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Dedicated to Professor 8. Mazur
and Professor W. Orlicz

The proof [4] mentioned in the title is actually a proof of what
might be called “almost a fixed-point theorem?”, in this case one that
asserts that for a semigroup @ of continuous affine maps in a compact
convex set K there will be, under certain circumstances, some ¢ in @
and some % in K such that p(p(%)) = p(%) for every ¢ in @. Such the-
orems were established earlier by Peck [5] and Klee [3]; after Nikaido,
Cohen and Collins [2] were the first to observe that his proof established
2 theorem of the above sort. Here, using the same proof, we present
a slightly more general version, Theorem 0 below [6], from which follow
the above theorems as well as some others, including Kakutani’s on
equicontinuous groups.

Throughout, except in Theorem 0, K is a compact convex set in
a real linear topological space B that is separated by its dual B, KX
is the set of all functions on K to K and has the product topology, @ is
a subsemigroup of KX and has all. its elements affine, and ¥ is the closure
of @ in KX. We recall that under these circumstances ¥ is compact,
has its elements affine, and as a set of maps in K has the same fixed
points ag @. If @ is equicontinuous, then so is ¥, and hence the elements
of ¥ are continuous and affine, ¥ is a subsemigroup of K%, and the maps
(p, x) = p(x) and (y, ') > p(y’) are continuous on ¥xK to K and on
Yx ¥ to ¥; in particular, ¥ is a compact topological subsemigroup
of EX.

TaroreM 1. If @ is equicontinuous there exist win ¥ and Tin K
such that 3 (%) = p(y (@) for every v in ¥.

From this there follow these fixed point results.

COROLLARY 1. If @ is equicontinuous and if given x in K, @ and ¢’
in @, and U & nucleus in B there is some ¢'' in P such thai zp”(q:’(zp(w)))
—p(#)eU and ¢"|¢' (@) —w<U, then ¥ has a fized point.
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Kakutani’s theorem that @ has a fixed point if it is an equicontinuoug
group follows immediately.

COROLLARY 2. If @ is equicontinuous and if given @ in K, ¢ and ¢'
in @, and U any nucleus in E there is some @'’ in @ such that (p(qa"(m)) —
—¢' [p())eU, then ¥ has a fived point.

Corollary 2 is a variant of the Markoff-Kakutani theorem; com-
mutativity has been replaced by equicontinuity plus a weak form of
commutativity. It implies 1.2.13 of [1].

To obtain these from Theorem 1 we use the following, the proof
of which is postponed to the end of this section:

Levma. If O satisfies the hypotheses of Corollary 1 or of Corollary 2,
then so does W. )

Thus under the conditions of Corollary 1 we know from Theorem 1
that there are Z and v such that (%) = y(y(%)) for every v in ¥, and

from the lemma that given any v in ¥ and any nucleus U in & there is
some y” in ¥ such that v(9(p (3)))—v (@)U and 3" (p(&) —FeT.
Thus y(%)—Fe— U+ U, and 80 ¢(%) = 2 for every v in ¥. For Corollary 2
an even simpler proof establishes that (%) is a fixed point for V.

Theorem 1, in view of the remarks preceding it, will clearly result
from the following

TB:EORE.M 0. Let K be a compact convex set in a real linear topological
space B having in its dual a subset K* that separates points of K. Let ¥
be o semigroup of continuous affine maps of K into K and suppose ¥ has
@ compact topology such that f (y)(m) is, for each f in K*, continuous on
¥ x K. Then there ewist p in ¥ and % in K such that v (%)= B (%) (@) for
every y in V.

For each finite set y in K* and each finite sét & in ¥ let

Ay, 0) = {(@7 z): flp(@) =f(@(w(i))) for évery fin y and every v in 5}.

Since ¥ x K is compact and K* separates K, it is enough to show
that each 4(y,d) is closed and non-void. But A(y, ) is closed since
each y is continuous and since f(y(Z)) is continuous in (, %) for each f
CIEJotshow that it is non-void suppose y = {fy, ..., fu} and & = {p,, ..., yu}.

e .

=_Z'W7

" A

then o is continuous and affine in K and hence has a fixecl point Z. Define

T on ¥ to ™ by T(y) = (fi[p(@), ..., Tulp(@))); clearly, T is continuous.
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Since

ity @) = Alvlo@)) = ((ng(x))=%§fi(ww(i)),

we have

1 n
—;;‘T(ww)-

The funection ||T'(y)||, being continuous on compact ¥, attains its
maximum at some y; then

Il = ‘[—ZT ) [\ ZHT(#)% EHT ol

and hence T'(p) = T(W,-) for j=1,...,n. Thus f(p(@) = fi(pw@)
for all ¢,j and so A(y, d) is not void. .

Reverting to the proof of the lemma, suppose & satisfies the hypo-
theses of Corollary 1. Then ¥is equicontinuous; and given » in K,y and ¢’
in ¥, and any nuecleus U in B, some " in ¥ must be found such that
ey ( {zp(w))) p(#)eU and y" (v (2))—weU. We may suppose U to be
closed. Choose nets {p,} and {p,} in @ converging to 12 and ¢ in K.
From. the assumptions on @ there is for each o some ¢ in @ such that
e (alpal@) ))—-tpa(a;)eU and ¢, (pa(z))—@eU. Since ¥ is compact,
the net {p,} clusters at some y’’ in ¥; we may presume that. {9} con-
verges to »'’. From the remarks preceding Theorem 1, ¥ is & topologma,l
semigroup; hence @ (pa(p.)) converges to (v’ zp)) and ¢ (%) t0
v (9) in K¥; thus g} (pe(pa(2))) converges to v (v'(p(@))) and .(p.()
to 9" (¢ (z)) in K, so that ¢ ( PalPa (m)))—q;u(m) converges to ¢’ (1/)' (w(w))) -
—p(z) and g (pa(@))—2 to 9" (¥ (#))—s. Since U is closed, we have
'’ (1/)'(1/)(50)))——1/}(9}) in U and ¢ (¢ (#))—o in U, as desired.

A similar proof covers the case of Corollary 2.

From Theorem 0 there also follow immediately earlier theorems
due to Peck [5] and Klee (4.3,4.4, and 3.1 (d) of [3]) and the Coben and
Collins theorem (Theorem 2 of [2], and I1.3.14 of [1]).

Tor other applications let S be a set and @ a semigroup of transfor-
mations in S. Let E be a linear topological space of functions on 8 and
for each z in E and each ¢ in @ let T',(%) = #(p). Suppose K is a compach
convex set in B such that T, (K) = K for every ¢ in @. If there is a compact
topology for 7 = {T,: ¢ in &} such that (T, z) > T(z) is continuons on
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T x K to K, then there are Z in K and ¢ in @ such that Flp(s) == (ga(a;(g)))
for every ¢ in @ and every s in 8. If, moveover, given any §, s’ in. S there
are ¢, ¢ in @ such that ¢(s) = ¢'(s'), then Z(p) is a constant element
of K.

More particularly, if § is compact regular and @ is a semigroup of
transformations in § such that @ has a compact regular topology such
that (p, s) - @(s) is continuous, and i F is a complete locally convex
linear topological space and ¥ is the space of continuous functions on &
to F topologized by uniform convergence, let Op = {x(p): @ in @} for
each # in E and K, = the cloged convex cover of 0. Then for each gz
in F there exists 9, in K, and ¢, in & such that ym(rpgc (s)) :ym(q)((pm(s)))
for all ¢ and s; if, moreover, given s, s" there are ¢, @' such that ¢(s)
= ¢'(s'), then for each » the function y, is constant. For, the map
(¢, 8) = @(s) is uniformly continuous and hence the map (%, ) - x(p)
is continuous on Ex® to H. Clearly O, is then compact for each z
and so therefore is K, since B is complete. Applying the preceding
paragraph to K for each z yields the above conclusion [4].
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On equations with reflection
by

D. PRZEWORSKA-ROLEWICZ (Warszawa)

Tf an equation contains together with the unknown function (1)
the value #(—t), then it will be called an equation with reflection. For
example, the differential equation

(1) g0 (t) + bo@(— 1)+ 6,2’ () + by’ (—12) = ¥ (1)

is an equation with reflection.

Tet us denote the reflection by S. Since 82 = I, where I is identity
operator, § is an involution. The differentiation operator D is anticom-
muting with 8. Indeed,

(SD2) () = &' (—1), (DS@)(t) = &(—1) = —a'(—1) = (—8Da)(0).

Hence SD-DS = 0.
Tn this paper we shall consider a linear equation
(2) (@, I+boB)z+(a; I+ 5,8) Dx =g,

where § is an involution on a linear space X, D is a linear operator
acting in X and anticommuting with 8, and ag, by, 61, by are sealars.
As examples we shall consider equation (1) and an integral equation

of form (2).

1. Tet X be a linear space (over complex sealars). Let § be an in-
volution: 82 = I on X. Let

I—8).

o=

Pt :%(HS), P =

The following properties of an involution, shown in [1] (see also
[2]) will be used further:

1° The operators P* and P~ are disjoint projectors giving a partition
of unity:
(1.1) PP~ =P P* =0, (Pt =pr", (P R=P, Pr4P =1

Moreover, Pt —P~ = §, SP* =P+, 8P~ = —P".
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