

On Nikaidô's proof of the invariant mean-value theorem

bу

B. J. PETTIS (Chapel Hill)

Dedicated to Professor S. Mazur and Professor W. Orlicz

The proof [4] mentioned in the title is actually a proof of what might be called "almost a fixed-point theorem", in this case one that asserts that for a semigroup Φ of continuous affine maps in a compact convex set K there will be, under certain circumstances, some $\overline{\varphi}$ in Φ and some \overline{x} in K such that $\overline{\varphi}(\varphi(\overline{x})) = \overline{\varphi}(\overline{x})$ for every φ in Φ . Such theorems were established earlier by Peck [5] and Klee [3]; after Nikaidô, Cohen and Collins [2] were the first to observe that his proof established a theorem of the above sort. Here, using the same proof, we present a slightly more general version, Theorem 0 below [6], from which follow the above theorems as well as some others, including Kakutani's on equicontinuous groups.

Throughout, except in Theorem 0, K is a compact convex set in a real linear topological space E that is separated by its dual E^* , K^K is the set of all functions on K to K and has the product topology, Φ is a subsemigroup of K^K and has all its elements affine, and Ψ is the closure of Φ in K^K . We recall that under these circumstances Ψ is compact, has its elements affine, and as a set of maps in K has the same fixed points as Φ . If Φ is equicontinuous, then so is Ψ , and hence the elements of Ψ are continuous and affine, Ψ is a subsemigroup of K^K , and the maps $(\psi, x) \to \psi(x)$ and $(\psi, \psi') \to \psi(\psi')$ are continuous on $\Psi \times K$ to K and on $\Psi \times \Psi$ to Ψ ; in particular, Ψ is a compact topological subsemigroup of K^K .

THEOREM 1. If Φ is equicontinuous there exist $\overline{\psi}$ in Ψ and \overline{x} in K such that $\overline{\psi}(\overline{x}) = \overline{\psi}(\psi(\overline{x}))$ for every ψ in Ψ .

From this there follow these fixed point results.

COROLLARY 1. If Φ is equicontinuous and if given x in K, φ and φ' in Φ , and U a nucleus in E there is some φ'' in Φ such that $\varphi''\left(\varphi'\left(\varphi(x)\right)\right) - \varphi(x) \in U$ and $\varphi''\left(\varphi'\left(\varphi'(x)\right) - x \in U$, then Ψ has a fixed point.

Kakutani's theorem that Φ has a fixed point if it is an equicontinuous group follows immediately.

COROLLARY 2. If Φ is equicontinuous and if given x in K, φ and φ' in Φ , and U any nucleus in E there is some φ'' in Φ such that $\varphi(\varphi''(x)) = -\varphi'(\varphi(x)) \in U$, then Ψ has a fixed point.

Corollary 2 is a variant of the Markoff-Kakutani theorem; commutativity has been replaced by equicontinuity plus a weak form of commutativity. It implies I.2.13 of [1].

To obtain these from Theorem 1 we use the following, the proof of which is postponed to the end of this section:

Lemma. If Φ satisfies the hypotheses of Corollary 1 or of Corollary 2, then so does Ψ .

Thus under the conditions of Corollary 1 we know from Theorem 1 that there are \overline{x} and $\overline{\psi}$ such that $\overline{\psi}(\overline{x}) = \overline{\psi}(\psi(\overline{x}))$ for every ψ in \mathcal{Y} , and from the lemma that given any ψ in \mathcal{Y} and any nucleus U in E there is some ψ'' in \mathcal{Y} such that $\psi''(\overline{\psi}(\psi(\overline{x}))) - \psi(\overline{x}) \in U$ and $\psi''(\overline{\psi}(\overline{x})) - \overline{x} \in U$. Thus $\psi(\overline{x}) - \overline{x} \in U + U$, and so $\psi(\overline{x}) = \overline{x}$ for every ψ in \mathcal{Y} . For Corollary 2 an even simpler proof establishes that $\overline{\psi}(\overline{x})$ is a fixed point for \mathcal{Y} .

Theorem 1, in view of the remarks preceding it, will clearly result from the following

THEOREM 0. Let K be a compact convex set in a real linear topological space E having in its dual a subset K^* that separates points of K. Let Ψ be a semigroup of continuous affine maps of K into K and suppose Ψ has a compact topology such that $f(\psi(x))$ is, for each f in K^* , continuous on $\Psi \times K$. Then there exist $\overline{\psi}$ in Ψ and \overline{x} in K such that $\overline{\psi}(\overline{x}) = \overline{\psi}(\psi(\overline{x}))$ for every ψ in Ψ .

For each finite set γ in K^* and each finite set δ in Ψ let

$$A\left(\gamma,\,\delta\right)=\left\{\left(\overline{\psi},\,\overline{x}\right)\colon\, f\!\left(\overline{\psi}(\overline{x})\right)=f\!\left(\,\overline{\psi}\!\left(\psi\left(\overline{x}\right)\right)\right)\text{ for every }f\text{ in }\gamma\text{ and every }\psi\text{ in }\delta\right\}.$$

Since $\Psi \times K$ is compact and K^* separates K, it is enough to show that each $A(\gamma, \delta)$ is closed and non-void. But $A(\gamma, \delta)$ is closed since each ψ is continuous and since $f(\overline{\psi}(\overline{x}))$ is continuous in $(\overline{\psi}, \overline{x})$ for each f. To show that it is non-void suppose $\gamma = \{f_1, \ldots, f_m\}$ and $\delta = \{\psi_1, \ldots, \psi_n\}$. Let

$$\sigma = \frac{1}{n} \sum_{j=1}^{n} \psi_j;$$

then σ is continuous and affine in K and hence has a fixed point \overline{x} . Define T on Ψ to R^m by $T(\psi) = (f_1(\psi(\overline{x})), \ldots, f_m(\psi(\overline{x})))$; clearly, T is continuous.

Since

$$f_iig(\psi(\overline{x})ig) = f_iig(\psiig(\sigma(\overline{x})ig)ig) = f_iig(\psiig(rac{1}{n}\sum_{j=1}^n\psi_j(\overline{x})ig)ig) = rac{1}{n}\sum_{j=1}^nf_iig(\psi\psi_j(\overline{x})ig),$$

we have

$$T(\psi) = rac{1}{n} \sum_{j=1}^{n} T(\psi \psi_j).$$

The function $||T(\psi)||$, being continuous on compact Ψ , attains its maximum at some $\overline{\psi}$; then

$$\|T(\overline{\psi})\| = \left\|\frac{1}{n}\sum_{j=1}^n T(\overline{\psi}\psi_j)\right\| \leqslant \frac{1}{n}\sum_{j=1}^n \|T(\overline{\psi}\psi_j)\| \leqslant \frac{1}{n}\sum_{j=1}^n \|T(\overline{\psi})\|$$

and hence $T(\overline{\psi}) = T(\overline{\psi}\psi_j)$ for j = 1, ..., n. Thus $f_i(\overline{\psi}(\overline{x})) = f_i(\overline{\psi}\psi_j(\overline{x}))$ for all i, j and so $A(\gamma, \delta)$ is not void.

Reverting to the proof of the lemma, suppose Φ satisfies the hypotheses of Corollary 1. Then Ψ is equicontinuous; and given x in K, ψ and ψ' in Ψ , and any nucleus U in E, some ψ'' in Ψ must be found such that $\psi''(\psi'(\psi(x))) - \psi(x) \in U$ and $\psi''(\psi'(x)) - x \in U$. We may suppose U to be closed. Choose nets $\{\varphi_a\}$ and $\{\varphi'_a\}$ in Φ converging to ψ and ψ' in K^K . From the assumptions on Φ there is for each a some φ''_a in Φ such that $\varphi''_a(\varphi'_a(\varphi_a(x))) - \varphi_a(x) \in U$ and $\varphi''_a(\varphi'_a(x)) - x \in U$. Since Ψ is compact, the net $\{\varphi''_a\}$ clusters at some ψ'' in Ψ ; we may presume that $\{\varphi''_a\}$ converges to ψ'' . From the remarks preceding Theorem 1, Ψ is a topological semigroup; hence $\varphi''_a(\varphi_a(\varphi_a))$ converges to $\psi''(\psi'(\psi))$ and $\varphi''_a(\varphi_a)$ to $\psi''(\psi')$ in K^K ; thus $\varphi''_a(\varphi'_a(\varphi_a(x)))$ converges to $\psi''(\psi'(\psi(x)))$ and $\varphi''_a(\varphi'_a(x))$ to $\psi''(\psi'(x))$ in K, so that $\varphi''_a(\varphi'_a(\varphi_a(x))) - \varphi_a(x)$ converges to $\psi''(\psi'(\psi(x))) - \psi(x)$ and $\varphi''_a(\varphi'_a(x)) - x$ to $\psi''(\psi'(x)) - x$. Since U is closed, we have $\psi''(\psi'(\psi(x))) - \psi(x)$ in U and $\psi''(\psi'(x)) - x$ in U, as desired.

A similar proof covers the case of Corollary 2.

From Theorem 0 there also follow immediately earlier theorems due to Peck [5] and Klee (4.3,4.4, and 3.1 (d) of [3]) and the Cohen and Collins theorem (Theorem 2 of [2], and II.3.14 of [1]).

For other applications let S be a set and Φ a semigroup of transformations in S. Let E be a linear topological space of functions on S and for each x in E and each φ in Φ let $T_{\varphi}(x) = x(\varphi)$. Suppose E is a compact convex set in E such that $T_{\varphi}(E) \subset E$ for every φ in Φ . If there is a compact topology for $\mathscr{F} = \{T_{\varphi} \colon \varphi \text{ in } \Phi\}$ such that $(T, x) \to T(x)$ is continuous on

 $T \times K$ to K, then there are \overline{x} in K and $\overline{\varphi}$ in Φ such that $\overline{x}(\overline{\varphi}(s)) = \overline{x}(\varphi(\overline{\varphi}(s)))$ for every φ in Φ and every s in S. If, moreover, given any s, s' in S there are φ, φ' in Φ such that $\varphi(s) = \varphi'(s')$, then $\overline{x}(\overline{\varphi})$ is a constant element

More particularly, if S is compact regular and Φ is a semigroup of transformations in S such that Φ has a compact regular topology such that $(\varphi, s) \to \varphi(s)$ is continuous, and if F is a complete locally convex linear topological space and E is the space of continuous functions on Sto F topologized by uniform convergence, let $O_x = \{x(\varphi) \colon \varphi \text{ in } \emptyset\}$ for each x in E and K_x = the closed convex cover of O_x . Then for each x in E there exists y_x in K_x and φ_x in Φ such that $y_x(\varphi_x(s)) = y_x(\varphi(\varphi_x(s)))$ for all φ and s; if, moreover, given s, s' there are φ , φ' such that $\varphi(s)$ $= \varphi'(s')$, then for each x the function y_x is constant. For, the map $(\varphi, s) \to \varphi(s)$ is uniformly continuous and hence the map $(x, \varphi) \to x(\varphi)$ is continuous on $E \times \Phi$ to E. Clearly O_x is then compact for each xand so therefore is K_x since E is complete. Applying the preceding paragraph to K_x for each x yields the above conclusion [4].

References

- [1] J. F. Berglund and K. H. Hofmann, Compact semitopological semigroups and weakly almost periodic functions, Berlin 1967.
- [2] H. Cohen and H. S. Collins, Affine semigroups, Trans. Amer. Math. Soc. 93 (1959), p. 97-113.
- [3] V. L. Klee, Jr., Invariant extension of linear functionals, Pac. Jour. of Math. 4 (1954), p. 37-46.
- [4] H. Nikaidô, A proof of the invariant mean-value theorem on almost periodic functions, Proc. Amer. Math. Soc. 6 (1955), p. 361-363.
- [5] J. E. L. Peck, An ergodic theorem for a non-commutative semigroup of linear operators, ibidem 2 (1951), p. 414-421.
 - [6] B. J. Pettis, Abstract, Notices Amer. Math. Soc. 6 (1959), p. 282.

THE UNIVERSITY OF NORTH CAROLINA, CHAPEL HILL

Reçu par la Rédaction le 5. 7. 1968

STUDIA MATHEMATICA, T. XXXIII. (1969)

On equations with reflection

D. PRZEWORSKA-ROLEWICZ (Warszawa)

If an equation contains together with the unknown function x(t)the value x(-t), then it will be called an equation with reflection. For example, the differential equation

(1)
$$a_0x(t) + b_0x(-t) + a_1x'(t) + b_1x'(-t) = y(t)$$

is an equation with reflection.

Let us denote the reflection by S. Since $S^2 = I$, where I is identity operator, S is an involution. The differentiation operator D is anticommuting with S. Indeed,

$$(SDx)(t) = x'(-t), \quad (DSx)(t) = x(-t)' = -x'(-t) = (-SDx)(t).$$

Hence SD + DS = 0.

In this paper we shall consider a linear equation

$$(a_0I + b_0S)x + (a_1I + b_1S)Dx = y,$$

where S is an involution on a linear space X, D is a linear operator acting in X and anticommuting with S, and a_0, b_0, a_1, b_1 are scalars.

As examples we shall consider equation (1) and an integral equation of form (2).

1. Let X be a linear space (over complex scalars). Let S be an involution: $S^2 = I$ on X. Let

$$P^+ = \frac{1}{2}(I+S), \quad P^- = \frac{1}{2}(I-S).$$

The following properties of an involution, shown in [1] (see also [2]) will be used further:

 1° The operators P^{+} and P^{-} are disjoint projectors giving a partition

$$\begin{array}{ll} \text{(1.1)} \ \ P^+P^-=P^-P^+=0\,, & (P^+)^2=P^+\,, & (P^-)^2=P^-\,, & P^++P^-=I\\ \\ \text{Moreover,} \ \ P^+-P^-=S\,, \ SP^+=P^+\,, \ SP^-=-P^-\,. \end{array}$$