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Now, we choose M such that M |%|ei:|A4l] >1. Hence, by (4.3),
[f(es)l > 1, and, by (4.2),
1
Jout [Ael] = [tal|as: [Al) < —.
|ass | = Itz 1l | <

This implies, by definition of |o;: |4;]| in (3.1) that

: 1 yn 1 -
Jag] < —IZ;'T, Jaa [ 144 §|'A—'Ij/77y nzl,
T
ie.
1
(4.4) laan M 14 < A (——)
144

Since |4;] — oo, we can assume that [4;] > 1 for all <. Then (4.4) gives
that |am|"" 14 <1, ie. |aw'" <1/|%] for each n>1. Thus we have

1yn

latgo] < - | <2 >1
ol <— a; — > 1.
0 MLJ b3 ‘mi =~ Mtl ) n

Therefore, by definition of |a;] in (2.2), |a;] < 1/|4;]. But 1/} -0
a8 4 — oo. Therefore |a;] -0 as ¢ - oco. On the other hand, |f(e;)| > 1,
i.e. f(a) is not continuous on § in the topology of K (). This proves the
result.

The author is indebted to the referee for correcting an error in an
earlier version of the paper and for pointing out that Theorem 3.2 is
equivalent to Theorem 3.1 of [5].
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An I'-algebra for algebraically irreducible semigroups *
by

JOHN G. BERGMAN and NEAL J. ROTHMAN (Urbana, Il.)

1.1. Introduction. This paper i another chapter in the theory of
I'-algebras of linearly quasi-ordered semigroups. Algebraically irreducible
commutative semigroups are known to be a special case of linearly quasi-
ordered semigroups, but the structure of the semigroup over an idem-
potent are in the decomposition space §/# is more amenable for the
algebraically irreducible semigroups (see Theorem 1.3). Adapting the work
of Lardy [4] on L'(a,d), where (a,.b) is an idempotent commutative
semigroup and using Lebesgue measure -on (e, b) we introduce a. measure
M on the algebraically irreducible semigroups § for which §/% is an
idempotent semigroup. We show that I8, M) is semisimple and that
the multiplicative linear functionals (maximal ideal space) of this algebra
is in one-to-one correspondence with the measurable semichardcters
on 8. We conclude the paper with some remarks as to the extension of the
results here to a wider class of linearly quasi-ordered semigroups. Our
work here was motivated by Lardy [4] and the remarks in Rothman [7]
about assigning measure zero to idempotent ares in §/%. The methods
of [6] and [7] are used. While the notation here is different, it is clear
that it is in agreement with that of [6] and [7] when passing from fune-
tions in L'(S, M) to the corresponding measures in M (8):

1.2. Definitions and basic theorems. In what follows, a semigroup S
is a Hausdorff topological space together with a continuous associative
multiplieation. We shall use 1 to denote the identity element, K to denote
the minimal ideal (which exists in § is compact [9]), and H to denote the
maximal subgroup of § with identity 1. ‘

A compact connected semigroup § is algebraically irreducible about
B < S it § contains no proper closed connected subsemigroup containing B.
In particular, a compact connected abelian semigroup with an identity
element, 1, algebraically irreducible about K o H will be called an A-T
semigroup [5]. We use the left equivalence of Green [2] defined for S
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by # = y(%) if and only if {2} v Sz = {y} » Sy, and L, to denote the
equivalence class of all p such that p = (). It is known that for §
compact and normal, the quotient space, § modulo 2, is again a compact
semigroup which we shall denote by §’, and that the canonical mapping
¢: § — 8 is a continuous homomorphism. It is proved in [5] that &’
is a standard thread if § is an A-I semigroup.

We make frequent use of the following canonical representation
theorem:

TueoREM 1.3 [5]. Let § be an A-I semigroup. If S’ consists entirely
of idempotent elements, then there is an arc subsemigroup P in S such that
@lp 15 an isomorphism onto §', and S—K is the union of the orbits of the
elements of P under action by H.

A semicharacter on a semigroup S is a bounded complex-valued
function v satisfying

7 # 0 and v(ab) = z(a)7r(d) for all a, bel.

Let (8, m) be a semigroup’ with a measure m. If f, geL*(S, m), we
will write h = f*g if and only if there exists an element k<L' (S, m) such
that, for every keL™(8, m), we have

[F@h@am(@) = [[f(@)9)k@y)dm(z)dn(y).
s S8 .

The fanetion 4 is referred to as the conwvolution of f and g, and a measure
m on a semigroup will be called admissible if f, geL* (S, m) imply that
F*geL*(8, m) and that [|f+gly < |f]l:/gll.- A non-negative regular Borel
measure m on S will be termed guasi-invariant if for every Borel set B
in 8 and xS we have m(2E) > m(E). We note that the measures fdm
and gdm are in M(S), the space of bounded complex regular Borel
measures on § if § is locally compact, and that the convolution defined
here is that of the convolution of measures, i.e. for », ue M(S),

() (f) = [[Floy)u(da)v(dy) for f<Cy(S).

We consider only the class of A-I semigroups for which §’ is an
idempotent arc. The techniques which we employ can be used in the cage
where §' is a unit thread, but the resulting measure is quasi-invariant
and the methods developed in [6] and [7] are directly applicable.

2.1. Existence of a measure M for 8. In this section we consider
an A-T semigroup § for which §’ is an idempotent arc. From Theorem 1.3
iti can be seen that S\ K is the union of orbits of the elements of P, = P\{0}
(where P is an isomorphic pre-image of §') under action by H. For zeP,
we let T;: H — L, denote the multiplication map from the group at the
identity onto the orbits L, = Hz. The orbits themselves are compact
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groups and we use u; to denote the normalized Haar measure on the orbit
L. The normalized invariant measure on H will be denoted by #, and
A will denote Lebesgue measure on P,. In addition, we use S\ 4 to denote
the complement of the set 4 in S, and we use x4 (t) to denote the charae-
teristic function of the set 4.

ProposITION 2.1. Let 8 be an A-I- semigroup with 8' an idempotent
arc and define the function Jg(x): Py - R for B = § by
Iu(@) = po(B ~ Ly).
If M(E)= f{ JIr(2)dA(x), where 1 is Lebesque measure for the additive
reals, then M is a measure on the Borel sets of S\K.

Proof. The proof that M is a measure is a routine exercise once it
has been shown that the integral of Jz(#) exists. The easiest way to prove
the existence of this integral is to define the measure in another way.

Let #:Hx(0,1] - 8\K by =(h,®) = he and for B < S\E let

M(B) = (ux2){wH(B) = [ a1y (08 x2) (1)
= [ [ 2@ (b, @) du (k)@ (e)
= J([ 7 () dps () A ()
= [(#(m" (B ~ L) ar(@).

But 7zz' = T;* and since L, = H/|T;"' (), from the theorems in [3]
on quotient space measures we have

pl7a (B~ L)) = po(E ~ Ly).
Thus we infer that
M(B) = [(4a(B L)) dh(o) = [JTz(2)dA(0) = M (B),
P Py

[}
and hence M (H) exists for each Borel set F < S\K.
Remark. There is no hope of finding a quasi-invariant measure
on S\K sgince, for any interval F = (a, b) < P,, we have zE = {2} for
any zePy, < a.

2.2. The admissibility of M. A careful look at the convolution of
measures absolutely continuous with respect to a given measure shows
that the following lemma is exactly what is required to make the con-
volution absolutely continuous with respect to the fixed measure:

LeMmA 2.2. Let 8 be an A-I semigroup with 8' an idempotent thread
and M the measure of Proposition 2.1. Let yg(t) = 0 a.e. (M) for te8. Then
25 (8e8) = 0 a.e. (M) as a fundtion of ¢ for fixwed s, for almost all s,eS.
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Proof. Since F is a set of measure zero in 8, it follows from the
definition of M that the set .

= {®: xePy, piz(Le ~ B) # 0}

must be a set of A-measure zero and hence we can. ignore any s, in the
orbit of such an #. This leaves us with two cases to consider.

Case 1. Suppose that s,< ¢ and teL, (a-fixed orbit) is such that
(sed) = 1. TE Ay = {t:teLy, zalsyt) = 1}, then s, (4,) = 0.

For, let s, = zhy, where zeP, and hyeH, and let Tyey: Ly - L,. We
bave sody SF ~ L, since yp(set)=1 for ted,, thus 4, T,,so(L, ~ E)
and for simplicity we bueﬂy adopt the notation B, = L, ~ .

Then #h,teB, = 2t<hi*(B,), hence 4, < Ty (h1 (Bz)), where T,
I, = L. Now, however, u,(B,) = pa(h( z)) by invariance of u, on L,
and since T;! = Ty 0Ty, we have :

pa(Bo) = s (W7 (B2) = w (T (T X(By)
= 4 (T o T3 (b (By))
= ﬂ(T‘l_l-l(-A )) = py(4y).
But p,(B,) =0, whence u,(4,) = 0.
Case 2. Suppose ¢ < s, and s, = 2, k. Note that if ¢ = 2,h,, then
Sot = hyly2 2y = hihoze = Iyt - Now yg(set) = xz(hyt) =1 if and only
if tehy (B ~ L,), but u, (B ~ L;,) = 0 by assumption so that by transla-

tion invariance we bave u,(hi* (B ~ L)) = 0. Hence the set of tcL,
for which yz(set) = 1 is a set of measure zero.

ProrosITION 2.3. If 8 is an A-I semigroup with 8' an idempotent
thread and M the measure of Proposition 2.1, then M is admissible.

Proof. (a) Suppose f, ge L' (S, M) and F is a measurable set in S\K.
Define »(Z) as follows:

»(B) = Sf (f*9) (1) x=(t) M (B)

[

= Sf F(8)g(s) xm(st)dM (s) A M (1).
8

Now in particular suppose M (E) = 0, so that xz(t) = 0 a.e. (M).
By Lemma 2.2 the function yz(st) =0 a.e. (M) as a function of ¢
for almost all s, whence ‘ ‘

»(B) = [g(s) ([ zm(st) AU (t)) D (5) = 0.

Moreover, by the Lebesgue Dominated Convergence Theorem and the
corollary to Theorem 6 in Chapter II, Section 9 of [1], we infer that »
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is countably additive, and hence a measure. But then, since » < M, the
Radon Nikodym Theorem implies the existence of a function heL'(S, M)
with
v(B) = [1(s)yz(s)dM (s)
8

and we extend this to all simple functions. Thus for k<L®(8, M) we have
JJ9WrmaM @ = [kHaM (),

and it is this & which we identify with f*g.

(b) To show that [|f*gll; < lfl/lgll,, we embed L' isometrically into
its second dual by means of the usual mapping f - f** (where feI', pe L™
imply f**(¢) = ¢(f)), and caleulate

sup|<f*g, k.
keLoo
<1

It is sufficient to consider elements % in L which are linear combi-

nations of characteristic functions of sets of positive measure. But then

K 2g, W1 = | [ [ £(2)g(0) b(oy) 3M (@) AL ()
< [[1f@)1g(y) k(ey)| 4M (y) AM ()
< [11@)][[ 19 R(oy) aM (y)]aM (@)
< gl @)l [ 1F(2)18M ()

< gl 15l Pz () o -

But for the class of functions keL® which we are considering it is
true that : .
1oz (9o < B (I < 1,
and hence

I glle < Ifllligllz.-

Remark. In [4], where § = §’ = idempotent interval, the symbol
<, b) is used to denote the function on §x§ defined for a, beS by

1 ifae<b,
‘ 0 ita>b.

With this notation, if f is any function on 8, it is true that
(8.2) foy) = <o, yOfy)+ <y, wf(®). -

Tf } denotes the Lebesgue measure of the additive reals and f, g
I8, 4), it is shown in [4] that f(*')geL’, where
T

@, by =

(f(*)9) (@) = f(@) [ 9(¥)ary)+9(@) [f@)dry)  ae.
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LeMMA 2.4. The convolution defined in this paper for 8 an A-I semi-

group with 8" an idempotent thread agrees with the convolution (*') defined -

in [4] for the special case H = {1}.
Proof. In this special case M = 1, so that the convolutions agree if

3.3)  [(f@ [ 9@ary)+g() [ Fly)ary)) k(@) dr)

= [ [£(2)g(y) k(zy) da(z) dA(y)

for an arbitrary keL®(8, 4); that is, {f(*)g, k) = {f*¢, k). However,
by using (3.2) above we have

[ @) g(3) k(2y) da(x)da(y)
= [[1@9w) k)<, yydr@)arty) + [ [F(@)g@) k@) <y, o5 dr@)di(y).

But then we have

JI1@a@k)y, ayar@aiw) = [f@)k@)(f 94)<y, 2> @) i)

= Sf f@)k@)( [ 9(v)dr(y))aa ()

a

. = 1-st term of Lh.s. of (3.3).
Similarly, the term ¢

[ @ 9@) k)<, > dr(@)dA(y)

can be shown to equal the remaining term in the Lh.s. of (3.3). Thus
F(*¥)g, B> = (f+*g, k) for all ke L™ and hence as functions on 8, we have

F(*)g = fxg ae (1).

2.3. The measurable dual. We shall now discuss the bounded meas-
urable semicharacters on §. Of crucial importance in what follows is the
fact that if 7 is measurable on (8§, M ), then the definition of M implies
that 7|z is measurable with respect to u; for almost all . But I, is a com-
pact group, thus if 7| z, is measurable on I, it is also continuous on L.
From this and the idempotent nature of P, it follows that if v| L, &0
fm; some z,eP,, then 7|z, ., 18 continuous on I, for all y > x, and, moreoover,
7 15 a continuous funection of S\ Sz,.

) THEOREM 2.5. If 8 is an 4-T semigroup for which §' is am idempotent
interval and S* denotes the bounded measurable semicharacters on S, then

8" =K'~ Y, (Z[a:,l]XL;)}-
zePy

Algebraically irreducible semigroups 263

Proof. Since in the terminology of [8], K is a generating prime ideal
we know that 8% = K*v 87, where S} = {r: 7e8%, v|x = 0} By our
preliminary remarks of this section, if zeS;, then 7lz, is continuous on
almost every orbit L,. Now z(x) = 0 or 1 for all z<P,. Thus if = = 0,
then there exists y <P, such that v(y) = 1. By continuity on S\ 8y, and
in particular on P,\P,y, we have 7lp, =1 for all z >y. Let x, denote
the inf{y: y Py, z(y) = 1}; it follows that 7z, is a non-zero element
of (L,)* for all ¥ > x, and T]L,, = 0 for all ¥y < z,. By the continuity of =
on S\8z, we can define r]Lmoe(LIo)*. From this and the fact that the
non-zero values of v on any orbit L, uniquely determine the values of =
for all s > 2, we can identify v with a semicharacter of the form x 11X g,
where geL:O. Then for any s, = k2,8, we have

0 i @y < @,
(X[xo,u X 0)(8) =

o(@ohy) if @ = .
Certainly every such function is a semicharacter which is continuous
almost everywhere, whence measurable, so that

S =U {X,1y X (L)'}
TPy

3.1. Maximal ideals and semicharacters. In this section we shall
study the relationships hetween the measurable dual of semigroup § and
Hom (L*(8, M), C).

Definition 3.1. Let § be an A-I semigroup with 8’ an idempotent
thread. If feL'(S, M) with Suppf < Sz, and #,eS with #, > x,, then
f*i, is that element heL'(S, M) for which

[ £ ) k(tyu) @M (u) = [ h(u)k(u)aM (u)

for all keL®(8, M).

LeMMA 3.2. The function f*3, defined above ewists whenever 1,e 8\ 8z,
where Supp f < Sx,.

Proof. Given f,ef8,feL*(S, M) and keL™(8) we can define the
linear functional Ly, on L™ as follows: .

Ly (R) = [ f(0)R(tow) M (w).

If, in particular,. % = yp with M (E) =0, then for u <1, we have
4z (l,%) = 0a.e. (M) by Lemma 2.2. On the other hand, since Suppf = 8%,,
for u > t, we have f(u) = 0. Hence Ly; (yz) = 0 and again by the Radon-
Nikodym theorem, as in Proposition 2.3, there exists a unique he I} (8, M)
which we identify as f*f,.
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Lreyma 3.3. Let S be an A-1 éemigroup with 8" an idempotent thread.
If 8o, %,e8 and feL'(8, M) with Supp f < Suy, @0 < So, and 2y < 1y, then

(F*30)* (f*E0) = F*(f*80%0).
Proof. Let % be any elemert in L®(8, M). Then we have

Pl (f 2y By = [ ((F*50)*(F#0) (5) k() AL (s)
= [ [ (F*50) (8)(F*E) (1) e (s1) A (s) AL (2)
= [ (5)(s) ([ FORCtast) M () A DL (5)
= [1O(f (F*50) () Ta(s) AN (s)) A2 (2)
= [ 1 ([ £(3)kuye(s05) AL (5)) ADA (2)
= [ 7@ ([ £()ka(s0t3) AN (s)) A2 ()
= [ ([ (F*50t0)(5) Ra(s) A (s)) .20 (2)
= [ [ £@)(F*suto) (3) k(1) AM (5) A (1)
= [{F*tf*so1) () (s)d M (5)
= {FH(F*sato) B

Hence we conclude that (f*§°)‘*(f‘*io) =j*(f*6‘_0_t;) a.e. (M).

PROPOSITION 3.4. ;S‘uppose‘ feI*(8, M), where 8 is an A-T semigroup
with 8 an idempotent thread. If Suppf < Sz, for some xyePy, and s e S\NK
with § > u,, and peHom(L'(8, M), ) with ¢(f) =1, then the fumction
v defined on 8 by 7 ‘

e(f*5) i s>y,
7(s) = 0 .
if 8 < @,
i¢ a semicharacter on S\Lmu. '

Pro_(if; From Lemma 3.3 for sg,%, >®, we have (f*3)*(f*%,)
= f*(f*sot,); hence v(soty) = v(sg)v(2,). I s, < @y, then z(s,) = 0 bust
st <y for all #; hence 7(syt) = 0 = 7(s¢)7(t).

Remark. The case where t<P, with t >z, is of special interest.
In this case for any keL™ we.have -

Gty By = [ f(w)ko()dM (u)

= [k aM )+ [ f(u)(tu) a1 (u)
o

S\ Sz,

Il

JFO0R(m) AU () = [ flo) (u) ad (u)
£ Szg

= <f’ k).

icm°
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Hence f+f = f a.e. (M) so that +(f) = o(f*i) = (f) =1, that is,
' [0 i< g,
1 i > x.
Lzwua 3.5. Let ¢ cHom (L(S, M), 0} and f, g<I*(S, M) with o(f)
= ¢(g) = 1, where Supp f < S=,, Supp ¢ = Sz, and 8y > @3 then
g*(f*5) =f*(g+5,).
Proof. For any function kL™, we have that
g5, B> = [ (Fe(grs)bnam(y)
= Jf ) (g*50) @) oty AM () 2. ()
= [ ([ g k(sytw) adr (1) alr (w)
= [o([ fowkstu) a2 () a2 (1)
= [9@)(f (£*50) W Ritw) ad () a2t (1)
= [g*(f*5) (w) () A ()
= Lg*(f*50), k>
Lemma 3.6, For a given fized element @e<Hom (L(8), C) the non-zero-

values in 8\8w, of the semicharacter defined by Proposition 3.4 are inde-
pendent of the choice of f for any f with Supp f = Suz,.

Proof. Suppose that peHom (L'(8), ) and that f, he L' (8, M) with
@(f) = @(k) = 1 where Supp f < Sz,, Supp b < 8z, for x,,s,eP, and
2 K@ < 1. If 5,8 and s, > @, then, from Lemma 3.5 we have h*(f*3,)
= f*(h*3,) and it follows that 7;(s,) = 7;(s,). Hence the non-zero values.
of the semicharacters generated by the pairs {p,f} and {p, h} agree
everywhere in S\ 8z,. )

Combining Proposition 3.4 and Lemma 3.6 we make the following
definition:  *

Definition 3.7. Let S be an A-T semigroup with §' an idempotent
thread. For geHom(L'(S,M),0) let z, = sup{w: wePy, ¢(f) =0 for
all f with Suppf < Sz}. If », = 0 (respectively 1), then take the semi-
character associated with ¢ to be the identically 1 (respectively 0) semi-
character. If w,¢(0, 1), consider a net {w,} in P, with {#,}|z, with corres-
ponding funetions {f,} having support in Sz, and ¢(f,) # 0. Let lim7,

Tlp,(8) =

be the semicharacter associated with ¢, where 7, is the semicharacter of
Proposition 3.4 and Lemma 3.6 for each f,.

Having established above the existence of a map from the maximal
ideals to the gemicharacters, we now show that the Fourier transform.
is the inverse of this map.
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LEvmA 3.8. Let 8 be an A-I semigroup with S an idemp.otent thread
and ¢ & non-trivial element of Hom (L'(8), 0). Then the semicharacter v
associated with o is measurable on SN\K.

Proof. The proof is based on the one used for Theorem 3.3., [6].
However, slight modifications are necessary, since the measure M is not

quasi-invariant. ' ' . .
Note first that the semicharacter = associated with ¢ in the idempotent

case is & monotone pointwise limit of the semicharacters {-ra}:, and .hence
7 is certainly measurable if each 7, is measurable. Also, while M is not
quasi-invariant, it does satisfy the hypothesis of Theorem 2.3, [6], il,n.d
hence L*(8, M) is a subalgebra of M(S). This implies that the semi-
character 7, associated with ¢ for any one fixed pair {f., ,; agrees for
all zeS\Sz, with the = defined in Theorem 3.3 using the measure u,
corresponding to f,. To simplify the notation, we let 8, = S\ 8z, , sP?.

Suppose that peHom(L'(S, M), C), @, = sup{z: @ePo, p(f) =0 if
Supp f < Sw}, and @, > 5y, %.ePy. Let f, be any function such that
Supp f. <« Sz, and ¢(f,) = 1; hence 7.(x) = ¢(f.*%) for <8\ Sz,. Re-
call that since pe(L')*, there exists a function keL*(8, M) such that

o(f) = [fOkD)aM (1) for all feL.
&
In particular, sinece ¢(f.) = ¢(f) = ¢(fis,), we have
o(f) = [F(DR@)IM ().
So
There exists a measure |u.|e M (8) corresponding to f,; namely

el (B) = [ 1 (&) fu0)| AL (5).

Now suppose S\E has |u.|-measure zero; thus

[ 20 ® 1 fu®)1a2 (1) = 0. .
Then

To(2) = @(fu*®) = [ (fu*Z)(0)k(1)AM ()
So
= [fa(t)k(zt)dM (2)
So
= [ aspm(O)fut) () dM ()
So

+ [ e (F. () k(wt) A (1)
Sp

Il

[ xm(Ofa()k(at) a2 ()
Sp

icm
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for all ze8)\ 4, where M (4) = 0. (The final equality follows since
f Aso\m (0)Fa(0) B (0) A M (1) < hw (8)]]eo f A& (0) [fa (8) M (1)

S & ()] 1l (SN B)

and [|kz(#){le << oo for almost all #; that is, for all 2 ¢4, where M(4) = 0.)
Let F be a compact subset of 8y with M (F)> 0. The function

g: (2, 9) > xr(®) xz(y) k(zy) is Borel measurable on 8y x 8, and vanishes
outside F X E a o-compact set. Moreover,

| [ 2 (@) s k(o) a0y i )
So So

< [ [ ar (@) 28() (o) 1. (y)| 4B (y) AU ()

< [l Ifel . M (F) << 00 for all m¢d

and hence the function ¢ is contained in I8, % 8y, M X |f.] A ). This
implies that the function

» ‘*sfZﬁ(m)xE("J)k(W)fa(?J)dM(?/) = ZF(W)fZE(?/)k(wﬂl)fa(y)dM(y)
= Zp(ﬁ)fa(ﬁ)

is M-measurable on S§,. But then 7, is measurable for each compact
F < 8y, hence 1, is M-measurable on 8,. But 7, =0 on Sm,,\Lza and
hence 7, is M-measurable on S\K.

THEOREM 3.9. Let 8 be an A-I semigroup with 8’ an idempotent thread.
Then there ewists a one-to-one onto mapping between Hom (L (S, M), )
and S*\NK*.

Proof. Given peHom (L'(8, M), C), let z, = sup{z: weP,, o(f) = 0
for all f with Supp f = Sx}. Choose a sequence {#,}{ 2, and, for each Ty
let f, be any function such that ¢(f,) 0 and Supp f, = Sz,. Normalize
®(fa) and define 7,(s) = ¢(f,*5) for all s > w,; then the semicharacter
associated with ¢ is the pointwise limit of these z,,, and we write 7, = limz,.

Now, for any feL'(S, M) with Supp f < Suppz, for some n, we define
the homomorphism 6, by

6u(f) = [ a(8)f ()M (s) = [ g(fa*3)f(s)dM (s),

the integrals existing by virtue of Lemma 3.8. Since pe(L')*, there exists
a unique keL*(8, M) such that ¢(h) = f h(s)k(s)dM(s) for any h
eL!(8, M). Since f,*5 is in L' for every se Supp f, we have
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Ou(f) = ff (Fa*B) (1) k(D) () AM (2) GH (5)
= [[ fat)f (8)To(st) A ()AL ()
- [ (Fa*f) (W) (w) A M ()
= g(fuxf) = o(f)-
Thus we have the relation
0.(f) = o(f) whenever Supp f = Suppza.
But for arbitrary heL(S) and zeP, we have,

[

(*)

b = hys, + hysnso
and hence
- p(h) = p(hysa,) +o (has\sa,) -

By the continuity of ¢ and the fact that o(hyss) = 0 for all z < w,,
we conclude that

1)

Moreover, since O, (kyss,) = 0 for every h and all n, we can define 0(h)
for arbitrary heL'(S, M) by

o(h) = @(hys\szy) = hfzntp(hm\s%)t

@) () = 6 (hysnse,) + 0 (hitsmy) = O(hysnse,) = 1151 On (s s,) -

We call ¢ the homomorphism associated with the semicharacter z,.
Finally, we know by (*) that 0,(hys\gs,) = ¢ (s sw,)- Combining
this with (1) and (2), we have ‘

(k) = limg(lgense,) = tim O s s,) = 0(8)-

Hence, for gpcHom(L'(S, M), (), there is a unique semicharacter
7, associated with ¢. Moreover, the unique homomorphism 0 associated
with 7, agrees with ¢, so the mapping from Hom(L'(§, M), ) to S*\NK*
is one-to-one and onto. ) :

3.2. The semisimplicity of L*(S8, M).

PROPOSITION 3.10. Let I denote the idempotent wnit interval with
Lebesque measure A and let H be a compact abelian group with Haar measure p.

Then LH XI,px2) is a semisimple algebra.

Proof. By an argument similar to that used to establish the nature
of 8% one can show that the measurable dual of H xI is isomorphic to
H*XI* in the sense that ve(HxI)* implies v(h,a) = (xpye)®, o)
= ypu(®) e (k) for some oeH* and some r with 0 < r < 1.

icm
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Now suppose that for all v<(H xI)* and some fel'{H xI) we have

[ w(h, )f(h, 2)d(uxi) = o.

HxI

Let I denote the cross section I x{k}, heH, and define the function
g.(h) on H by

Gi(he) = [ f(ho, @), (2) dA(),

Iho

Whel’f Ary = X,y (®) for some rational »,, 0 <, <1. For arbitrary
oeH™, let 7 = y,.-p; it follows that

[ b, @)f (s @)a(uxt) = [ o) [ 12, (@) (b, ) a2(0)) du ()
H I,

HxI
= [o(W)g(m)au(h) = 0.
p:4

Si'nce this is true for all peH*, then g,(h) = 0 a.e. (4) as a function
on Hji.e., there exists a set 4, < H such that g, g, = 0 and u(ENA4,) = 0.
Now let {r,} be the set of all rationals in [0, 1] and let {4,, g,} be as

above and let 4 = (M) 4,,. For all » and any hyeA we have
=1

(o) = [ (o, ) 1, (2) dA(z) = 0.
I"O

Now consider f(hy,#) as a function in L'(I) for fixed h,ed. Since
L*(I)is semisimple [4] and the set {2} is dense in I*, we have f(he, z) = O
a.e. () (as a function of ). Thus f(h,s) = 0 a.e. (A) on I; for almost
all heH and hence f(h,®) =0 ae. (uxA2). Therefore L'(HXI,ux2)
is semisimple.

The proof that L'(S, M) is semisimple if § is an A-I semigroup with
8’ an idempotent thread follows from Proposition 3.10 and the existence
of a norm-preserving homomorphic embedding of L'(S, M) as an ideal
into L'(H XI, ux1). As a first step we define the map ¢: HxI - §
by @(h,») = hz and use this map to define the map &, @: L'(9)
— IMH xI), where '

®f(hy z) = (f-9)(h, z) = f(ha)  for feL'(S, M).

Levwa 3.11. If ¢: HXI — 8 is as defined above and M (8), M(H xI)
denote the measure algebras for 8 and H XI respectively, then the map
Q: M(HXI)— M(8) defined for me M(H XI) and geCy(8) by {Q(m), ¢>
= fI(goxp)dm is a homomorphism.

X
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Proof. Let v, ue M (H xI) and feCy(8). Then we have
(@ *Qw), > = [1a(@(w)*Q()
= [[£(s1)@(Qus) A(@m)
[ [ (feo9) (@) duad(@n)

S HxI

a) vp)) dig
[ Jfra® @)

Hx

| (8)) @ gt
folH;{If ‘ )(W ) s

= [[flp(a)o(0))du(a)dn(b)
= [[(fop)(ab)du(a)dr(b)
= (fog)(y) d(u*2)(y) = <Q(u*v), f>.

PROPOSITION 8.12. Let &: L'(S8) -~ LMH xI) be as abov.e. ‘
Then @ is a norm-preserving homomorphism whose range is an ideal.

Proof. (i) Consider the diagram
M) < MEXI)

It

i

Ao
L}8) = LMH XI)
where ¢ and j are the ordinary injection maps and @ is the mapping of
Lemma 3.11. The statement that ¢ is a homomorphism follows from the
fact that 4, j, and @ are homomorphisms, once it is shown that for any
! eI (8, M),
ith =@ (i(e(f)-
But, for any geCo(8), we have
G, 9> = [(F9)(s)dM(s)
[ (F-gom)maix u)(t)

HxI

[ gor) ) (fop)®)aidxp) ().

HxI
Since fop = @f and O(f)(1)d(A X p)(t) = i(D(f)), we have
G, = [gonmali(e)) = (¢(ie)), 9)-
Moreover, we conclude that @ is norm preserving, since

Iflzv = [1fldm= [ Ifogld(sx2) = foplmmxs-
8 HxI

Lo
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(i) To prove that the image of I*(g)

consider @(L*(9))

B eI? (H x1),

Is actually an ideal in L' (H % I),
as a subset of I'(H xI) < M(HxI) and let acL'(S),
and M(H) = 0 for ¥ = §. Then we have

((e0@)*B){p=(B) = [ (D2 ((a0 ) *) (1
=[] 11 (2y) d(ao p)od (B)y
= [ (@og)ly-p-1(E)) a(8),.

But (as in the Lemma on admissibility) since M(E) =0, the seb
y~'¢~(E) has aog measure zero for almost all y(8). Hence f(aO(p)X
X(y=1p=1(E))d, = 0 and N

(aop)*Be®(L (S, M)).

Now, combining Lemma 3.11 with Propositions 3.10 and 3.12 we
have

THEOREM 3.13. Let § be an A-T semigroup for which 8’ is an idem-
potent thread.

Then L'(8, M) is semisimple.

Remark. In any A-I semigroup for which &’ is an idempotent thread,
#® = y? = gy implies that » = y.

4.1. Remarks. All the results here depend on the form of S\X via
the structure Theorem 1.3. It is clear that no other property of algebraic-
ally irreducible semigroups is being used and that nothing would be
lost by assuming that the semigroup has a structure as given in 1.3.
In fact, it is easily seen that if S is a compact abelian semigroup which
is linearly quasi-ordered [7] and &' is an idempotent semigroup and if
8 is a disjoint union of locally compact subsemigroups 8, each of which
is of the form H,P,, where H, is the maximal group at the identity of
8. and P, is an idempotent semigroup in §, topologically and algebraically
isomorphic to S{,, then using the techniques of [6] and [7] all the results
of this paper hold for such an 8. That is, that L*(S , M) is semisimple
and the M-measurable semicharacters on § are in one-to-one correspon-
dence with the multiplicative linear functionals on IS, M).

Then, there also follows a general theorem. for linearly quasi-ordered
compact abelian semigroups; that, for such an 8 with ¢~*(ES’) being
a8 in the preceeding paragraph, there is a measure m on § such that
L'(8, m) is semisimple if and only if 4* = y* = xy implies # = y. Further,
the m-measurable semicharacters on § are in one-to-one correspondence
with the multiplicative linear functionals on L*(8, m).
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On Abel summability of multiple Laguerre series
by

CALIXTO P. CALDERGN (San Luis)

INTRODUCTI UN

The purpose of the present paper is to extend the results in [1] eon-
cerning Abel Summability of Multiple Hermite Series to the case of
Multiple Laguerre Series. The 1-dimensional case has been studied in
[3]-[7]. The novelty of our method in the 1-dimensional case is the state-
ment of weighted maximal theorems.

1. NOTATION AND DEFINITIONS

1.1. I7,.(a) denotes the family of Lebesg’ué measurable functions
defined -on RY = B, X...X R, such that

(1.1.1) f;f]”e T nw"fdml. A, = fm*’ e XXX < P
- &% i

wherée 1< p < oo and the o; (j =1, . ,m)a.resuchtha,t—§< a; < +-oo.
The L » (a)-norm is defined in the fo]lowmg way: :

i) (e, ) =( 17 ‘XX"dX)"p 1<p < oo

B}

1.2, 13% (X) denotes a family of m-dimensional polynomials defined
as follows:

Let n = (N, ..., %m), Where each n; (j = 1, ..., m) is a nen-negative
integer, and let @ = (ay,...; @m), Where each a; (j=1,...,m) is 3. real
parameter such that —} < a; < oo (see footnote (*)). Now

(121) B @ [y st o+ ) I (@)
=1 R .
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