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Introduction. In a recent paper [5] A. Pietsch and the present author
investigated the general properties of so called p-nuclear and p-integral
operators. These are natural generalizations to arbitrary 1<p < oo
of the classes of nuclear and integral operators, respectively, which were
introduced and studied by Grothendieck [4]. Among other things Grothen-
dieck proved that an integral operator between two Banach spaces E
and F is nuclear provided that one of the following four eonditions is
satisfied:

(i) B is reflexive;

(i) B has a separable dual;

(iif) F is reflexive;

(iv) F is separable and isomorphic to the dual of a Banach space.

Neither of conditions (iii) and (iv) is sufficient for the corresponding
statement for p-integral and p-nuclear operators to hold true. This is
ghown for example by the natural injection of I* into 2, which is 2-integral
([8], § 10) but not 2-nuclear; in fact, it is not even compact. The principal
aim of the present paper is to show that either of conditions (i) and (ii)
is sufficient in order that a p-integral mapping of ¥ into F be p-nuclear.
The first case is obtained as a corollary of the more general statement
(due to Grothendieck [4]in the case p = 1) that the composition of a weak-
ly compact linear operator and a p-integral operator is p-nuclear. The
proof of this fact depends on a formulation for arbitrary p (ef. also Chevet
[2]) of another result of Grothendieck [4], stating that the space of
nuclear operators of B into an L'-space can be identified with the cor-
responding space of B'-valued integrable functions. This extension makes
it algo possible to give a complete characterization of a p-nuclear operator
of an I”-space into an IL’-space, where 1/p+1/p’ = 1. The situation
turns out to be quite analogues to the case of Hilbert-Schmidt mappings
between L*-spaces. .

Throughout the paper, E and F will denote complex Banach spaces
with unit balls U and V, respectively. The corresponding weakly compact
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unit balls in the dual Banach spaces B’ and # will be denoted by U°
and V0. The letters X and Y are used for locally compact spaces, u and v
denote positive Radon measures on X and Y, and the spaces ILf(X)
= I%,1 < p < oo, of equivalence classes of complex-valued u-measurable
functions on X are defined in the usual way. The Banach space of (equi-
valence classes of) E-valued u-measurable funetions on X such that

([ Ir@IPas@)" < oo

will be denoted by ILL(X, E) or LL(H). We shall make no notational
distinction between an element f in an L”-space and a representing
function for f.

1. p-nuclear operators hetween L”-spaces. As in [5], §1, we denote
by N,(#, F) the set of all linear mappings 7' of & into F which can be
written in the form

1 . Tu = Z Uy Un >V,
s . 1
with

and

sup (Z Ko, o7 < oo

(> i) <

T <t
when 1 <p < oo and with the additional requirement |juy,| — 0, n — oo,
in the case p = oco. It turns out that ¥, (¥, F) is a linear space and in
fact a Banach space when - equipped with the norm

00

=nt (31" gy 5 57"
1 ' -

where the infimum is taken over all adequate representations (1) of 7.
The elements in N,(E, F) are called p-nuclear operators or operators of
type N,. Interchanging the roles of the sequences (uy)® and (v,)C one
obta,lns in the same way another Banach space N”(E FYy of operators,
"the norm being given by

N?(T) = infsu w, up P (S o).
V7(T) = Mg(Z Kuy undl”) (,; lonl?)

For p =1 the two classes N,(E, F) and N°(H, F) are equal and
coincide with the space of nuclear operators of E into F. The set L, (H, F)
of finite-dimensional linear mappings of B into ¥ is dense in all the spaces

Np(E, F) and N”(E, F). It is easy to see that an operator 7' of ‘rype N,
ha,s a fa.ctorxzatmn of the form

BE>2 178 p

icm°
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where ||P||
satisfying

<1, el <

1 and D is multiplication with s sequence .(1,);°

(f )" < Wp(T) e,
1

g >0 being given in advance. Smlarly, every TeN®(E,F) can be
written

BEr2p8yp
with P, @, D as above and

(5‘ 4P < N7(T) 4

This fact is used in the proof of the following lemma, which in the
case of operators of type IV, is econtained in [6], § 6, Lemma 7, and which
can be proved in a similar way in the case of N““ -operators.

Levva 1. Suppose B or F satisfies the metric approzimation condition
and thet T : B - F has finite-dimensional range. Then, for every e >0,
M

there exists a finite representation Tu = > (u, up>v, such that
. 1

M Y M . ,
n 7\ 1{’
(2 1) sup (3 1<oa 0 5 17)
N

Similarly, there ewists a finite representation Tu = Dy Tnd Yn
1

Ny (T)+e.

such that

sup 2 <y @) 2 )" < NP (1) +e.

<1
If (DeLff(X,E/), then the formula.

(2) (Tw) () = <u, D(@)> ae.

determines a bounded linear mapping T of F into I%(X). Grothendieck

[4] proved that this correspondence is an isometry between L) (') and

N.(B, L.). We shall prove the following extension of this result to arbitrary

1 <p < co (a similar generalization has been announced by Chevet [2]):
THEOREM 1. For 1 < p < oo we have natural embeddings

W(E,Lﬁ) < L;I‘)(E’) < NIJ(E7LI$:)!

each of norm <1 and such that elements T : B 1L and q)eL”(E') corres-
ponding 1o each other samsfy 1dent@ty (2)
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Proof. A linear operator 7' of E into L’,f with finite-dimensional
range has a finite representation of the form
M
Tu = 2 <~1f, Up> Uny

1

and it is easy to see that the function

M
Dp = 2 UnUn
T

in IZ(E') does not depend on the actual choice of representation of 7.
Hence the correspondence T — @p defines a linear mapping of L,(&, L})
into IZ(E'), and since

([ 120 (@)P ap@)” = (f ﬁf.,lﬁIZ(“ wyon () [ du (@)™

M

< sup (Z I<u, un>lp)1'p"(2fw o) du ()",

<

it follows from Lemma 1 that this mapping is of norm < 1if Ly(E, 1)
is considered as a subspace of N”(E, I}). We can extend it by continuity
to the whole of N”(B, 1)) without increasing its norm. Using the faet
that a convergent sequence in an I”-space contains a subsequence which
converges almost everywhere, one finds that, for each TeN"(H, Lf),

(Tu)(z) = <u, Op(z)> a.e., wuel.

This concludes the proof of the first half of the theorem.
A density argument shows that for the second inclusion it is enough
to prove that if @ is a step-function

m
= Y un(),
1

where y, are characteristic functions of disjoint integrable sets K,
then (2) defines a mapping 7 with

(3) Vo) < ([ 10 @I ()" = ( 3 Il (K) ™ -

However, if we write

m

D(@) = ) ((En) wn) (s () ™ () }jwn

1
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then T has a representation of the form

m

Tu= ' Cu, v
with 1
( 2 lenlP)” = Qj P ()} = ([ 10 )P s )™

and

(3 i, o)™ = ﬁy(ﬂnrf"’”lkf g(@)au(@))"”

(3 furel - Guraf

for all yeL” According to the definition of the norm in N, (B, IT) this
shows the desired inequality (3) and thus completes the proof of the
theorem.

In the same way one proves
THEOREM 2. For 1 < p < oo we have natural embeddings

Mo (I, Py <« IP(F) < N°(IX', F),

each of morm <1 and such that elements T: 1Y —F and ®<IP(F) corres-
ponding to each other satisfy

Tu = [ B(y)u(y)dvr(y).
Before stating the last theorem of this section we recall that a linear

mapping T : B — F is called absolutely p-summing (cf. [6]) if there exists
a constant ¢ such that for every finite sequence (u,)™ satisfying

M
(3 1€um, > "< ), e,
1

one has

M
(> 1wl <
1

The set of all such operators is a Banach space when provided with
the norm

Ay (T) = inf0.
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THEOREM 3. For linear operators T : INY) > I5X),1<p< oo,
the following conditions are equivalent:

(a) T is p-nuclear;

(b) T is absolutely p-summing;

(e) T can be written in the form

(Tu) (@) = [ g(@, y)u(y)dv(y)
() there exists a non-negative function heli,, such that |(Tw)(z)| < h(w)
a.e. for oll weI! with ([ Juf”d)™ <1.
Moreover

(4) V(D) = 45(T) = ([ [ 19 apin) " < ([ 47 u)

Proof. The equivalence of (a) and (e¢) follows immediately from The-
orem 1 and Theorem 2 by observing the familiar fact that L(X, IV (T))
is isometrically isomorphic to Ij,,(X x¥) (for a special case see [3,
¢h-III, p. 198]). Condition (c) implies (b); for if (c) is satisfied and (u,)
is any finite sequence of funections in I?" with )

with gelpy, (X XY);

o

M

DI, wd < [Py,

1

then
M M .
DTwir = [[ X[ 9te, nyun) () | dus(o)

<[ ([ \gt@, P as(y)) du(o) = [ [ g dudy.

To prove that (b) implies (¢) we use the fundamental fact (ef. [5],
§ 8) that the dual of N,(L¥, IE) via <8, T) = tr(ST) can be identified
with the space of absolutely p’-summing operators of Lﬁ into I?". There-
fore, if T is a given element in 4, (I%, I'); then, for any 8 e N, (L, If)
with & representation f(z,y) according to (c¢), we have the inequality

[t (T8)] < Ay (T) N (8) < Ay (T) ([ [ 1FPP dusan) ™.
This shows that there' exists a function g‘eLZ’;,A(YxX) such that
te(I8) = [ [f(w, 9)g(y, ©) du(@)ds (y).

Choosing in particular operators of the form Su = (u, w'dv, w' IV,
vell,, we obtain

' oy = te(T8) = [ [ (9)0(2)g(y, »)du (@) dv(y)
= [w @ an@) [ g(y, ©)o(@)dp(z),

e ©

icm
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whence
(To)() = [9(y, 2)0(2) du(a) a.e.
The implication (b) = (¢) follows from this by interchanging L

and I¥. In the course of the proof we have also obtained the equality
signs in formula (4). ‘

It is obvious that (c) = (d), and we complete the proof of the theorem
by showing that (d) = (b). Put

M = {ueli(X): lu(@) < hiz) a.e.}

and let Ly denote the linear hull of M. A Banach space structure is
introduced on Ly by considering M as the unit ball. If T satisfies (d),
then it has a factorization of the form

. T T I T
Y4 1 2 yoo D 3 rp
L = Ly~ I’;Lp.,‘ g I’hz).,‘ — Ly,

where T; =T, I is the identity and

) _
(T =@ MO FO
0, hiz)=0,

(Tyv) (@) = h(w)v(x).
However, by [6] the mapping I is absolutely p-summing with
A, <(f 12 au)”,

and since clearly [T4|| <1 (i =1,2,3) it follows that T is absolutely
p-summing and that the inequality in (4) is satisfied. The proof is finished.

2. Connection between p-integral and p-nuclear operators. A p-integral
operator T: E —~TF (1< p< oo) i3 characterized by the fact that it
has a factorization of the form

8500 S (U S F,

where |P|| <1, |Q]l <1 and I is the identity mapping (cf, [5], § 3). The
set I, (B, I) of all p-integral mappings of ¥ into ¥ is a linear space and
in fact a Banach space when provided with the norm

I,(T) = infu(U°)",
where the infimum is taken over all adequate factorizations. One has

(8) Np(B, F) = Ip(H, F)
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with I,(T) < N,(T), and this inclusion is in general a proper one. ]E_[owe.ver,
the following theorems will tell us that in certain important situations
we actnally have equality in (5). . .

TEEOREM 4. If 8 : B — F is weakly compact and T : B — @ 48 p-integral
(1 <p< o), then the composed mapping T8: E - F — G is p-nuclear
and N,(TS) < I,(T)II8]l-

Proof. Let s 0

FE oV S (V) > 6

be a factorization of T with [P| <1, @] <1 and u(V)" < Ip(T)+e,
where ¢ >0 is given in advance. We first consider the weakly compact
mapping R = PS of E into C(V?). If, for any ze V0, the Dirac measure
on V¢ with support in « is denoted by 4, then the identity

(Ru)(2) = CRu, 85> = <, B 62

shows that the function @ (#) = R’ 6, is continuous in the weak topology
o(E', E) and generates a representation of the form (2) (.)f R. We .shal}
prove that there exists a y-measurable funetion ¥ on V° with values in B
such that
(6) {uy P()y = {u, Pl2)> = (Bu)(@) ae.
for all u<E. For this purpose we note that, since B is a weakly compact
mapping, so is the transposed mapping R’ of R (cf.[3], ch. VI). In partic-
ular, @ takes its values in a o(E', B")-compact subset, and consequently
the weak integral [®(@)f(x)du(x) is in B for all feLy(V°) (ef. [1], §1).
Since

(u, [ B@f(@)ap(@)y = [ (u, D@D f(@)du(o) = Bu, f-u, web,
the operator R* defined by f — f & (z)f(@)du(w) is the composition of
the natural isometric embedding of LL(V°) into O(V°) and the weakly
compact mapping R', and hence R* is weakly compact. According to
a sharp form of the Dunford-Pettis theorem (cf. e.g. [1], § 2, Exercises)
it therefore exists a strongly u-measurable function ¥ on VO with values
in B’ such that |¥(s)] < ||R¥| everywhere in V° and

[o@i@adu@) = [P@)f@du@, felu(V").
Equality (6) follows immediately from this, and hence the construction
of ¥ is complete.
Applying the second inclusion in Theorem 1 we now obtain that
IR:E - L5(V?) is p-nuclear with
Ny (IB) < ([ 1¥(@)IP dus ()

/o

< w(V°)Psup ¥ (@)
zep?

< {Ip(D)+ IB*|| < (Lo (T)+ ) I1S1-

@ ©
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Hence, by an easily verified property of p-nuclear operators,
T8eN, (¥, ) and

N (T8) < (In(T)+£) 18]

Since & >0 is arbitrary, this concludes the proof of the theorem,

COROLLARY 1. If B is reflemive, then, for 1 <p<oo, Ny(B,F)
= I,(B, F) with equality of the corresponding norms.

THEOREM 5. If B has a strongly separable dual E', then, for 1 < p < oo,
Np(B, F) = I,(B, F) with equality of the corresponding norms.

Proot. If Tel,(E,F), let B> O(U%) > I2(0% 2 F be a facto-
rization of 7' with [Pl <1, Q| <1 and p(U°)"" < I,(T)+¢. We have

(Pu)(@) = (Pu, &) = <u, P &), wel",

and as in the proof of the preceding theorem we are through if we can
prove that @(z) = P’ 4§, is strongly p-measurable and satisfies || ()| < 1.
However, since B’ is strongly separable, for each %' in the unit ball of B’
we can find a sequence u, e U such that (u,, > — (u”’, w’> for all 4 <F'.
Hence the sequence consisting of the continuous functions (u,, @ ()>
converges pointwise to {u'’, ®(x)), proving that (u’’, & () is p-measur-
able for all 4" <H". Using once more the separability of B we conclude
that ®(z) is strongly u-measurable (cf. [1], §1). Since obviously

1D ()] =‘§[1|1£1|(Pu)(w)l <1,

the proof is finighed.

‘We conclude the paper by indicating a couple of applications to the
general theory of I,-operators. It was proved in [5], § 7, that the compo-
sition of two operators S and T, one of which is p-integral and the other
one absolutely g-summing, is a mapping of type I,., where

1 (1 1
(M) ——-=mm(—+—-,1).
o P g

Using Theorem 4 and the methods of proof in [5] one immediately
finds the sharper result that 7'S is in fact an r-nuclear operator provided
that 7 is defined by (7) and 1 < p, ¢ < co. Similarly one proves using
Corollary 1 and Theorem 5 that, if # is reflexive or B’ strongly separable,
then every absolutely p-summing operator of B into F is quasi-p-nuclear
and hence in particular compact (ef. [5], §4).
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Tdeals in group algebras *
by

PASQUALE PORCELLI and H. 8. COLLINS (Baton Rouge)

Throughout this paper & shall denote a locally compact abelian
group. The ideal strueture of L, (@) is still not fully known. For example,
at a recent international symposium on functional analysis held at Sopot,
Poland, the following questions were asked: (i) are there maximal non-
closed ideals in L,(G) and (ii) what type of prime ideals are in IL,(6)?
The purpose of this paper is to answer the afore mentioned gquestions.
The crux of the matter lies in the following theorem on Banach alge-
bras:

TueoREM 1. Let R be a commutative Banach algebra with bounded
approvimate identity and continuous involuiion. Then every maximal ideal
of B is regular and, consequently, closed.

Proof. In as much as R has non-regular maximal ideals if, and only
it R __",:&R (c. [3], p. 87-88), we shall assume R* « ¥ < R, M a non-
regular maximal ideal. Hence, there exists #¢R— R® such that M-+ {ax}
= R (cf. [3]). Define f such that f(m) = 0, meM, and f(az) = a. fis
a linear funetional and, in fact, is positive since f(z*z) = 0, for o weM
for every . Varopoulos [5] has proved that f is continuous under the
hypothesis on R. Hence, if {¢,} denotes the approximate identity, then
flz) = lim f(e.@) = 0 since e,xeM; i.e. f= 0. This contradiction estab-

lishes Theorem 1.

COROLLARY 1. Every magimal ideal of L,(G) is regular and, therefore,
closed.

Proof. L,(@) has the properties described above for the ring E.

Remark. We could have proved the Corollary by using a result
of Hewitts [2] which shows (IL;(&)) = L,(G) and applying the results
cited in [3] (cf. [3], . 96).

We shall now study the prime ideals of I,(@). Corollary 1 allows
us to use spectral synthesis methods in such a study.
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