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Tdeals in group algebras *
by

PASQUALE PORCELLI and H. 8. COLLINS (Baton Rouge)

Throughout this paper & shall denote a locally compact abelian
group. The ideal strueture of L, (@) is still not fully known. For example,
at a recent international symposium on functional analysis held at Sopot,
Poland, the following questions were asked: (i) are there maximal non-
closed ideals in L,(G) and (ii) what type of prime ideals are in IL,(6)?
The purpose of this paper is to answer the afore mentioned gquestions.
The crux of the matter lies in the following theorem on Banach alge-
bras:

TueoREM 1. Let R be a commutative Banach algebra with bounded
approvimate identity and continuous involuiion. Then every maximal ideal
of B is regular and, consequently, closed.

Proof. In as much as R has non-regular maximal ideals if, and only
it R __",:&R (c. [3], p. 87-88), we shall assume R* « ¥ < R, M a non-
regular maximal ideal. Hence, there exists #¢R— R® such that M-+ {ax}
= R (cf. [3]). Define f such that f(m) = 0, meM, and f(az) = a. fis
a linear funetional and, in fact, is positive since f(z*z) = 0, for o weM
for every . Varopoulos [5] has proved that f is continuous under the
hypothesis on R. Hence, if {¢,} denotes the approximate identity, then
flz) = lim f(e.@) = 0 since e,xeM; i.e. f= 0. This contradiction estab-

lishes Theorem 1.

COROLLARY 1. Every magimal ideal of L,(G) is regular and, therefore,
closed.

Proof. L,(@) has the properties described above for the ring E.

Remark. We could have proved the Corollary by using a result
of Hewitts [2] which shows (IL;(&)) = L,(G) and applying the results
cited in [3] (cf. [3], . 96).

We shall now study the prime ideals of I,(@). Corollary 1 allows
us to use spectral synthesis methods in such a study.

* Research supported by AFOSR grant number AF 49 (638)-1426.
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LEMMA 1. If T is an ideal in Ly (@) such that I is contained in ewactly
one mawimal ideal, say M, then I = M.

Proof. Suppose @ denotes the dual group of G and y the character
corresponding to M. Hence, I is annlhllated by y and by hypothesis
no other character annihilates I. Hence a(l) = {p|peLly(G): Ig=0
consists of scalar multiples of y (cf. [4], D. 185) Hence, a(l) = a(M)
and, therefore, I = M.

Leyuuma 2. If a prime ideal I of Ly (G) is contained in & maximal ideal,
then I is coniained in only one maximal ideal.

Proof. Suppose M; (i =1, 2) are maximal ideals such that I < M,
(4=1,2). Let ;qeG correspond to M;, W; be an open neighborhood
of y; inéwﬂ:h compact closure such that y; ¢ W, for ¢ +# j 5 and Wy~ Wy=0
There exist f;e L, () such that the Gelfond transform f; has the pl:o;perty
that fi(ys) =1 and fi(y) = 0 for y ¢W; (cf. [4], p. 49). Therefore, fif, =0
0 that fy-fo =0, where f,-f; denotes convolution multiplication.
Hence fi-foel. Since f,¢M{ and f, ¢M,, this contradicts I < M,
and I < M,.

Lemma 3. If I is an 'Ldeal such that I is contained in mo mamimal
fﬁdewl then I = L;(@).

Proof. I I S I;(¢), then by the general Tauberian theorem, I
would be contamed in at least one maximal regular ideal.

LumMA 4. Let I be an ideal in L, (G) such that I is contained in no
mawimal ideal. If M is a mazimal ideal of L\(G) and J = I ~ M, then
J =M.

Proof. Suppose J & M, heM, and peL, such that [hp #0
and [kp = 0 for keJ, where the integration is with respect to Haar
measure.. Hence, [(f-h)g =0 for feI where f-h denotes convolution
multiplication, so by Lemma 3, [(fh)e =0 for fel(G). I {e}
denotes a bounded approximate identity for I;(@), then [hp =
llmf(eﬂl Yo = 0.

THEOREM 2. If I is a proper prime ideal in L;(G), then I is a mamimal
ideal if, and only if, I is closed.

Proof, In view of Corollary 1, if I is maximal, I is closed. Suppose
now I is.prime and closed. Hence, if I is in no maximal ideal, then by
Lemma 3, I = L, (G). Therefore, there exists a maximal ideal M containing
I and by Lemmas 2 and 1, I=M.

We shall continue to denote the dual of @ by &

THBOREM 3. IL,(G) contains a non-closed pmme ideal if, and only if,
G contains am infinite set.

icm°®
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Proof. Suppose & is noti compact. Set I, = {f|feL,(G) and }” has
compact support on G} I, is an ideal in L,(G). Pick h ;'L) and set
= {h, }*,...}, where 4" is h convoluted with A"~'. H is multiplicative
(a semigroup in Iy (¢)) and I, ~ H = @. Hence, there ig an ideal I such
that I, =1, I ~ H=@, I is maximal with respect to containing I,
and missing H. Hence, I is prime (fﬁ-‘ [1], p. 6). Suppose M, is a maximal
ideal in L, (&) corresponding to y,e@. Construct f, and W, as in the proof
of Lemma 2, so that fiel, = I and f;¢M,. Hence I is in no maximal
ideal and thus by Lemma 3 is not closed.

Suppose now @ is compact. Pick y, G (i=1,2,...) and y, @ such
that y, #'yn (n=1,2,...) and {y,}, has y, a8 a cluster point. Let
YneWy < @ such that W, is an open set with compa,ct closure and y, ¢Wn.
Let hyeL (@) such that 0 <y, <1, T (yn) = 1, T =0 off W, (ef. [4],
p. 49). Set b= 2(21"[1—}—][7&”[[ lh,,, H={h, h‘ .}, B'=h-h,"' and

= {f|feLy (@) and f vanishes on some neighborhood of y,}. We now
obtain & prime ideal I as before and note I < M,, where M, is the maximal
ideal corresponding to the character y,. But hel and heM, so by Lemma 2
and Theorem 2, I is not closed.

The only if is of course self evident. If G is finite, @ is finite and L,(G)
is algebraically isomorphic to C(@).

THEOREM 4. Hach prime ideal of L, (@) is contained in a unique maximal
ideal if, and only if, G is a discrete group.

Proof. If @ iz discrete, then L,(@) has an identity; so if I is prime
ideal, then I is contained in a maximal ideal and, by Lemma 2, the maximal
ideal is uniquely determined by I. To prove the only if part, suppose &
is not discrete. Then G is not compact and the prime ideal constructed
in the first part of the proof Theorem 3 is contained in no maximal ideal.

COROLLARY 4. Each prime ideal in L,(G) is maximal if, and only
if, @ is a finite group.

Hence, we have three possible types of prime ideals in L, (G):

(1) closed prime ideals; i.e., maximal regular;

(2) non-closed prime ideals having the property that each such
ideal is contained in a unique maximal; and

(8) non-closed prime ideals I such that I = L;(@).

For finite groups only the first type exists. For infinite discrete
groups the first two types co-exist. For infinite non-discrete groups all
three types co-exist.

Added in proof. The fact that (L,(@))* = L,(G) was first proved by
P. J. Cohen (cf. [2] for a reference to Cohen’s paper). Hence, Corollary 1
follows from Cohen’s result and the results referred to in [3].
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In this paper we will consider products of the generalised functions
(2+£i0)" which are defined for integer values of n by

(#+130)" = o™
for n =0,1,2,... and

im(—1)" 50—

(2410)™" =~ im

for n =1,2,..., see [1]. It follows immediately that

_d% (-£130)" = n (@ i0)" "
for n =0, 4+1, +2,...
First of all if », n > 0 we obviously have
(@440)" (@£ d0)" = (w£00)"""
and we have

(@ 80)" (@£ 10)~" = & {m—ri im(—1)° 5(7_1)}

(r—1)!
ey T ey
P for n >
a7+ —-—'(:j(%_jir)! o1 for r >n
= (@30

Now let us consider the square of (x4 40)~'. Formally, we have

(#+i0)" (@£10)" = (7' F ind)? = {(z ') — " &} F 2inda™".
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