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COROLLARY 6. If f(2) is as in Corollary 2, then [yw{f™(eC,)}"]
is complete in P(B; U) if (La) s @ sequence in U such that Ln —Coe U and

D)1= Cal < 0.
=1

All these results on analytic functions hold for more complieated
domain spaces that U but we have avoided the technical complications
which would result from more general statements since they do not add

to the interest of the. situation. ‘ ’
T would like to thank my colleague G. Bennett of St. John’s College,

Cambridge, for many helpful discussions on this work.
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Transforming bilinear vector integrals
by
JAMES K. BROOKS (Gainesville)

Let X,9, and 3 be Banach spaces with a continuous bilinear multipli-
cation defined on X x9) into 3. Bartle [1] has developed a Lebesgue-type
integration theory for ¥-valued integrands and 9-valued measures in
which some of the classical integration theorems remain valid. This
bilinear vector integral has many important applications, for example,
numerous authors have used this integral (in restrictive forms) for estab-
lishing integral representations for linear operators defined on If and
Og(8) into 9 (e.g. see [3], [8], and [10]); consequently, it is of interest
to consider the relationships between these integrals which arise from
transforming one vector measure space into another. More precisely,
let T be a transformation between the 9)-vector measure spaces (8, X, u)
and (8", 2", u'). We are interested in finding conditions in order that
X-valued measurable functions @ defined on §' satisfy the transformation
formula

(%) [&oTfap= [e¢W(,D)ay,
D D

where D belongs to a certain subfamily of X; W' and f are appropriate
functions describing the change of measure induced by 7.

In section 1 the standard hypotheses concerning the structure of
the measure spaces in transformation theory are presented. By altering
the usual definition used in transformation theory for a weight function,
we are able to introduce in section 2 the notion of an absolutely continuous
transformation relative to vector measures, along with the concept of
a generalized Jacobian for 7' (x) is established in section 3 for absolutely
continuous transformations. This development includes all the existing
transformation formulas in the literature for the absolutely continuous
case; In particular, it includes the theory developed by Reichelderfer
[12] for positive measure spaces. The author wishes to express his grati-
tude to P. V. Reichelderfer for his helpful suggestions.

1. The setting. Throughout this paper, ¥,9, and 3 will denote
Banach spaces over the complex number field €. For terminology and
concepts concerning vector measures and integration theory used in
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sections 1 and 2, see [2] and [9]. If (8, Z, p) is a @-vectf)r measure space,
llzll and |u] denote respectively the gemi-variation (wlth ?espect to )
and the total variation of . A set is u-nall if it is contained in a set HeZ,
where |juf|(E) = 0. There exists a finite positive measure o defined on ¥
(ealled a control measure for u) such that «(F) — 0 it and only if ||u||(B)
—0 ([9], p. 321). ‘

We now list the hypotheses I-IX under which the theory is to be
developed. For brevity, ¥, F,D, B', 0’ will be generic notations for
sets Dbelonging to X, X', D,8’,D’ respectively.

I. (8, X, u) is a Y-vector measure space with control meagure.q.

1. (8,2, "u.") is a 9-vector meagure space with control measure .

IIL T is a function (transformation) from § onto S§'.

IV. D is a subfamily of X containing the empty set and 8. 7D < 3.

The intersection of two sets belonging to © can be expressed as
a countable union of disjoint sets from D. For every EF and ¢ > 0 there
exists a disjoint sequence of sets D; such that ¥ = (J D; and (U D;—E)

E.
= Definitions. B is a pp'-null set it F = A4, v 4,, where 4; is
u-null and T4, is u'-null. An element D 4s of type y if it belongs to a coun-
table partition of 8, where the partition consists of sets from D and
a uu'-null set.
V. Every member of D can be expressed as the union of a monotone
increasing sequence of sets of type y.

VI. B’ is a sub-c-algebra of Z'. 778’ = I. For each B’ there exist
sets Bi, B; such that B < &' < B; and o' (B,—B;) = 0.

Definition. O’ denotes the family of subsets 0’ of §° such that
T7'0’ is a countable union of disjoint sets from D.

VIL For every E' and & >0 there exists an O’ such that B < 0’
and o' (0'—F') < e. i

Definitions. 0’ is of type ' if it is & member of a countable parti-
tion of §', where the partition consists of sets from O’ and sets 4', B,
where A’ is p'-null and T~'B’ is g-null. B is of type o if it is the union
of a monotone increasing sequence of sets of type .

VIIL. For every B' there exists a monotone decreasing sequence
of sets B, each of type ', and u'-null sets M’, N’ such that () B}) w M’
=B'v N ‘

The above hypotheses provide a setting in which absolute continuity
can be defined. I-VIIL imply the hypotheses H1-HS in [12], when u
and u’ are positive. When 8 and §' are topological spaces and 7 is continu-
ous, there iy a theory [18] which includes a large class of topological
spaces satisfying I-VIIIL.
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IX. A weight funetion for T is a complex-valued funetion W’ defined
on 8 XD satisfying the following conditions:

(i) W(-,D)=0 on §8~TD.

(ii) If D is the union of a monotone increasing sequenee of sets D;,
then Lim W'(-, D;) = W’(-, D) a.e. u'.

(iii) If there exists a disjoint sequence of sets D; contained in D
such that D—{J D; is u u'-null, then SW'(-, D) = W'(-, D) a.e. w.

(iv) W’(-, D) is u'-measurable for each D.

Remark. W'(s’, D) represents a weight assigned to the points
in D which T sends into s'; this allows us to treat different possible
definitions of absolute continuity simultaneously. A non-negative weight
Junction. W' is a non-negative funection satisfying IX, except (iii) is re-
placed by the under additive requirement that DWW (, D)< W (-, D)
a.e. u', whenever the D; are disjoint subsets of D. If W’ is a weight
function whose range is the non-negative reals, then by partitioning D
into sets of type y and using (iii), one can show that W' is under additive
a.e. u'; consequently, in this case W’ essentially satisfies H9 in [12].
Conditions are given in [4] in order that a real-valued weight function
can be decomposed uniquely into non-negative weight functions.

We list some important examples of non-negative weight functions
for continuous transformations 7 defined on R™(D in this ease is the
famify of domains contained in the bounded domain 8): (a) the essential
multiplicity fonetions K(s’, T, D), K*(s', T, D), K~ (s', T, D), which are
generated by the topological index defined on indicator domains; (b)
N(s’,T, D), the crude multiplicity function or the Banaeh indicatrix
of T; (e¢) k(s’, T, D), which counts the number of essential maximal
model continua for (s', T, D). These functions are studied in detail in

"[11]. Note that if T is essentially absolutely continuous and if the(*y D)

=K*(,T,D)—K (-, T, D), then pu, is a weight function. See [5]
and [6] for additional properties econcerning non-negative weight fune-
tions.

We shall always assume that I-VIII hold and that W' is a weight
funetion for 7.

2. Absolute continuity. The variation of W' is the non-negative
extended real-valued function V' defined on §'xD as follows: V' (s', D)
= sup |W’(s', D;)|, where the supremum is taken over all finite parti-
tions {D;} of D. T is of bounded variation with respect to W' (BVW')
if V'(-, D) is u'-integrable for each D. T is absolutely continwous with
respect to W’ (ACW') if T is BVW’ and if there exists a complex valued
p-integrable function f defined on § such that for each D,

[fap= [W'(, Dyaw.
D 8
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fis called a gauge or a generalized J acobian for T (velative to W', u, u').

Remark. The above integrals are-those defined by Bartle, Dunford,
and Schwartz [2]. By IX, the integral on the right, which exists since
V'(-, D) is integrable, need only be taken over T'D. One can show that
gauges are uniquely defined in the sense of equality a. e. . The concepts
of essential absolute continuity, absolute continuity in the Banach sense,
and stropg absolute continuity in the Banach sense as described in [11],
and absolute continuity as defined in [12] are special cases of the above
definition.

In the sequel, we assume T is ACW’ and f is a gauge for T.

LeMMA 1. Let A’ be a p'-null set. Then f =0 a. e. yw on T714',

Proof. Let y* belong to 9*, the dual space of 9, and define

MB) = [faly*u), BeZ,
u

where y* 4 is now a secalar measure with total variation [y*u|. The tota

variation of 1 iz given by

(B) = f Ifldly*

Fix D and ¢>0; choose § >0 such that |y*u|(B)< 6 implies
|Al(B) < &. Pick a set B < D satisfying [A|(D) < 4|A(B)|+&. We can
find a disjoint sequence {D;} such that B < \JD; and |y* u|( UD;—E) < 6.
By IV, for each ¢ there exists a disjoint sequence {D;}72, such that
D~ D= U D;;. Thus M(ij Dy;)—A(B)] < e. Consequently,

7 >

D) < 42 [A(Ds)| + Be
—42{ J V¢ Doy’ )|+ 3
<4 [ 21V, Dylaly’ w1+

D)dly* w'| 4+ Bs.

<4 [7(,
§
Since ¢ was arbitrary, we conclude
M Jifldytu <4 [V, D)ay* ] =4Tf V'(, D)dly*
D 8’

The integrability of V'(-, 8) 1mp11es that for each positive integer »
there exists & 6, >0 such that | Bf V' (:y 8)du'| < 1/n whenever o' (B') < 8.
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If y* belongs to the unit sphere of 9* and o (B') < 6,, then
[V Ay Ei<e s fV' 8)ap'| < 4fn.
e

For each n choose an 0, = A’ snch that o' (0}) < 8,. Let 2, = 70,
= U D?, where the {D}}{2, are disjoint. By the under additivity
k2

of V' and (1), we have
Jifla s <4 3 [V, Dhaw'wi<a [V,
Z,

n @ X4
TD On

Thus if Z = Z,l,Zf Ifidly* ul = 0. Write B* =Z ~ {8:f(s) # 0};

then |y*u|(E*) = 0. The control measure a can be chosen so that
a(B) < sup ly* ul (B), ly*| <1, for each B([9], Cor. 4.9.3). Hence a(E*) = 0.
Sinee T™'4’ < Z, we conclude that f =0 a.e. z on T'4’.

TeEOREM 1. Assume that H' : 8’ — € is p'-measurable. Then H'o Tf
18 p-measurable. Let DeD. If H' W' (-, D) is p'-integrable and H'oTf is
u-integrable on D, then

(@) [H o Tfap = [H'W,
D 8

Proof. To prove the first part of the conclusion, use VI and construct
a B’-measurable function K’ such that K’ =H' a.e. p'. H'oTf is p-meas-
urable since K'oTf is u-measurable and K'oTf = H'oTf a. e. p by
lemma 1.

To establish (2), note that for ¥*<9*, (8, Z, Iy ul), (8, 2, w'u'l),
T,D,8',0' satisfy H1-H8 in [12]. By modifying the techniques used
in section 4 of [12], it can be shown that

(3) [HEoTfay*s) = [E'W(,
D 8

B)dly* w'| < 16/n-

Dyay'.

Dya(y*u).

In the course of deriving (3), lemma 1, property (iii) of W', and the
Lebesgue dominated convergenee theorem involving W' and V' are used;
we omit the lengthy details. (2) then follows from (3) and the Hahn-Banach
theorem.

3. The bilinear vector case. Assume that there exists a continuous
bilinear mapping from X x9P into 3, denoted by juxtaposition, such that

(#) if 2y = 0 for all <X, then y = 0.

‘We are now able to consider integrals of the form fH ‘du’, where H'
is X-valued. For definitions and theorems concerning bilinear integration
theory, see [1]. As in [1], we make the following assumption: there exist
non-negative finite measures § and B’ defined on X and X’ respectively
such that g(B) =0 (f'(E') -0) if and only if u(B) =0 (u'(E') - 0),
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where [ and 7’ denote the semi-variations, with respect to X, of u and 4'.
A set is p-null in this integration theory if it is contained in a set B,
where z(H) = 0. The following theorem gives sufficient conditions in
order that the transformation formula holds for this general integral.
TEEOREM 2. Fiz D in . Assume that H' : 8 — X is a p'-measurable
function such that H'W'(-, D) is p'-integrable and H'oTf ’is p-integrable
on D. If there exists a sequence of p -simple functions H,: 8 —X such thag
(i) Iim [ HpoTfdu = [ H'oTfdu,
b5 D
(iiy im [ H,W'(-, D)dy' =Sf HW (-, D)y,
& ;
then [ H'oTfdu= [ H'W'(-, D)dy'.
D &

Proof. Applying (#), one can show that «(H) = 0 (a'(F')=0)
if and only if (E) = 0 (8'(E') = 0). Hence, the null sets in the bilinear
vector integration theory and the null sets in the integration theory
used in section 2 coincide; thus lemma 1 and theorem 1 can be used to
ensure the measurability of the functions involved. If & denotes the
characteristic function of a set B', then by theorem 1 and the continuity
of the bilinear multiplication, it follows that for weX,

[at oTfdy = [aG'W'(-, D)du'.
D 8

Thus the transformation formula holds for u'-simple X-valued func-
tions. Consequently, conditions (i) and (ii) imply the conslusion of the
theorem.

Now we restrict our attention to the important case when u and u’
have finite total variation. This case is the one usually considered in
representation theory for operators. For this case set a = f = |u| and
@' = = |u'|. Afunction g: 8 — X is u-strongly integrable if ¢ is Bochner
integrable with respect to |u|. Note that a strongly integrable function
is integrable in Bartle’s sense.

TueorEM 3. Fiz D in D. Assume that H': 8 — % is o u'-measurable
function. If H'W'(-, D) is u'-strongly integrable and H'oTf is u-strongly
integrable on D, then

[BoTfau = [H'W (-, D)ay'.
D S

Proof. Since H' is measurable, we can construct a sequence of
w’-simple functions Hy: 8" X such mH, = H' a. e. 4’ and [Ha(s')|
< 2|H'(s)], 8 8’. Hence, UimH,W'(-,D) = H'W’(-, D) a. e. u and,
by lemma 1, im H,0Tf = H'oTf a. e. u. Moreover, |HjoTf] < 2|H' o Tf|
and. |H, W' (-, D) <2/H'W'(-, D)|. It can be shown that a Lebesgue
dominated convergence theorem holds for strongly integrable functions
([7], p. 136). By applying this result to the sequences {Hpo Tf} and
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{H,W'(-, D)}, we see that conditions (i) and (ii) of theorem 2 are satistied.
This in turn implies that H' satisfies the transformation formula.

Remarks. 1. Assume 4 and p' are complex-valued and that H': &'
— X is p'-measurable. By using inequality (1) in the proof of lemma 1,
it can be shown that if H'V'(-, D) is integrable, then H'oTf is u-integrable
on D. Reichelderfer and the author have recently shown that the inte-
grability of H'o Tf on D implies the integrability of H'W'(-, D). Examples
show that the integrability of H'W’(-, D) does not imply the integrability
of H'oTIf on D.

2. For applications to representation theory for operators defined
on Cy(8), where § is a locally compact Hausdorff space, the transfor-
mation formula can be derived in a topological setting described in [13].
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