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Let X be a Bgspace. We say that a pseudonorm | || defined in X
is infinite (finite) dimensional if the quotient space X [{w: ||} = 0} is
infinite (finite) dimensional.

The following proposition, communicated to the author by Dr. C.
Bessaga, is strictly connected with problem 5.

PROPOSITION 2. There are infinite-dimensional By-space X and a-con-
tinuous linear operator A acting in X which is not continuous in any in-
finite-dimensional pseudonorm.

Proof. Let X = M(n™) be a space of all sequences 2 == {i,} such
that

]y, = supn™ |, .

M(n™) is a By-space with topology induced by pseudonorms |[ll,,.
Let A be defined by the formula

-A({xn}) = {'n"vn}'
0,1,0,..

. . n-th place
rgspectwe to the eigenvalues A, = n. This implies that 4 is not con-
tinuous on any infinite-dimensional pseudonorm.

Remark._ The example given in proposition 2 can e slightly extended.
Namely, puti:,mg T(s) (x,) = n’z,, we obtain in M(n™) a continuous
group of continuous operators such that, for s > 0, 7'(s) is not continuous
in any infinite-dimensional pseudonorm.

','L‘he author wishes to express his warmest thanks to Dr. C. Bessaga
for his keen remarks and his help in the preparation of this paper.

The basis vectors e, = (0,0, ... .) are eigenvectors of A4
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An analytic approach to semiclassical potential theory
by

8. KWAPIEN (Warszawa)

§ 0. Introduction. The aim of this paper is to give a new non-prob-
abilistic approach to the semiclassical potential theory. The method
used here is, may be, less interesting but much simpler, The semiclassical
potential theory was started in 1950 by M. Kac who, using probabilistic
methods, derived an analytic formula for the capacitory potential. Then
it was systematically developed by Z. Ciesielski who indicated analogies
between classical and semiclassical potential theories. Such notions as
Dbalayage, thinness, Dirichlet problem and barrier have their corresponding
ones in the semiclassical theory. The sets of Lebesgne measure zero play
essentially the same role as the polar sets. A brief, non-probabilistic
account of this theory is given in §2. For detailed treatment of this
subject the reader is refered to [2] and [3]. Tmproving Kac’s technique
Stroock [7] has generalized the Kac formula on the strong balayage
of an arbitrary superharmonic function. He has also obtained an analytic
formula for the solution of the semiclassical Dirichlet problem. The
method used in this article-leads to the same formulas. We deal with
this topic in §3. §4 is mainly devoted to non-probabilistic proofs of
come Stroock’s results (cf. [9]). In it a new method of solving the classical
Dirichlet problem is estabilished. The solution is obtained as a limib
of solutions of some integral equations (ef. Corollaries 4.5 and 4.6). We
finish this paper by suggesting some possible generalizations.

The author wishes to thank Docent Z. Ciesielski for his guidance
in the topic and much help and advice.

§ 1. Some basic lemmas. In the following U denotes a Greenian
domain in the k-dimensional Euclidean space R’ and G(z,y) the Green
function for this domain. It will be convenient to employ the following
notations:

H](U) — the class of all positive and superharmonic functions on U;

BH!(U) — the elags of all bounded feHI(U);

OHL(U) — the class of all continuous feBHI(U);


GUEST


24 8. Kwapieh

B(U) — Banach space of all bounded Borel functions on U with
the norm |f]] = sup [F(@)l;

C(U) — Banach space of all bounded continuous functions on U
with the same norm.

Let E be a Borel bounded set such that £ = U and let feB(T).
Gzf denotes the function on U given by

Guf(0) = [6(z,y)f(y)dy.
B
Since

sup [ G(o,y)dy < I,
2l g
Gzf is well defined. Moreover, we have
. LemMA 1.1. Gz is a compact linear operator from B(U) into C(U)
with ||Ggl < M.
The proof of this lemma is omitted (see the end of § 4).
ProrosiTioN 1.2 (Y). If A =0, feB(U), then there is exactly one func-
tion e B(U) such that gi(2)+ AGgei(z) = f(x) for weU.
Moreover, |gil] < N,|lfll, where N, is a constant independent of f.
Proof. By the spectral theory of compact linear operators, it is
enough to prove that —A is not an eigenvalue of @y, ie., if, for any
0:6B(U), 1+ AGggs = 0, then ¢; = 0. But this follows from the following
proposition : .
ProposrTION 1.3. IffeBH},(U), A =0 and @, is a bounded solution
of the equation i+ iGgps =f on U, then @, is positive on U.
Proof. Let A = {x:2¢U, ps(x) > 0}. Then

a4t Paqu-a+2Gu(paxa) = f+20s(—piyu_4),
where y4 is the characteristic function of 4. Thus for weAd
AGp(paga) < f+2Gn(—pigu_4).

_ But the right-hand side of this inequality is a function from I _L(U)
and the left-hand side is a potential of a function which vanishes out-
side 4. Thus applying the domination principle of H. Cartan we get

Gu(paxa) < f+21Gg(—piyu_4)

for each # in' U or, which is the same, AGrp; < f on U and hence ¢, = 0.

* During the printing of this note the author learned that this proposition
and some others of this sestion were proved by P. Meyer (cf. P. Meyer, Probability
and potentials, Section IIT), ' ‘
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ProOPOSITION 1.4. Let feB(U) and leb @i for 2 =0 be the bounded
solutions of the equations
o1+ AGges = MGsf.
Then
(a) p2¢0(U) and |lpill <sup [f(@};

(b) if f =0, then @z = 0;
(c) if feBHI(U), then g1 <f, ¢ <p1 for ¥ <A and Jlirgw-;f

a.e. on E. )

Proof. (b) is & consequence of Proposition 1.3.

(a) @2 is continuous because @i = 2G5 (f—@s) and Gy inverts B(U)
into C(U). Let

D = sup |f(2)l;
xell

then
D—gi+1Ge(D—g1) = Ge(D—fil+D on U.

The right-hand side funetion is in BHJTF(U), 0, by Proposition 1.3,
D—g1 > 0. Analogously, we can show that D+ qa = 0. Henee [¢i] < D.
(c) If feBH!(U), then f—g. satisties the equation
f—ot-2Ge(f—g) =f
and again Proposition 1.3 gives f = ¢i. If A < 4, then
(pa—gx) + 105(gr— ) = (A—2)Gu(f—¢)-

Since f > @i, we get pa—¢a = 0. Tt remains to prove that 1222 o1 =1

a.e. on E. From the equation we have
sup| ()|

) rel
Gn(f—a) =7 < T

and, moreover, f— ¢ decreases as A — co. The Lebesgue theorem implies
Gu(lim(f—g2) = 0.

Hence lim ¢; = f a.e. on E.
Asroo

Provosrrron 1.5. (a) Let fe BHL(U) and let g1 for 2> 0 be the bounded
solutions of the equations @+ AGrps = f. Then @, 18 completely monotone
in A i, g is infinitely many differentiable in 1 and

, A49s

—1)'—=0.
(—1" ok
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(b) Let feB(U) and let ¢, for 2> 0 be the bounded solutions of the
eqliations
Pat Apgr = Guf.
Then ¢ is infinitely many differentiable in A and
D L N XM d“qﬂ;_ B D

— (S

2 o am ST

where D = sup |f(z)|.
xell

Proof. (a) By Proposition 1.3, ¢; 22 0. Let 4,4, >>0; then

Pr— iy PG
et 4G | ) = G (— ).
pay ) L( 2_}“0) Gu(—p)
Because
1
leal < 5 1)
(by Proposition 1.4) we have
gtl——q,rlu |

1
<35 MUl

=7y

hence |lp2—g¢sll 0 as 1--24. From Proposition 1.2 we infer that
(pa—@a)[(A—2,) for 2 -> 2, uniformly on U approaches the solution of
the equation

P+ 2aGuply = Gul—gps).

Thus
7}
da

=rp,'1 < 0.

. Now it is seen how to continue this procedure to obtain, for arbi-
rary m,

(b) Dj2—@; is a solution of the equation
D D D
( n —‘Pz) + G (7 - 991) =7 +Gg(D—f);
hence D/i—g; > 0. Analogously, as béfore, it may be proved that

(=1 ﬂ%%}-@ >0

Semiclassioal potential theory 27

and this is the same as
( _1)7L lﬂ' CFL¢A D

n! anr A

AN

The case of the second inequality is similar.

§ 2. Semiclassical approach to the potential theory. Let E be
a subset of U. The strongly swept out f, feH l (U), onto B (strong balayage)
is defined as

8% (x) = int{g(z): geHI(U), 9 = f ae on H}.

The connection hetween strong and ordinary bhalayage B{‘ is seen
from the following

Prorosirion 1.2. Let feH1(U) and let E be a subset of U. Then
there exists By = E such that |[E—B)] =0 and SF(x) = Bfo(x) on U.

The proof may be found in [2] and here it is omitted. Using this
proposition, the following list of properties can be easily established
(we assume that f, g, fueH1(D)):

P.1. 8F<HI(D).

P2, 8F<fon U.

P.3. SF = fae on E.

P 8F < 8% on U if f<g ae on E.

P.5. 8E 4, = a7 4488 on U for a,f > 0.

6. Sz =8 on U

P.7. If f,tf ae. on E, then Sf+S7 on U.

The notion of thinness in the classical theory has its analogue in
the semiclassical approach. It is s-thinness. The set B, B < U, is called
s-thin ab @y, 2, U, if either |B-~ V] = 0 for some neighbourhood V of x,
or if there exists feH1(U) such that

flzg) < limess f(a).
Tl TeE

Thinness and s-thinness are connected as follows:

PROPOSTIION 2.2. B is s-thin at %, if and only if there is B cE
such that |E—E'| =0 and E° is thin at .

The proof can be easily derived from the definitions.

As a consequence of this proposition and the corresponding pro-
positions in the classical potential theory, a new characterization of
s-thinness is obtained.

COROLLARY 2.8. E is not s-thin at @, if, and only if SF(z) = f(&)
for each feH 1(U).
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COROLLARY 2.4. B is not s-thin at x, if it has positive Lebesgue upper
density at m,. )

For a given set E we denote by E* the set of all points at which B
is not s-thin.

The set E is said to be s-regular if B < B

COROLLARY 2.5. If feH_l(U) is continuous at x, and zyeE”, then
8% is continuous at .

. This is consequence of lower semicontinuity of S7 and equality

85 (@) = f(,).

THEOREM 2.6. Let B be a bounded Borel set such that E < U and
let feH1(U). Then there is a sequence g, of positive functions in c(u)
such that

Grg, | S,‘«"‘ on U.

Proof. First we assume that fsC'H_'{_(U). For 4> 0 let ¢; be the
bounded solution of the equation

(ﬁ;,+ AGE(}’;, = AGEf

By Proposition 1.4, ¢; have the following properties: @, < g for
A<, g2 =0g(A(f—g)) with f—gp continuous and positive and,
moreover, ¢; 1 f a.e. on E. Property P.7 implies S;A + 8F. Thus to end
the proof it suffices to show that S,],”l = @.. But if, for any geH](U),
g =9 =Gg(A(f—@)) ae. on F, then by Cartan domination prineiple
g =@, on U and this shows that Sﬁz > ¢;. This together with property
P.2 ends the proof of this case.

Now let fe H] (U) and let f* be non-decreasing sequence from CHJ (U)
convergent to f on U. Denote by ¢} the bounded solution of the equation

‘P;’lb + Gy fP;.Z = Mgf ",

The sequence ¢, = n(f"—gn) satisties all demands. By Proposition 1.4,
¢» are continuous positive functions:

GEQ'n = (P:: < (P;L-l < (ini = GEQ'IHJ
(because f* < f™*'). Furthermore,
im Gzg, > 8% and  lim Ggg, < 87
N300 T=00
and since 87, 87, we get
lim Ggg, = S%.
N>00

This completes the proof.

icm
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Remark. If B is compact and 87 is continuous on F, then by
Dini’s theorem the convergence

lim Ggg, = 8F
=00

is uniform on E.

Now we are going to discuss the Dirichlet problem in the semiclas-
sical potential theory. Let K be a compact subset of U. Let us denote
by C(EK) the set of all continuous functions on K and let

Il = max|f(@))-
Moreover, let
Co(K) = {(w)x : 4 = uy— s} 1y, 4 e CHL(T)},

where (u)g is the restriction of w to K.
Simple Stone-Weierstrass argument shows that Cy(K) is a dense
linear manifold in C(K) with respect to the norm | - ||x.
For given 2¢U we define on C,(K) a functional as follows:
Dy(w) = Df (z) = 8%, () — i (@)

Hf = (Uy— )iy Ua, U CHL (D).
Since Sffz = u, a.e. on K, we have
Sy + 11l =
a.e. on K; and this implies
SE 4| flie = 8%
on U. Analogously,
S+ 1fle > 8o
on U. Thus we have
DF (@)] < [fl-
From this and property P.5 it follows that DF(z) is well defined

and linear in f. Thus Dj(z) has a unique extension to C(K) which. will
be also denoted by Dy(z). For extended functional we have again

Dy}l <ilflle, @eU,feC(K).

Tt has been pointed out in Corollary 2.5 that Dy(w) is continuous
ab each @, eK* for f = (w)x with w<CHI(U). It is also clear that D, for
feC,(K) is harmonic on U — XK. Thus we have arrived at the following
result:

ProPOSITION 2.7. For each feC(K) the function Dy is defined on U,
it is harmonic on U — K, equal to f and continuous at each zeK*. Moreover,

|Ds()| < Ifllx-
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There is another method of defining D?. It is established in the
following theorem:

TuroREM 2.8. Let K be a compact subset of U, feC(K). Let ¢, for
A =0 denote the solution of the equation ¢3+-Mrgr = }G,‘f Then

limg,(2) = Df ()

200

for each w in U.

If K is s-regular, then the convergence is uniform on U.
Proof. By Proposition 1.4, |l < lIflx and from the proof of
Theorem 2.6 it is seen that

lim gz () = Dy(z)
A0
on U if feCy(K
show that

). Since Cy(X) is dense in C(K), the standard arguments

lim g, () = Dy(2)

A—s00
If X is s-regular and feOHI(U), then 8F is continnons on K. This
and the remark after Theorem 2.6 proves that for such f the convergence
is uniform on K, which, as before, permits us to state that the convergence
is uniform on K for arbitrary f in C(K). Now the uniform convergence
on U is a consequence of such convergence on K beecause, for 1> A/,

for each feC(K).

A=
m—meﬂyﬂw=ﬂ?t~wf¢J
and by Proposition 1.4

A=A
lpa—gall < W= alle < If—gells

CoroLLARY 2.9. Let K be a compact subset of U. Then K is s-regular
if and only if for each f<C(K) and arbitrary ¢ > 0 there exists geC(K)
such that

If—Grolc < e.

This corollary was proved by Ciesielski [2] and the proof is omitted.
'WeEend tﬂhis paragraph with characterizations of the sets I for
which 8f = Bf on U for all feH](U). The set B, B < U, is said to he
quasi s-regular it B — B* is a polar set.
ProPosITION 2.10. The set B = U is quasi s-reqular if and only if
8F = BF for each feHL(T)
The proof of thig proposxtxon may be found in [3].
Let HY denote the classical solution of the generalized Dirichlet

problem in U — K with the boundary values 0 on 9U and f on K. As
a corollary of Proposition 2.10 we get

icm°®
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CoroLLARY 2.11. Let K be a compact subset of U. Then Hf = D[ if
and only if K is quasi s-regular.

§ 3. Kac-Stroock formulas. In this paragraph ¥ denotes a bounded
Borel set such that E < U, |BE| > 0. We shall use the following nota-
tion:

I}(B) — Hilbert space of all functions f on E for which

wm=gfmwﬁ<+w;

(f, ) the inner product Eff(y)g(y)dy;f, geL*(E);

Gu(z,y) = G(z,9), ,?JGU
G’”“(m,y fG” (z,y)dz, &, yeU;

G5 fG’"(oc, Ny ady, zeU.

Since G(z,y) is & Wea,l\ly singular kernel on Ux U, the following
lemma is true:

LEMMA 8.1. There are a constant C and an integer m, such that for
m =my and &, yeU

Gm(m’y) <07 G(.l‘,flj)=G(:l/,ﬂ‘)

and hence

LEMMA 3.2. The linear operator Gg:
self-adjoint and positive definite.

(Positiveness is concluded from the energy principle.)

Let {4, ¢} denote the complete orthonormal system of eigenfunc-
tions of Gz with their corresponding eigenvalues.

LEMMA 3.3.

() 34" < + oo,

=1

(b) lgi (@)} < L(
and .

The proofs of Lemmas 3.3 and 3.4 are standard (ef. [7]) and here

they are omitted.
The following notation will simplify formulation of theorems. Let f

be an integrable function on E, i.e.

[1fay =il < + oo,
E -

IXE) —~ Ii(B) is compact,

1/4;)™ on B for some constant L independent of j

let m be an integer and t > 0. Then S7'f is defined as a function on U
given by the series: .

S ( Zm%ﬂ‘fwfemawmw

i=1
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The series is convergent which is seen from
LEMMA 3.4, Let f be integrable on I, t> 0. Then
(a) the series

N (fe) [ @@, o) dy
i=1 b
is uniformly and absolutely convergent in = on U;

b) if m = 4my+1, then

00 00

2 e, e Jew nnma| @
j=110
s uniformly in x convergent on U.

‘We shall write S,f instead of §;f. For the proof of the main theorems
of this paragraph we shall need the lemma which can be easily derived
from the S. Bernstein theorem on completely monotones functions.

Lmmma 3.5. (a) If D—2p(d) is completely monotone function of A
for A>0,

lim(D—Ap(2)) =0, lm(D—ip(d) =D,

A-s00 A0

then
-+00

p(h) = [ eHg()at

0
and g(t) is a non-increasing, positive and right-continuous fumction of t
with

limg(¢) = D.
{04

b) If y(2) is infinitely many differentiable for >0 and
D (U dwa) D
P a7
then

and |gt)] <D for t> 0.
Now we are ready to prove the main result.
THEOREM 8.6, Let feH1(U). Then

B 1 . bl Ay
(a) 87 (z) = Jim 8f(a) = 352,51 et (f,qaf)g G(@,9)p;(y)dy for wel;
(b) 8ef < 8uf on U for t =1 > 0;
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e) S,f = Ggv, on U where vy, t > 0, are bounded and positive func-

tions on K.

Proof. First we assume that feBHi(U). Let y; be for 1> 0 the

bounded solution of the equation

v+ Gy, = Gef

on U. Then ¢; = Ay; fulfils the equation

¢1+ gy, = AGzf.
Thus from the proof of Theorem 2.6 we get
Lim (8% — Ay,) = 0.

200
Because |yil] < M|f]l, we have
lim (8% — Ay;) = SF.

A0

Moreover, 8F— Ay, is a solution of the equation
SF— Ayst 26 (87— haps) = 87+ 265 (87 —9)-
Since 87 = f a.e. on B, Gx(8F—f) =0 and hence
S — Jps+ 2G5 (87— Ays) = 87
Now Proposition 1.5 (a) implies that 8% — 2y, is completely mono-

tone function of 2. Thus SF — Iy, fulfils all the assumptions of Lem-

ma 3.5 (a). Hence
“+ o0

pile) = [ e g(z)dt

]
where g,(z) is for every xeU right-continuous, non-inereasing, positive

for t> 0 and
lim g (x) = 87 (z).
104
Integrating by parts, we obtain
t

) e I — A S\ g )
(@) Uf ¢ ”(of(t 5) gt(x)ds)dt

m!

Now let m = 4my-+1 and let

M }’A m-1
Ta(@) = > (=26 (@) +2 : +’M (F, ) Gamy(a),  0eT.
’l—(l

Studia Mathematica XXXII, z. 1
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Inequality m > 4m,-+1 provides uniform and absolute convergence
on U of this series (analogously as in Lemma 3.4). Putting 7, into equation
we check that h, satisfies h;-+AGgh, = Ggf on U. Hence h; = y; on U.

But
kil mu
a(a) = 2 W@+ 3 ST (7 g Gl
7=0
+ o 'ih‘ tm_ ’
— m41 — At _ i i1
P} ufe [1%( R TCEL
=y Set, W)GE%(M)]dt-
f=1 -

The uniform convergence of this series and integration term by
term is provided by Lemma 3.4. From the uniqueness theorem on Laplace
transform we have for ¢t >0

m
Mm—1

____f (t—8)" g (@) dt = Zﬂv(_l)i—(:’;i—*

A=

GE @)+ (=1 S (a).

Differentiating this equality m -1 times with respect to ¢ we obtain

ge(z) = 8;f(x) a.e. in ¢, ¢ 0 for each zeU.

But gi(x) is right-continuous, and §,f is continuous in ¢, so g(z)
= 8if (z) for each ¢ > 0, weU. Already proved px operties of ¢,(x) imply
that S,f fulfill (a) and (b). Since

o 1
87 = s Y5 (s, m)

=1
to prove (e¢) it is enough to show that
0

25

F=1

e Mi(f, o) ey

is bounded and positive on . Bstimates like those in Lemma 3.4 prove
boundedness. 8f is non-decreasing, so

0

d 1
02> %= *Zﬁ“—w(ﬁ ?)6mg;  on U.

=1
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In particular, for z<F we get

. 1 —t/4
27@ W(froNe; =0
]
7=1
and this completes the proof of the first case.
Now let feH](U). Let f* = min(f, n). Then f*<BH!(U) and f"4f
on U.
It is apparent that
lim Stfn = Stf.
N—00

From the proof of the first case it is seen that Laplace transform
of of S(f***—f™ satisfies

o3+ Gros = Gu(f" ' —f").

By Proposition 1.8 (a), ¢} is completely monotone, hence by Bern-
stein theorem, S;(f"*'—f™) > 0. Thus the last convergence is monotonie,
ie. 8" 4 8f. This implies (a) and (b). (c) is proved in the same way as
in the first case.

The obtained analytic formula may be used in order to get a for-
mula of the same type for the solution of the semiclassical Dirichlet
problem.

TrrorEM 3.7. Let B = K be a compact subset of U and let feC(K
Then
zeU.

lim §,f(z) = Df (),

04
Proof. From the proof of Theorem 3.6 we Lknow that if feCy(K),
then the Laplace transform ¢, of S,f fulfils the equation y;+ Gy = Ggrf
on U. By Proposition 1.5 (b)

Il _
A a!

0" @y, Iflle
ot ST

and hence by Lemma 3.5 (D)

8@ <ifle for t>0 (zeD).
Furthermore, for such f by Theorem 3.7

lim 8;f (z) = Df (x) for all weU.

04
Sinee O, (X) is dense in O(K), the last assertion holds for all feC(K).
Remark. If K is s-regular, then like as in Theorem 2.8 it may be
proved that the convergence is uniform on U.
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§ 4. Generalizations. Let U, as in the preceding paragraphs, denote
Greenian domain in R, If 4 is 2 Radon measure on U7 which vanishes on
polar sets, then the strong balayage of f, feH |, relatively to u is defined as

B (x) = inf{g(e): g HL(U)yg = f p acel.

Analogously as for the Lebesgue measure it may be proved that
Bj fulfils Proposition 2.1 and has all Properties P.1-P.7 (with obvious
changes in formulation).

A positive Radon measure x on U is said to be o W-measwre il

Gulr) = fG(m, ) duly)
o

is a bounded funection of # on U.
For a given funection f on U, let us write

G.fla) = [Glm, ))f@)iuly), weU.
U

LemMA 4.1. Let u be o W-measure, feB(U) and 1> 0. Then there
8 emactly one g,eB(U) such that

pal) + AG pae) = AG, f(x) on U.

Proof. By Riesz theorem @, is a Dbounded linear operator from
L*(u, U) into itself. The energy principle implies that @, is positive
definite, hence the above equation has a unique solution ¢ in I* (e, U).
Now to complete the proof of the lemma it is sufficient to demonstrate
that ¢; is positive each time f is positive. But it can he proved exactly
in the same way as Proposition 1.3. )

For a W-measure u, Propositions 1.3, 1.4 (except the continuity
of ¢; in the item (a)) and 1.5 with their proofs will remain valid if we
put @, instead Gy everywhere in their formulations. Proposition 1.4
reformulated in this way implies

ProrposirioN 4.2. Let p be o W-measure, fe RH| (U) and let, for
A>0, @; be the bounded solution of the equation

ot AGugn = A6, f  on U.
Then g2 < u for A<V, 0 < g2 <f and
hmtpz Bf on U.

This allows us to prove -an analogne of Theorem 2.6.

. TomoreEM 4.3. Let u be a positive Radon measure on U which vanishes
on the polar sets, and let feH{ (TU). Then there is a non-decreasing sequence

©
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tn of W-measures and o sequmwe gn Of positive functions in B(U) such
that Gy, qn + B (o < pougr U pin(B) < g1 (B) for each Borel set F)

Proof. Let u, be a restriction o'f ptotheset 4, = {veU: Gu(x) < n}
Since
U\ U4,
Pe= ]

is a polar set we get lim u, = u. Moreover, it is seen that u, are W-
n—>00

-measures and the sequence is non-decreasing. Denote min(f, n) by f™
For each n let ¢, be the bounded solution of the equation

" . 1
Gu 0 = )LG,‘)Lf f

Define ¢, as ¢, = #{(fy,—¢,). Then Proposition 4.2 and the argu-
ments like those used in the proof of Theorem 2.6 give ¢y, < @ny and

limg, =Bf on U.
N0

This completes the proof.

Using probabilistic methods, Stroock [3] has constructed for every
bounded set E a W-measure x such that Bf (v) = BY(z) on U for all f
in H 1 o(T). Now we are going to construct such a measure in a simple
way.

TurorEM 1.1, Let B be a bounded subset of U such that E < U.
Then there exists a W-measure EF such that Bf (x) = Bﬁb(w) on U for all
FeHL(U)

Proof. Let U, be an open bounded set such that E < U,, and
U, = U, and let & denote the Lebesgue measure restricted to U,. Then
there is unique W-measure & on U such that Bh: = @E. (It is the
sweeping out of £ onto K.) Since £ £F is concentrated on the set of regular
points of E fmd it vanishes on the polar sets, by dormnahon prineiple
it is BF = B, on U. It remains to prove that Bf < Bf on U, but it
is enuugh to prove this for f == G.g, where ¢ is a positive bounded fune-
tion on U,. For such f, Bl = @, where y is a 1V -measure ru]molllté}ly con-
tinuous with respect to & (xt is seen from the equalities aBg = Bf +
+BE(a—g) and hence at® = yL 9, where a = Supg( z)). Now from
the domination principle we conclude that B L = BY. Because B/;g

B, , this closes the proof.

Remark. If F is an analytical set, then a shght modification of &”
may be done so that the essential support of £% iy contained in B.

COROLLARY 4.5. Let B, & be as in the proof of Theorem 4.4, and
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let feB(U). Denote for 4 >0 by ¢, the bounded solulion of the equation
@t },GEE(}?;, = ZGEEf. Then
(a) if feBHL(U), then lim ¢, = By on U;
A0
(b) if B is compact and feC(H), then }im ¢ =HE on U.
=>0C

This corollary is an immediate consequence of Proposition 4.2 and
Theorem 4.4. .

Let ¥ be a domain, ¥V < U, with the boundary dV in ¢* (or piece-
wise in C") and let ¢ denote the surface measure on 9V, Then it is not
difficult to prove that o is W-measure and Bf = B on U for all f<H ] (U).
For the same reasons as in the case of Corollary 4.5 the following iy true:

COROLLARY 4.6. Let V, o be as above, feC(0V). Denote by ¢y for 2 > 0
the bounded solution of the equation ¢+ AQ,p; = AG,f. Then

limg, = HY  on U.

A-s00

For such ¢ and V we can prove that for sufficiently large m

@@,y = [ [@@, 5009 .. Gy 1) Aoy do(ys) .. doly )
v v

s 'a bounded function of @,y on UxU. Hence exactly in the same way as
in § 8 Kac-Stroock formulas for BY |, HY may be established.

The semiclassical potential theory like that in §1 and § 2 may be
developed without essential changes for much more general kernels.
For instance it may be done for potential kernel U of a Markov process
which fulfils Hunt's [4] hypotheses 4, F, G and for which Lemma 1.1
is valid. The Lebesgue measure should be replaced by & measure from
the hypothesis F of §17. Lemma 1.1 holds if h{ay, ®, y) are bounded
functions of #,y on Ux U for some fundamental system o, (all nota-
tions ‘are taken from § 17 of (6], Hunt). This is the case of the Newton,
the M. Riesz and the heat potentials.
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