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Bases and complete systems for analytic functions
by

J. B. COOPER (Clare College, Cambridge)

It E is a topological linear space, a sequence () in F is complete
if its linear span is dense in B. It is a Schauder basis if for every ¢ in F

there is & unique sequence of scalars (&) such that z = D Ex@r, and the
k=1

maps # — & are eontinuous for each %. Perhaps the most natural example
of a space with a basis is the space of functions which are analytic on the
unit dise U = {z:[2| < 1} in the complex plane. We give this space the
topology of uniform convergence on compact subsets of U and denote
it by P(U). Then (2") is a basis for P(U).

If B is any loeally convex space we will denote by P(E; U) the space
of analytic functions from U into F again with the topology of uniform
convergence on compact subsets of U. The reader is referred to Grothen-
dieck [2] for definitions and basic properties of vector-valued analytic
functions. Then if B is complete, P(E; U) = P(U)®E the projective
topological tensor product of P(U) and E. The purpose of this paper is
to derive some theorems in bases and complete systems in tensor products
of locally convex spaces and to use them to extend known results for
P(U) to P(E; U). We will find it convenient to assume F complete and
barrelled although more general hypotheses could be nsed for some results.

Firstly we give a criterion for a sequence in a locally convex space
to be a basis. This is a generalisation of Grundblum’s well-known result
for Banach spaces.

PROPOSITION 1. Let (z.) be @ complete sequence in a barrelled locally
conver space E. Then the following are equivalent:

(1) (@) is a Schauder basis for E;

(2) (2) is a Schauder basis for (B, o(H, B')):

(3) for every continuous seminorm q on F there is & continuous semsi-
norm p on B such that for all positive integers v, s and all scalars (t1, ..., 15 s),

r 48
(4) Q{ yii$¢}< P{ tTmz}
=1 1
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158 J. B. Cooper
Proof. (1) implies (2): clear. .
(2) implies (3): if zeB, then » = Z‘ £:4; (convergence ino (E, E')).

=1

Then let N
Sul@) = ) i
i=1

S is a continuous linear map from Z into E. Also for each wz¢E,
the s:quenee {8, (m)} i3 weakly bounded and so bounfled. Hence the
the sequence (S,) is equicontinuous by the Banach-Steinhaus theoren}.
Now let ¢ be a continuous seminorm on B. Then V = {z: q(») < 1} is
a neighbourhood in ¥ and so there is a closed absolutely convex neigh-
bourhood U such that

U< 81T,
N=1
Let p be the Minkowski funetional of U. Then p satisfies (A).
(3) implies (1): By (A) the maps 8, where

r ZT: fiwg  (r <),
Sn(ZfWi) = 11

=t Dawm (rzn)
=1

are well defined and equicontinuous on lin(w,). Hence .they can pe ex-
tended to an equicontinuous sequence of maps from & into B which we
still denote by 8,. Clearly

T = S1(m)+ Z S’n(w)_‘sﬂ.—l(w)

is a basie expansion for .

T E is a locally convex space a biorthogonal system (ay;f.) on E
is a sequence () of elements of E and (f,) of elements of B’ such that
By Fad = Oumn Tor all m, m. If (@a; fn) is @ biorthogonal system. on B we
can define the maps S, by

n
Su(@) = D' <m, fidw.

=1
COROLLARY. Suppose that (z,; fn) is & biorthogonal system on a barrelled
locally convex space B, and suppose that (z,) is complete in B. Then (o)
is a Schauder basis for B if and only if (S,) is an equicontinuous sequence.
If B and F are two locally convex spaces and if (z;) (vesp. (yy) is
a sequence in F (vesp. F'), we define the sequence (z;) in E® I as follows.
We take the double sequence ;®1y;, enumerate it by squares i.e. 2,®¥,,

icm
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5, ®Yoy B3@Ys, L20Y1, B1 @Y, #,®Y; ete., and denote the k-th element
by 2.

ProrosIrIoN 2. (1) If (%) and (y;) are complete in B and F resp.,
then (2) is complete in B F.

(2) If (25 13) (resp. (w55 05) s a biorthogonal system in B (resp. F),
then (e; he) s @ biorthogonal system in ERF, where if 2 = 2;QY;, then
by = fi®g;. :

(3) If (@) (resp. (1)) is a Schauder basis for E (resp. F) and if B and T
are barrelled, then (2i) is & Schauder basis for B&F.

Proof. (1) and (2) are immediate.
(3): if weH, let

Sul) = 3 o, frar,
where (f;) is the biorthogonal sequ;nce to (x;) and if yeF, let
T (y) z%’(y, 99,
where (g;) is the biorthogonal sequ_ence to (y;). Finally, if 2eE&F, let

Un(2) = 2 {z, by 2.
i=1

For any integer n, we have z, = #;®y; for some i, j. There are three
possibilities :

(1) @ =j; then U, = 8; ,@T:;+8:@(T:—T;_,).

(2) > j; then U, = 8;&T;—(8;—8i_) ®Tj_;.

(8) ¢ <j; then U, = 8,07 1+ 8:@(T;—T;_,).

Hence (U,) is an equicontinmous since (8,) and (T,) are. Thus (z;)
is a Schauder basis for E®F.

Remark. This result remains true for any topological tensor product
of B and F which satisfies the following properties: )

(1) the natural bilinear mapping from B xF into E®F is separately
continuous for the topology induced on E@F.

(2) if % (resp. ¥7) is an equicontinuous sequence of linear maps from
E into F (resp. F into F), then #®¥ is an equicontinuons sequence of
linear maps from the topological tensor product into itself.

In partieular, it is true for the tensor products Eéﬁ',a.nd BT
introduced by Grothendieck [3].

PROPOSITION 3. Let B be a complete barrelled locally convex space
with o basis (;) and let the functions {f;(2)} form a basis for P(U). Then
the functions {f;(2)w:}, ordered by squares form a basis for P(E; U).
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PrOPOSITION 4. Let the functions {p:(2)} and {y;({)} be bases for P(U?,
Then the sequence of functions {p;(2)w; (L )} ordered by squares, form o basis
for P(UxTU). )
Proof. P(UxU) = P(U)®P(U). .
Proposition 4 ean be regarded as a generalisation of the extension
of Taylor’s theorem to functions of two variables. It can be clearly exten-
ded to any finite number of variables. .
Markufevié [4] has introduced the following concept, which general-
ises the Borel transformation for analytic functions. Suppose that I (2, &)
is an analytic function on U x U. Then we can define subspaces. O and
Q of P(U) by
0 = {f(2)eP(U): f(2) = A F(2, {)},
@ = {p(0)<P(U): p(8) = LF(z, O)}.

Here A; and L, range over elements of the dual of P(U). The sub-
seript ¢ is to emphagise that A, acts on F(z, ) considered as a function
of ¢.

ZA sequence of functions {f,(2)} in O is relatively complete in O if theh:
closed linear span contains 0. A sequence of linear functionals A7 in P(T)
has the property of relative uniqueness on Q if whenever ¢(¢) is an element
of Q such that 47(g) = 0 for all n, ¢ () = 0.

THEOREM (Markufevic). The system of functions

{ful?)} = {42(F (2, D)}

is relatively complete in O if and only if A7 has the property of relative uwi-
queness in L.

We can place these concepts in a more abstract setting and so. give
simpler proofs of Marku$evid’s result. First note that if B and F are
complete locally convex spaces and if y’ X', then (z,y) = {y, ¥y >® is
a continuous bilinear transformation from E X F into F and so corres-
ponds to a continuous linear map from HEF into H. If z<EHQF we
will denote its image under this map by ¢'(2). Now if = is a fixed
element of BQF we put - 1
: o 0= {gel: 5 =y'(z) for some y'eF'},

Q= {yeF:y =a'(z) for some o' eB'}.

A sequence (x;) in O i3 relatively complete (in O) if its closed linear
span contains 0. A sequence (y,) in F' has the property of relative uni-
queness in Q if whenever ye is such that {y, yn> = 0 for all n,y = 0.

PROPOSITION 5. (w,) = {yn(2)} is relatively complete in O if and only
if (yn) has the property of relative uniqueness in Q. ‘

icm°
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Proof. First note that if o'cE',y’eF", 2e HSF, then
Y@, 2> = (@' (2), y').
For if 2 = Z®y, both sides are <z, 2>y, y’> and the result follows
for general ze H®F by continuity.
Now suppose that (z,) is relatively complete in 0. Let y = o' (2)e

be such that <y,y.> = 0 for each #. Then if y'eF', y'(2) = limP;(2),
where P; is a linear combination of the g,s. Thus :

Wy = <2'(2), ¥ = ' (2), @'y = Um(Pi(z), &'y = 0

sinee <y, Yn)> = <&’ (2), ¥nd> = (Wn(2), &> = 0 for each n and so (P;i(2), ">

Conversely, suppose that (y,) has the property of relative uniqueness
In Q. If (#,) is not complete in O, then there is an z = y'(2) €O such that
#¢lin{yy (2)}. Hence there is an o’ < B so that oy 2"y = 1but (yn(e), 2> =0
for each n. Now consider #’ (z)e Q. For each 7,

@'(2), 92> = <Yal2), > = 0.
Thus #’'(z) = 0 and so

(@, 85 = Y'R), 8> = &'(2), 9> =0
a contradiction.

Exaverz. Suppose that (z,) and (y,) are bases for the (F)-spaces
E and ¥ resp. We can assume that (,) and (y,) are bounded sequences.
For if for example (p,) is an increasing sequence of seminorms defining
the topology of B, we can replace z, by T [P (¥n) +1. Then

©
2 1
z = ""'mn®:'/n
ni
N=1

is an element of H& F. We give a representation of 0. If (2,) and (y.)
are the Taylor bases for the entire functions then z = exp(#;%,) and O
is the set of functions which are Borel transforms of functions analytic
at infinity and these are just the entire functions of exponential type.
Using similar methods we can show that in our case O is the set of

=

e

Sty

&
I
~

(-]
as (&) runs through the set of sequence such that D) &y is convergent
F=1

0 0
and ) klag & is convergent for all sequences (az) such that > apygeF.
k=1 k=1
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We now give a version of Markuevié’s theorem for - vectorvalued
functions. First we note that if B is a complete, barrelled loeally convex
space, then the dual of P(E; U) is R(E’;.b U)lthe spa,ce. ofiloea.lly. ec{nxly-ex
analytic functions on bU taking values in E and v'a.mshmg at infinity.
Here bU denotes the complements of U in the Riemann s,phere. The
duality is obtained as follows; if f(2) eP(H; U) and g(2)eR(H'; bU) then
we pub

’

Sy = [{f@),9()de
where the integral is taken round some circle |2 =r '(r< 1) on which
g(2) is defined. These results can be found in Grothendieck [2].

PROPOSITION 6. Suppose that F(z,l) is am analylic function from
Ux U into the space BESF where B and F are complete, barrelled locally

convex spaces. Let

0 = {1@)<P(B; 0): () = [ 9O (e, D} for some g (¢)eR(F';bT)},
2= {g({)eP(F; U):g9(0) =f1p(z){l7’(z, 0)}dz for some y}(z)eR(E’;bU)}.

Here, for fized z and L, p(0){F (2, {)} denotes the image of flbe (flement
Ple,t) of BOF in B when (L) is regarded as a map from E@F into E
The integral is taken round some circle |f| =1 (r < 1) on which @({) is
defined.

Then o system of functions

fal®) = [ou(0) {F(z, 0} L

1is relatively complete in O if and only if tre system of functions @n (8) has the
property of relative uniqueness in £.

As a special case with F = C we have:

PrOPOSITION 7. Suppose that F(z, () is an analytic function from
U x U into a complete, barrelled locally convex space H. Lei

0 = {f(2) P(B; U):f(2) = [ (&) (2, L)L for some g(2) RV},
0 =GP0 = J B, 0), v(@)de for some ()< B(B'; bV}
Then a system of fumctions ‘
fult) = [ulO)Ple, D)

is relatively complete in O if and only if the system of functions ¢, (L) has
the property of relative uniqueness in Q.
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An element z of B®F is said to be complete in F it O is dense in E.
From the above result if Z and F, have bases (#n) and (y.) resp., and if

)
Z = Z fnxn ®Yn
N=1

(this corresponds to a function of the form f(=8) for B = F = P(U))
then # is complete if and only if £, = 0 for each k.

We now give a number of corollaries to Propositions 6 and 7 which
place several of Markufevid’s results on completeness and uniqueness
in the context of vector-valued functions.

CoROLLARY 1. Suppose that F(z, {) is an analytic function from Ux U
into BT which is complete for z, i.e. such that O — P(E; U). Then the
sequence of functions yu{F(z, L)} is complete in P(E; U) for every sequence
(Ym) which is total on F and every sequence (&,) in U which has a limit
point in U.

COROLLARY 2. Let

b

flz) = chz"

be a function in P(E & F; U) such that c, is complete on F for each n.
Then if (Ln) is o sequence in U with a limit point in U, the sysiem of
Junctions ym{f(2n)} is complete in P(E; U).

COROLLARY 3. If F(z, {) is as in Corollary 1, then the system of functions

|2, )

s complete for any C,eU.

COROLLARY 4. If f(2) is as in Oorollary 2, then the system {yy,(f™(z))e"}
is complete in P(E; U).

Proof. Apply Corollary 3 to F(z, &) = f(().

CoroLLARY 5. If F(z, £) is as in Corollary 1, then the system of functions

aﬂv
s complete in P(E; U) if (Ln) is a sequence in U such that &y — Loe U and
Z ICn+1_ Lnl < oo
To==1
Proof. If f(2)eP(E; U)is such that f™(,) = 0 for all #, then f = 0.

This has been proved for E = C by Gonédarov [1]. For the general case,
consider {f(z),'>eP(U) as ' runs through B'.

=ty

=z,
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COROLLARY 6. If f(2) is as in Corollary 2, then [yw{f™(eC,)}"]
is complete in P(B; U) if (La) s @ sequence in U such that Ln —Coe U and

D)1= Cal < 0.
=1

All these results on analytic functions hold for more complieated
domain spaces that U but we have avoided the technical complications
which would result from more general statements since they do not add

to the interest of the. situation. ‘ ’
T would like to thank my colleague G. Bennett of St. John’s College,

Cambridge, for many helpful discussions on this work.
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Transforming bilinear vector integrals
by
JAMES K. BROOKS (Gainesville)

Let X,9, and 3 be Banach spaces with a continuous bilinear multipli-
cation defined on X x9) into 3. Bartle [1] has developed a Lebesgue-type
integration theory for ¥-valued integrands and 9-valued measures in
which some of the classical integration theorems remain valid. This
bilinear vector integral has many important applications, for example,
numerous authors have used this integral (in restrictive forms) for estab-
lishing integral representations for linear operators defined on If and
Og(8) into 9 (e.g. see [3], [8], and [10]); consequently, it is of interest
to consider the relationships between these integrals which arise from
transforming one vector measure space into another. More precisely,
let T be a transformation between the 9)-vector measure spaces (8, X, u)
and (8", 2", u'). We are interested in finding conditions in order that
X-valued measurable functions @ defined on §' satisfy the transformation
formula

(%) [&oTfap= [e¢W(,D)ay,
D D

where D belongs to a certain subfamily of X; W' and f are appropriate
functions describing the change of measure induced by 7.

In section 1 the standard hypotheses concerning the structure of
the measure spaces in transformation theory are presented. By altering
the usual definition used in transformation theory for a weight function,
we are able to introduce in section 2 the notion of an absolutely continuous
transformation relative to vector measures, along with the concept of
a generalized Jacobian for 7' (x) is established in section 3 for absolutely
continuous transformations. This development includes all the existing
transformation formulas in the literature for the absolutely continuous
case; In particular, it includes the theory developed by Reichelderfer
[12] for positive measure spaces. The author wishes to express his grati-
tude to P. V. Reichelderfer for his helpful suggestions.

1. The setting. Throughout this paper, ¥,9, and 3 will denote
Banach spaces over the complex number field €. For terminology and
concepts concerning vector measures and integration theory used in
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