. We assume that the set I has the form of the shadowed area
on the enclosed figure. From Theorem 2 it follows that if a continuous

function f(x) = f(&,, &) satisties the partial equation (1) in I, then this
solution can be extended over the whole rectangle OA. Now, Theorem 3
says that this extension is unique. The situation recalls the well known
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Dboundary problem with Cauchy’s initial conditions. In fact, that problem
can be considered as the limit case of ours, viz., when the thickness ¢
of I tends to 0. Note that, if we wish to admit, as solutions, functions f
which are not of class ¢, then the Cauchy conditions become inappli-
cable. Still our formulation allows to extend the problem onto solutions f
which are arbitrary distributions (Theorems 5 and 6).

The problem of extending solutions of (1) was also considered by
Lojasiewicz in [1], but the purpose of his extension lemmas was quite
different. It can be noted that neither Theorems 2, 3, 5 and 6 of the
present paper nor the particular case, considered in this section can be
deduced from XYojasiewicz lemmas.
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On orbits of elements
by

S. ROLEWICZ (Warszawa)

Let X be a linear metric space. Let 4 be a linear continuous operator
mapping X into itself. Let z<X. We shall write

0(A:z)={A"2w:n=0,1,...}

and we shall call @(4 : 2) an orbit of x with respect to the operator A.

It is well known that if X is a space of finite dimension, then there
are three possibilities:

1° lim 4"z = 0,

2° lim|[|A"af] = + oo,

3° the closure of the orbit ¢(4 : z) is compact and 0 does not belong
to this closure.

This follows for instance from [4], lemma 1, p. 270.

The purpose of the present paper is to show that in the infinite-
dimensional case it is not so : it may happen that for some A and z, the
orbit @(4 : x) is dense in the whole space X. Examples of this situation
in concrete spaces are given. It is not clear whether it may take place
in an arbitrary infinite-dimensional separable Banach space (ef. Prob-
lem 1). Some related questions are also discussed.

The basic terminology and notation are the same as in Banach’s
book [1] and paper [3] of Mazur and Orlicz. In particular, by an F-space
we mean any complete linear metric space and by a Bg-space we mean
a locally-convex F-space. The norm in the sense of [1] (i.e. a subadditive,
symmetric functional vanishing only at 0) is called in this paper an
F-norm; norms and pseudonorms used here are always homogeneous and
continuous.

TuroreM 1. Let X be either IP(1 < p < + o0) or ¢,. For any arbi-
trary real a > 1, there are a linear continuos operator A and an element x,
such that the orbit €(A : m,) is densgagn the whole of X.
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