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On Abel summability of multiple Laguerre series
by

CALIXTO P. CALDERGN (San Luis)

INTRODUCTI UN

The purpose of the present paper is to extend the results in [1] eon-
cerning Abel Summability of Multiple Hermite Series to the case of
Multiple Laguerre Series. The 1-dimensional case has been studied in
[3]-[7]. The novelty of our method in the 1-dimensional case is the state-
ment of weighted maximal theorems.

1. NOTATION AND DEFINITIONS

1.1. I7,.(a) denotes the family of Lebesg’ué measurable functions
defined -on RY = B, X...X R, such that

(1.1.1) f;f]”e T nw"fdml. A, = fm*’ e XXX < P
- &% i

wherée 1< p < oo and the o; (j =1, . ,m)a.resuchtha,t—§< a; < +-oo.
The L » (a)-norm is defined in the fo]lowmg way: :

i) (e, ) =( 17 ‘XX"dX)"p 1<p < oo

B}

1.2, 13% (X) denotes a family of m-dimensional polynomials defined
as follows:

Let n = (N, ..., %m), Where each n; (j = 1, ..., m) is a nen-negative
integer, and let @ = (ay,...; @m), Where each a; (j=1,...,m) is 3. real
parameter such that —} < a; < oo (see footnote (*)). Now

(121) B @ [y st o+ ) I (@)
=1 R .
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Here L () is the m;th Laguerre Polynomial of parameter o; on
the variable z; (see [7], p. 99); L§ (z;) = 1, therefore

) =[ [ Mo+

If we fix o, Zff)(X) is a closed orthonormal system in L (a) (9.

1.3. If f ~ 0, L{)(X), we shall denote by f(r, X) its Abel Approxi-
mating, that is

fir, )& Mo, I x) = 2 Y pm

"1.
Lt ) NP g, (_ﬂ_:i)
(m) BCR N Ve | (“‘"") i

14. By f**(X) we denote the maximal function associated with
f(r, X), that is
MMEE sup If(r, X)), O0<n< 1;j =1, ey m
.fl""'r'm . . it - . 4
1.5. We say that g = p(J) is an elemmtary real measure defined

on R} with bounded variation there if the fo]lowmg two conditions are
satlsﬁed

A) p(U Tz =2,u(J;,) and Jx A~ J]‘ =@ i:f j #k and the J are
a ﬁ.uite union of m-dimensional intervals.

(B) sup 2 l#(Ix)] < oo, where the sup is taken over all possible finite

systems of non-degenerate pairwise” disjoint m-dimensional mtervals
contained in RT.

1.6. The Variation W(J ) of uis deﬁned as
W(J)= ot supZ[y(Ik

The sup is taken over all possible finite systems of non—degenerate
pairwise disjoint m-dnnensiona.l intervals eonta.med in J.

'

(*) Actually, if we ask —l<ag<oo (j=1,..,m), we will also have an
orthonormal system; nevertheless, in this paper we shall only be concerned with
the case —1/2 < aj < co.
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1.7. The Fourier-Laguerre coefficients G of an elementary measure
are defined as

&t f Lf:’) (X)du

provided that the integrals exist. Also
alr ) =Y "GIRE), 0<n<l; j=1,..,m

1) if there ‘éxists areal
1) subn:utted to the conditions

1.8. We say that r tends resmctedly to (1,.
positive number 0 such that r -(1,.

1 -'r,f

-1 < 7’_<t9, 0<r,<1 1,]_-1

2. STATEMENT OF THE MAIN RESULTS

2.1. TaEoREM 1. (i) If feLfm(a),p>2 flr, X) is well defmed and
we have

(A) 1 D)= (Do ) >0 as r(1,...,1),
(B) Cflry X) > f(X) e as r>(1,...,1),
©) 176, ) < Gyl flp(6, a);

where Cp depends on p only.
-m .
(i) If f(=y, .. ,wm)e & eL” m(e) (L<p<2) for some y >0 such
that 1/2 >y > (2—p)[2p, then the same conclusions (A), (B) and (C) of (i)

are valid for f.

i) 17 1 logt " o), hen )
(A) flr, X) - f(X) a.c as r—(1,...,1), -
(B) 17" e, @) < Out-OL 11 log* I} a(e, a).
Here 0, and O, depend on o = (ay,..., an) only.
() If Ififlog*Ify™ s " 13 (e, w0 have
(A) flr, X) > f(X)  ae. asr—>(1,...,1),
(B) I{F*Yllale, @) < Dot Dagllifilog+IF™ lu(e, a),

where 0 << B < 1; D, 5 and Dy, depend on (a, §) only.
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m
amze;

v) If ifle
Ifer, ) —f(Dlu(e, @) >0 as v —(1,...,1).

eLym (a), then

2.2. THEOREM 2. If u is an elementary real measure defined on R7
with bounded variation there, such that

f PAW < 0o (AW denotes the variation of w),
B

+

then u(r, X) converges a.e. when r tends restrictedly to (1, ..., 1). The limit
is the density function associated with u with respect to the measure 6~ Y°dY.

3. HILLE-HARDY FORMULA
3.1. The following identity has been established (see [7], p. 101):

o T(n+1)

G0 & T+t

IS (@) I8 (y)r"

= (L—r)2exp— {(a-+9)r/(L—)}(— oyr) T, 2(—ayr)* (1=}

J.{z} denotes the Bessel function of order a.
A formal product leads to

Z” Tng+1) ... T+ 1) N

‘ Tn
{ T mAa+1) o D+ am+1) TSR e PN

- tm”

(3.1.2)
X LED (@) TED(ys) ... ZEm (@) ZE™ ()

= D i@ \

n

=l l (L—n) " (—myyyr)” %/’J {2 — % yﬂ?) R ( }}
iy
m

xexp—{ 3 @un—n)) = K, X, 9).

1

We shall refer to K,(r, X, ¥) as the Multiple Hille- -Hardy Smgular
Kernel.
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3.2. Lemma. (i) |LE(X) )< 4o H{e P Y o g 12

and 5 =0 (j=1,...,m)

Here A, depends only on o = (ay, ..., ay).

({) 0K K, (r, X, ) My(r, V)< o0 for 0<m<l, 0< < oo,
ji=1...,m :

Proof. Let us consider the 1-dimensional case and take into con-
sideration the following formula (see [7], p. 106):

(3.21). ()" {I'(n+a+1)} P LY (x)
= (_1)nn—ll211(a+%)-—1((Zn)!)—l(lw(n+a_{_l).n!)!/z %

1
X A=) Hyn (o) dt
-1

H,pn(s) denotes the 2n-th Hermite polynomial.
Since
‘ [Han(8)] < Bo6™ P (2n1)2 2% (2m) 2

(see [7],-p. 240), where the bound B, does not depend on (n,s$), we
infer that {n!/I(n-+a-+1}7|L (z)| is dominated by

(3.22)  Cu(l(n+a+1)nl2(2nl)emy = ( f 1= “"l’zdt) iz

Now, an application of Stirling’s Formula gives

(823)  ()I(ntat 1)L (0)] < AT,
Taking into account that
m
LGx) = [ ] {(my'® (T (ns+ o+ 1)) 7P} L8P (),
7=1

we obtain (i).
Consider now, for fixed r and ¥,
(3.24) (L—7)"texp— {(@+y)r[(L—r)}(—ayr) T, 2(—ayn)* (1-r)"}
Sinee a > —1/2, we can use the following well known formula:
1

(8.2.5)  Ja(s) = (P2 (a+1/2)}(sf2)" [(L—1) e ar.
-1
Therefore
(—ayr) T2 (—myr) P (L—1)"}

= (r@p)r(a+1/2) @—r""" f (1— ) a—wez(xmllzsu_rrldt
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Ao Now let us observe that
(3268)  I(—oy) PLE(—my (-0 | (831) - - 2@
<C 1 egpymol 2@ur)H2(1—1) 1_ 00...00
o = D p ~—"—|L£:‘ﬂ(m VI W)l s For T
Consequently, (3.2. 4) is dommated by i Iing+ey+ 1 ! t I(m~+ am+1)
(827)  O(a)(1—n"exp—{(1—n)[or+yr—2(ayr)*"} XL () L2 ()|
_ 1 e £(] — )1 _ e T
C(a)(1—7) exp—{(1—7)""[or4+y— 2 (wyr)"* ]} < Hexp{llz(mj_'_ﬁ)}n{Zrnjm(a,/zﬂ/;—yn)}B
< Ofa)e! (1—r)7 e = e

m
Now by multiplication we obtain (ii).
y P . (i) gB("m---17m:.‘1‘;7--~7“m)‘l 1 eXP{llz(win‘?li)}‘.
7=1 )

m
. . (1232, e .
3.3. Lonws. (&) If f(@y, ..., tm)e 1 eLim(a), thén  * = B(r, a)e2¢¥".
(i) f has Fourier coefficients with respect to' the system {L{}(X)}; The inequalities of (3.3.1) hold from part (i).of lemma 3.2. On the
(ii) i f~ Y CGIEX) and 0<r<1(j=1,..., m), then . other hand,
[ . : W . ) . P
. (3.3.2) Cor T (X S
DPCIBX) = Y O X L Z B C
n Nyeu Ty )

= VI X)'{‘ j IR Yay)

x{ F(nl—l-l).‘}”? { I'(np+1)...

I(n;+a,+1)

112
' . (1) ¢ (@)
F('nm‘*"a,n—{—l)} Lﬂll‘ (m],) . L’:’nn (@)

_2 fr () X)Lgf:z,(Y);e—Y}f(Y)mdy. -

= [E.(r, X, Y)f(Y)e T Y°dY.
=
Since
As before K, (r X, Y) denotes the Hzlle~H ardy Multiple Singul ~f ye
sz ’ y e Singuiar (3.3.3): f 3 X I (DI DT T aY
B) If felim(a), p > 2, then the same conclusions as in (A) hold.
m
X - a
O) If f@, ., omlexply 3 a7} = foé ¥ elim(a), 1<p<2, 12>y : SBnae® [IDIeT Y < eo,
> {(2~—p)[2p, then, the same conclusions as in (A) hold. =
(D) f K (r, X, Y)e ¥ Y°4Y = 1. we can interchange the summation with the integration and obtain (A)
B . (ii). Part (i) of (A) follows from the estimate (i) of lemma 3.2. Now, let

» . . .
Proof. Let f be under the assumptions of (A). The following integral f belong to Lgn(a), p > 2. From Holder's mequa.hty we have

ts by I 3.2
exists by lemima (33): (54 [IAETETT Il 1 05 @)
fK r, X, I)f(X)e ¥ Y°aY. Ry S
N ‘ <o a0
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The boundedness of []em”p/(p—x) (e, ) follows from the fact that
pl(p—1) < 2 if p > 2. Therefore, conclusions (i) and (ii) of (A) follow
for all functions belonging to Iin(a), » > 2:

Now, let f belong to L;,,.(a) For fixed r and X, 0<n<1

(G=1,.0sm), ,
ML (X) 0w
k3

is a continuous linear functional en Lem(a)

(i) of lemma (3.2) we know:that - i
Z‘(r"L{:‘,))(x

On the other hand, for a dense subset, namely LEm(a), p>2, the
functional has the representation

since from the estimate

(3.3.5) N < oo, 0§r,<1(j=1,...,m).

(3.3.6) j K (r, X, Y)f (Y)e ¥ Y°dY.

By
Since, from part (ii) of lemma 3.2, K.(r, X, ¥) is a bounded function
of ¥, K,(r, X, Y) belongs to Lﬁm(a) and the representamon (3.3.6) will

hold for all I; m(a).
To obtain part (C), we will show that in this case |f] X”sLim(a)

(3.3.7) f Filaa -xx"dx

B ; ‘
= f fle T X xogx
a7
<(J e(‘-zﬂpxl(”-z)e‘x;x:“dx)“’—‘""|| e Xl (e, m). . .,
=7
Let us observe thati 1—‘2y< 1—(2—-p)/p =2(p—1)/p. Therefore
(1—2y)2-%(p—1)~1p < 1'and consequently
(3.3.8) f exp{(1—2y)2 "} (p—1)" pX}e‘XX“dX < oo.
BT
This proves part (C).
Part (B) asserts that if feI,.(a), then

(3.3.9) ZO,,r"L ) (X) =

fK (ry X, Df ()T Y"ax.

B}

icm°
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Taking f =1 and observmg that Cp,

=0 if and only'if n; £ 0
for some j, we have

(3.3.10) 1= fK (r, X, V) ¥ Y°aY
B}
as we wished to prove.

3.4. Remark. If 4 is an elementary measure defined on RT such

that {n AW < oo, where dW denotes the variation of u, its Fourier-
Ry
Laguerre coefficients are well defined:
Cu= [ I (X)ap.
R’I’l
T

Furthermore, for this case we have the same conclusions as in part
(A) of lemma 3.3.

4. ESTIMATES FOR Ku(r, X, T)

4.1. We shall begin with the single kernel, namely

(411)  Ralr, 2,y) = (L—r)"="¢ @O D1 12) P(at1/2)1 x

1
X [ (1) exp {2 (zyr)* (L— )" e} ds.
-1
4.2. LEMMA. If a > —1/2, there exists a function ki (s,r, @, y) defined
ontheset {(s,r, 2, ¥)/0<s<1,0<r<1,0 << oo, 0<y < oo} having
the following properties:

(i) If we fiz the pair (s, r), Ki(s,7, 2, 9), as a function of y, is non-
inereasing on v <y < oo and non-decreasing on 0 <y < 2.

f(l

G [ ovyray { [, 0, )i} < 4
o []

(i) Ea(r, 2, 9) “_1’270:(8;’;‘”:y)d3-

Here the constant A, depends on o only.
Proof. From (4.1.1) we have

. r
e

(1 DR NCTACES)

zyr) 2

(4.2.1) f (1—s )a—me ¢

ko(r @, y) <
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Therefore . .
(4.2.2) kalr, @, ) < 2 (P(1[2) D(a+1/2)) X
1 o
x [ (L= A —r) " exp {—(@+y)r/(1—r)+2 (ayr) s /(1 —r)}ds
0
1
=2(F(W2) M (a+1/2))" [ (1—8) (1 —r)7"exp {(28 (ayr)"" —
o . = [
D ' \ —(@+y)7)[(L—r)}ds.
Let us consider the kernel .
ho(s, 7, 2, 9) = (P(1/2)T(a+1/2) (L—2)T) " x
‘x exp{[28(zyr)': — (+y)r]/(1—7)}.

If we fix the parameters (s,r,#), a differentiation with respect
to y shows that &.(s,7,®,y) is non-increasing if y > s2z/r and non-
decreasing if 0 <y < s?afr. '

Now we are going to define j (s, 7, @, ¥).

(42.3) Ifs’zr Y SO
Ka(s, 7, @,9) = hao(s, 7, 2,9) for 0<y<w or s'afr<y< oo,

ka(s,r,®,y) = ho(s, 7, @, s22fr)

exp{— (r—s?)az/1—r)} .
= TApTatpa_nre [ oSyssolr

(424) IEst<r
C RS, Ty @, y) = ha(s, 7y @, y)  for 0y < slmjroor @<y < oo,
ka(s,r,2,y) = ho(s, 1, 2, s%xfr) - .

(g2 _ o
v = exp{—(r—s9af(l 2.},, for s?zfr<y<w.
S I'@2)M(e+3)1—7) o v
An easy verifieation shows that &} (s, r, @, y) is under the conditions of
(i) and (ii). It only remains to prove (iii) (the non-trivial part of the lemma).

(A) Let us suppose that 1 >7 > 1/2 and consider the integral

0 1
(425) [ eVydy [ Ki(s,r, 2, 9)(1— ) Vs
o 1]
112 .

= [ eyay [ Ri(s,r, 0,9)(1— ) Mas !
[ 0

[-+] 1
+ [ el ay [Ki(s,r, 0, y) (1— ) Pis.
[

o2
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o 1
(4:) Bound tor [ &~y"dy [K2(s, 7, 0, y)(1—s*)"ds.
o 1/2

Taking into account therdeﬁniti

on of ki(s,r,» the integral
under consideration i AL &

readily seen to be equal or less than

D 1
(428) [ ' dy [hals, r, 0,9)(1— o) as 1
[

ri/2

+ f (1—8)" " (P(1/2) I'(a+1/2) (1—r) ) x
#1/2
82z
xexp{—(r—soli—r}{ [ o¥ydy}as

1
<2+ [y B(I(1/2) D(a+1[2) (1— 1)+ -1

iz
] sZzyr
X exp{—(r—s?)z/(1—r)} { f a“'g/"dy}ds
N B . B e x
since [ ha(s, 7, 2, y)(1—s) Vg5 < ko7, z, y).
o .
Setting $? = u, we have

(4.2.7) f (1= (1)) T (a+1 2)(1— 7)) x

i

82z
Xexp{— (r—s’)w/(l‘—'r)}{ f e"”y"dy}ds,

— G(a) f(l__ u)a_llzu—llz (1— r)‘l‘“exp {__ (r— ) m/(l—-—r)} x

uzfr

><~{ f e“”y"dg/}du.

Observing that o < (u/r)a <2z (since r>=1/2 and 1>wu>r), if
@ <Y< (4fr)w, there exists a constant D, depending on « only, such
that

(4.2.8) ¥'< D", 220, 2<y<2a.

The precedinginequality yields

uzfr uzjr

{4.2.9) f Yy dy < Doa” f e Vdy = Dyz® e {1 —g=™4""


GUEST


284 C. P. Calderén
Therefore, (4.2.7) is dominated by
(4.210) D.C, f (1— ) Py P (L—r) %" X
Xe—z(r—-u)/(l—r) {1_e~m(u—r)/r}du
1
= D.C J'ml/z(1_T)—l—1/2u—1/ze-z(1‘u)/(1_r)X
H
x{@(1—w)[(L—=)* " {1— e~ du.
Observing that
(4.2.11) sup  (L—e "0y iy lr— 1) < M,
220,4>1>0
and that
(4.2.12) ur—1 = (u—r)fr<@—r)fr forlzuzr,

that is uf/r—1<2(1—7) since 1L >r> %
Now taking into account (4.2.11) and (4.2.12), the right-hand member
of (4.2.10) is readily seen to be equal or less than

(4.213) 0.DM,2"supi j ¢ M= (1 — )} P G

>0 12
<20.D.M, [ ¢ ioI iz,

This completes part (A,).
o 12

(A,) Bound for [ e™y"dy [ Ki(s,7,2,9)(1—s)*"as.
] o

As in case (A,), after a change of variables the following inequality
is valid:
712

(42.14) j Yy [ Ky, )1

<240, f(l )My (1 )i —-z(r—«u)[(l—r){ fy“e‘”d/y}

zufr

Suppose now that a < 0; therefore we have

(4.2.15) C, j (L—wy My~ (1 — )~ -”('*")/“—’){ f y"e"’dy}d

wijr

<0, f (L a)™ oy W2y (1 )1 g =IO gy (1 — i fr) du.
o

icm©
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But 1—ufr = (r—u)fr <(1—u)jr <2(1— %) since 0 < u <7 <1 and
> 2-1, Thus the right-hand member of inequality (4.2.15) 1s dominated by

(4.2.16)

fe(r—

005[ (L—u)t 2y (ﬂf‘/(l—f)) e =IO () J(1—7) " dut

<0, sup supi f w2 ““(’"“)‘]},(
P2<r<y 250

w)|*du.

Calling &(u) to be the maximal function associated to the function
equal to w* ¥ if 0 <u <1 and zero otherwise, the right-hand member
of inequality (4.2.16) is readily seen to be dominated by

(4.217) . ( f Pl ds) sup B(r).

12<r<1
This gives (A,) when a << 0.
Suppose now that « > 0. In this case we have

r x
(4.218) C, f (1—~u)"—”zu“m(l—r)_l‘“e_“"”“)’(l_’)( Il y"e””dy)du

Tujr
r—g

Cf (1— u)a—m —1/2(1_,’,)-1_a —z(r—u)/(l—r)wa—vl(l wjr)du—t

T

l-a ._z(r_u)](l—")( fy"g‘”dy)d‘u;

ifr

+0, f(l )Wy (L —

r—g
where 0 < e<1/2<r<1.
On the other hand,

A—ufr) = (r—u)jr <2(1—u) (since 1>r
> 4> 0). Thus we have '

r—e

(4.2.19) €, f (1— u)“"”’ WL — IO () de

r—g

<20, [ w P (1—u) TR g (1 g (1 p) " G
0

Observing now that r—u > ¢ or equivalently 1 < (1/e)(r—u), there-
fore 1—u < e~ 1(r—u). Thus we have '

r—s

(4.2.20) . f (L— )" Y2y WP (L — )Y IO g8 (1 )
[

1
<20, fsupe |5} f (w(1—w)) " du.
8 ) 0
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Putting a =1/2—¢, we have

x

(4.2.21) C, f(l @) My (L _T)—l-—a —m(r——u)[(l-—r)( f’yuo"ydy)d

e aufr
r
< 0, [ (L) (L) IO (1 )
a

r

< 20, f (1—w)* Y2 u:l’ﬂ (L )20 et a2 (1 g iy,
a

Since 0 < a< 1, we see that e ™0~ L W= for 0 u
< r < 1,# > 0. Therefore the last term of (4.2.21) is dominated by

(4.2.22) 20,z(1—r)" f u1'2(1 u) ““(1““)1(‘—’){9;(1 “ /(1—r} du
< 20,07 fe““’”'|s|"d.9.

This, together with (4.2.20) gives (A,) for a > 0.
Now we shall be concerned with the case 0 < r < 1/2, that is, the
boundedness of the following integrals for 0 < r < 1/2:

xufr

1
(4.2.28) O, [ (1—u)f Py~ (1—p)"2 "% —e(r-/(-7) du{ [ v ”dy}
and

C. f(1~—u, Y2 ‘1/2(1 PO B Lo ’)du{ fy e ”dy} )

Tufr
The second integral is readily seen to be equal or less than
. 1 .
02T (a+1) [ (A—u)f PP du.
0
The first integral is

)

1 . aufr
(4224) C. [ (1——u)“_llzu"l’z(lfr)“l_“e_z(l“"”(l“')ex( f y“e“”dy)du.
r . x

For 0 <r<1/2,0<a<1 (4.2.24) is uniformely bounded; there-
fore we shall consider > 1 only.

e ©
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For a<< 0 we have
(4.2.25) C f(l—u a~1/2, —~1/2 ~l-a -;(1—;4](1—' (1 | N
2. ar ) n (1_1-) e ) ¢ (f y"e_-"dy)d'u
x
R
< C’af(l—u)"‘”zu‘m(l—r)—l“’e‘”(l"‘”(l""e’(f e"”dy) du
r z
. .

< 2t f (1 — )=y Y2 gy

If a > 0, there exists a bound M, (dependmg on a only) sueh that

(4.2.26) - : sup @ “e’fe"’y dy< M,.

To see this, let us conSIder the closest integer m to a, such that m > a.
An mtegratlon by parts m times ylelds

(+2.27) f Sy = 3 o "-k+om<a) f Ty,

k=0

Since m > a and 2> 1,
oo
f VY Ay L et
x

On the other hand, (#~%¢")¢~"2"* < I for # > 1. Therefore (4.2.26)
holds.

Taking into account (4.2.26), (4.2.24) is dommated by

(4.2.98) €, f (L) =ty R (1 — )T ) g g f evy° dy)d
< 20.M, j (u(l——-u))“’ze‘””"")"“') {e(1—u)/(L—r)}du
J e
. 1
<20, M {supe™ 517} [ {w(1—w)) P au.
8 0

This ﬁnishes pa.rt‘. (iii) of the lemma.

4. 3 Remark If 2 =0, the Hille- Hardy Smgu]a.r Kernel takes the
form

(43.1) , U P(—r )"1-“ =)

Therefore, it already has the desired form.
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4.4. Definition. Let f belong to Lgm(a), and gonsider a point X
i ”‘ the integral [fe~" Y°dY is strongl
belongmg to RT. We s@1y thatv e integr Jff gly
differentiable at the point X with respect to the measure

dy =e TY4Y = e'<"1+---+“’m?y;1 ey dyy ... AYm

if the limit :

(4.4.1) lim (1/»(Ix)) [fdv
I x)—0 . Ix

exists.

The Iy are m-dimensional, non-degenerate intervals with edges
parallel to the coordinate axes, containing the point X. d(Ix) denotes
the diameter of Ix. All the Ix must be taken contained in RT.

We shall also define f*, the strong mdzimal function associated to f as

(4.4.2) PO s ()| [,
Ix

R} =Ix=(X)

-where the Ix, as in the preceding definition, are non-degenerate intervals
-with edges parallel to the coordinate axes. )
4.5. Levma. f* has the following p'roperties:‘
(i) If felim(a), »p >1, then
1%l (e, @) < O(2)Ifl,
where C(p) depends on p only. :
(i) If |t {log+|f13™ belongs to Eim(a), then
¥l (e, @) < A(a)+B(a)||1filog*1f) "l (e, @)y
awhere the constants depend on a only. k
@iil) If |f](log*+If1)™ " belongs to L;nm{a), then for 0 << <1
ICF*Y 1 (e, @) < C(a, B)+D (o, B)|1f1 (log*If)™ Il (e, a),

awhere the constants depend on a and on 8.

For the proof of this lemma see [1], Part I, Theorem (1.8) and take
2§ measures u; those generated by the density functions ¢~ “ayf if @ > 0
and zero otherwise.

m
4.6. Levma, Let H(r,x,y) = [] h(r;, %1, 9;) be a family of non-
J=1 '
negative real fumctions defined on RY, XRY depending on the parameter
# = (1, ..., Tm)ed, such that the following two conditions are verified:
(A) Por each pair (r;, z;), b;(r;, %, 4;) as a function of y; is defined
«on Ry and is non-decreasing if y; < x; and non-increasing if y; > ®;.

@ © .
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(B) bf Ty (7, @, y;) 6 Yy dy; < M, where the bound M does not depend
neither on j nor on (v, a;). Then if feL;m(a), we have
@) f(X) = SU—API JHE, X, H)f(T)e ¥ Y a¥| < M™(|f)*(X);
Te. R'm

_ +

(ii) f(X) verifies the same type of inequalities as those of f*(X) (with
different constants).

For the proof see [1], Part I, lemma (1.15), and take as measures
u; those generated by the density funetions e~ ™z if ;> 0 and zero
otherwise.

5. PROOF OF THEOREM 1
5.1. It follows from lemms 3.3 that in all cases

(8.11)  f(r,X)= [K.(r,X, D)f(Y)e ¥ Y°dY,
. RY

O<y<l(j=1,...,m).

K,(r, X, Y) denotes ‘the Hille-Hardy Multiple Kernel.
On the other hand, setting

1
(5.1.2) K (1, @, ¥s) = f(l—sz)“_mk;(sﬂ’h o, yds i x>0,
L]

k:;(ri’ 0,9) = ku_,;(rh 0,95,

where k:j(s, 7;, ®;, ¥;) denotes the auxiliary kernel introduced in lemma 4.2
and ka].(rj-, #;, y;) denotes the single Hille-Hardy kernel. An easy veri-
fication shows that

m
(5.1.3) (A) K, X,Y)= Hk;f"(r,-, &, ) = Kalr, X, ),
1 1

(B) K¥(r,X,Y) is under the conditions of lemma 4.6.

Therefore, the maximal inequalities for f(r, X) are valid as a con-
sequence of lemma 4.6.

The pointwise convergence in Lim(a) follows from the fact that
f(r, X) —f(X) everywhere if f has only a finite number of non-vanishing
Fourier-Laguerre coefficients. Such family of functions is dense in I m (a).
This fact together with the maximal inequality for Iim(a), implies the
pointwise a.e. convergence of f(r, X) in all I m(a). Since Lfm(a) = Ly m(a)
for p > 2, we also have pointwise convergence a.e. in this case. On the
other hand, we have dominated convergence (from the maximal ine-
quality), therefore f(r, X) converges in IE m(a)-norm, for p > 2, to f(X).

19 — Studia Mathematica
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The set F of bounded functions vanishing outside a compact set is
dense in Iinm(a),p>1, and also in L m(a) {log*'Lém(a} for %> 0.
The functions of such family have the property that f(r, — f(X)
a.e. since this family is contained in I, (a). This, together Wlth the maxi-
mal mequahhes, proves the a.e. convergence for the functions of (ii),
(iii) and (iv). The norm convergence in case (ii) follows from the same
argument used in the case p > 2.

Tor funections f(X) under the conditions of case (v) we have

(5.1.4) o, D)< [Ealr, X, D)If(T)e” YT
a7
Taking into account that [ K.(r, X, Y)e ¥ Y*dY =1 and that
Rm
-
K,(r,X,Y) = E,(r, ¥, X), from Fubini’s Theorem it follows
(5.1.5) If(ry X)ll1(e, o) < [Ifll:(e, @

Iffis also in F, we have

(3.16) 1f(r, )—F(X)ls(e, o) < ( [ &7 XaX)"If(r, D)—F(X)l(e, a).-

EY

Therefore, for functions of F we have Léim(a)-convergence. This,

together with inequality (5.1.5) implies that f(r, X) converges to f(X)

in I; »(a)-norm for every function under the conditions of case (v). Thus,
the proof of Theorem 1 is completed.

6. RESTRICTED CONVERGENCE

6.1. Levma. Let pu be an elementary measure defined on R, with
bounded variation there. Then if

E(X) = [[4;(1+ z1%)7,

Bi>1,

F=1

and defining
det
HDE sup |{n [ EME-T)auD,

hn) 51 +

where 61 < (},L/},k <0 (i,b=1,..,m), we have the following properties:
(i) |E '

), ¢l < 0(8, m)e —lde
R

+
AW denoles the variation of p, and C(8, m) depends on 6 amd m only.
|B (B(x), ¢)| denotes the Lebesque measure of the set {X such that ji(X) > e}.

icm°
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(i) If p is o singular elementary measure defined on RT and with
bounded variation there, we have

76(5’1%’&) {ﬂ M [ EQ(X—T)du(¥) =0  aee.
=1 Rm

+

as A= (o0, ..., co) restrictedly, that is submitted to the condition 6-1
S(hif) <0, >0 (4, k=1, ey M),

For the proof see [1], Part I, lemma (1.5).
6.2. LEMMA. Let f(X) belong to Ljm(a) and write

fz(r, X) = fK r, X, D)f(X)e ¥ ¥°dY;
B}
then
) fx(r, X)) < Do(M) [ {H 1P (L= P (L (2 — )y (1 — 7)) 7'} %
m =1
X |f(X2)| e~ T Y2Hay, whenwm IIM<ag<M; 12<r<1; X?
= (2, ..., @). The bound D (M) depends on M a,'n,d a only and is alwa,ys

Jfinite for M >o0.

Proof. Introducing the change of variables ¥ = &, X = & in the

expression f K. (r, X, Y)If(¥)e ¥ Y°dY, we obtain

B

(6.2.1) 2m f a(a)n{(l_,. ~1ma (= GEI-T) 372&247-;-1

7=1
i
1

x ( [ (1= gysie oo gyl £y ag
1
A - _ (B Dryi-r) —&
<22m0(a 1—1;) 1-q; —(E+HGIA-T] 7 20+l
= i H { i 7

j=1
By

—1f2 2Bj8-r Izt/u rj)dtj)}]f(lsﬂ);ds

1
x([a
]
Let us observe now that

(62.3) (L)1~ G+lt=p = gt

1 /2,

«(fu—gprmtnna)

H ”2)2/(1—'1) —f gt

= 6% (1—r,)-1—“fe“"’ﬂ

«(fa—ar

X

1/2;
-1j2 —2r7

88 (14} (1-17) dtj)
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Let us suppose that (s;fs;) >1/2, and consider the following ine-
quality valid for 1/2 <7 <1,8> 0,8 >0:
1
(623) [@—fv" e~ 2P a—tIa=") gy,
o

1
< [ RGO L 4R
0

< [max (L, 2570 (§5/(L—m) 9" [ e Gy,

On the other hand, since (s;/$7) > 1/2, we have
(6.2.4) (53 )8;)4HH2 < 291 (g8, P9+

Taking into account (6.2.3) and (6.2.4), the right-hand member
of (6.2.2) is dominated by
(6.2.5) Fap) o3 0D (L) 26 Gry i) o= g1,

whenever (s;/$;) > 1/2. The bound F'(¢;) depends on o; only. Let us suppose.
that 0 < (5‘,’/8.'7') < 1/2.
The right-hand member of (6.2.2) is dominated by

1
2 (81202117 o 82 9
(6.2.6) eﬁ(l—rj)"l‘“ie (878 r7)(f(1—t,2-)°7 1/2(“7.)0 5 g+l
[}

For 1)2<r<1 and 0<(s;/8;) <1/2 the following inequalities
are valid:

(6.2.7) 6—(§j—r;/2sj)2/z(1—r7-) _ e—é?(1-r;lzsj/éj)z/z(1_ri) < e—é?p,(x—rj)
< (F/a—r))" sup{e” M g = (7 /(1 — 1))~ G ).
On the other hand, (6.2.6) can be written in the following way:

172
7

1 .
(62.8) (f—@T 2 at) (1—r) 96 9220-75) o
[

% 855-’? (1— ,’,j)_llz6~(§,-_1-J!1237.)2/2(1—77r) 6—37? S,
Taking into account (6.2.7), (6.2.8) is readily seen to be equal or less
than

22 . i .
(6.2.9) 6% §7 09D [ (o) (L—1;)~ ¢ @2 /2(1_77)6—87%,9?“1'*’1,

whenever 0 < (s;/87) <1/2,1/2 <7; < 1-H(e) depends on ¢; only. From
(6.2.5) and (6.2.9), the right-hand member of (6.2.2) is dominated by

Y .
(6.2.10) 6872571 B(a;) (1— 1)) 24 G- ara—n) ~4 o

©
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for 0 << 8 << 00,0 < §; < co and B(g;) = H(a)+ F(e;). For 12<<r <1
we have

(6.2.11) (1—ry)~42 g G0

< @) (L—ry) e =y syery)
= (2r)"* (L — ;)" Pexp {— (1/2) [§; (1 —13") (1 — )" +-

H(* 1@ — ) ) (85— ) 1P}

Setting A (8, 1) = §(L—r?) (L—r)'* = (L — )P (L4257 185, we
have

(6.2.12) 0 < A(S, ) <274,
Therefore
(6.2.13) sup (L-+u2)e AP < M(N),
0<3j<
0<U<00 :
1j2<ry<1

where 3 (V) depends on N only. Thus, the right-hand member of (6.2.11)
is dominated by

(6.2.14) QU2 (1 — ) M (W) (L 73 (85— ) (L —1))

for 1/2<7<1,0<8 <00, 0<8< N. This, together with (6.2.10)
concludes the proof of the lemma.

6.3. Proof of Theorem 2. From lemma 3.3, see Remark 3.4, it follows

that under the assumption [eX*dW < oo, u(r, X) may be represented
n’:

by [EKa(r,X,Y)dp

By
Let u be absolutely continuous with respect to the Lebesgue measure,
that is u(6 ¥ ¥°dY) = f(¥)¢ ¥ ¥Y°dY. The pointwise a.e. convergence
of u(r, X =f(r,X* as r->(1,...,1) restrictedly on each set Qu
= {X] 1/M < 5} < M}, M >0, follows from lemmae 6.1 and 6.2 and
from the fact that for a dense subset in Lym(a), f(r, X) -~ f(X) as
r —>(1,...,1) restrictedly.

For u singular and non-negative we have

(6.3.1) pu(r, XY

<D [([[rPa—r L (= TP =) (e T AT,
BT 7=t

whenever 12 <r; <1,/ M<ai<M (j=1,...,m)
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Inequality (6.3.1) can be readily verified taking into account that
it is valid for u abgolutely conmtinuous and considering that there exists
a Sequence u, of such measures converging weakly to u.

From lemma 6.1 it follows that u(r, X*) - 0 a.e. on each @y, M > 0.
This ends the proof of Theorem 2.
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The ¢omparison of an unconditionally converging operator *
‘ oy

JOE HOWARD (Oklahoma)

1. Preliminaries. YTn [3] A. Pelezyfiski shows that every weakly
compact operator is an unconditionally converging operator. In the
following we show that if an operator is strietly singular, almost weakly
compact, or completely continuous (not the same as compact), then
the operator is unconditionally converging; but not conversely.

Our notation and terminology will follow rather closely that used
in [1]. Two common abbreviations used are uc for unconditionally con-
verging or unconditionally convergent and wue for weakly unconditionally
convergent. All spaces are to be Banach spaces and all operators are to
be linear and continuous. A linear operator T: X — ¥ is said to be weakly
compact if it maps bounded sets in X into weakly sequentially compact sets.

Definition 1.1. (a) A series } @, of elements from a Banach space

n
X is ue if for every bounded real sequence {f,} the series 3 f,#y is con-
vergent. » »
(b) A series > @, is wuc if for every real sequence {f,} with lim#, = 0
n n

the series ) ¢,y is convergent.
n

Definition 1.2. Let X and Y be Banach si)a.ces. A linear operator
T: X — Y is said to be unconditionally converging (uc operator) if it sends
every wue series in X into ue series in Y.

LeMMA 1.3. Let T: X — Y. Then T is a uc operator if and only if T
has no bounded inverse on a subspace E of X isomorphic fo ¢,.

Proof. Assume 7' is not a uc operator. Then T has a bounded inverse
on a subspace isomorphic to ¢, by Lemma 1 of [4].

The converse implication is an obvious consequence of the fact that
in the space ¢, the series consisting of unit vectors ¢, = (0,0, ...,1,0,...)
is wune but not ue.

'

* This paper is taken from Chapter II of the author’s doctoral dissertation
and was done while the author was a PSL Fellow at New Mexico State University.


GUEST




