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Inequality (6.3.1) can be readily verified taking into account that
it is valid for u abgolutely conmtinuous and considering that there exists
a Sequence u, of such measures converging weakly to u.

From lemma 6.1 it follows that u(r, X*) - 0 a.e. on each @y, M > 0.
This ends the proof of Theorem 2.
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The ¢omparison of an unconditionally converging operator *
‘ oy

JOE HOWARD (Oklahoma)

1. Preliminaries. YTn [3] A. Pelezyfiski shows that every weakly
compact operator is an unconditionally converging operator. In the
following we show that if an operator is strietly singular, almost weakly
compact, or completely continuous (not the same as compact), then
the operator is unconditionally converging; but not conversely.

Our notation and terminology will follow rather closely that used
in [1]. Two common abbreviations used are uc for unconditionally con-
verging or unconditionally convergent and wue for weakly unconditionally
convergent. All spaces are to be Banach spaces and all operators are to
be linear and continuous. A linear operator T: X — ¥ is said to be weakly
compact if it maps bounded sets in X into weakly sequentially compact sets.

Definition 1.1. (a) A series } @, of elements from a Banach space

n
X is ue if for every bounded real sequence {f,} the series 3 f,#y is con-
vergent. » »
(b) A series > @, is wuc if for every real sequence {f,} with lim#, = 0
n n

the series ) ¢,y is convergent.
n

Definition 1.2. Let X and Y be Banach si)a.ces. A linear operator
T: X — Y is said to be unconditionally converging (uc operator) if it sends
every wue series in X into ue series in Y.

LeMMA 1.3. Let T: X — Y. Then T is a uc operator if and only if T
has no bounded inverse on a subspace E of X isomorphic fo ¢,.

Proof. Assume 7' is not a uc operator. Then T has a bounded inverse
on a subspace isomorphic to ¢, by Lemma 1 of [4].

The converse implication is an obvious consequence of the fact that
in the space ¢, the series consisting of unit vectors ¢, = (0,0, ...,1,0,...)
is wune but not ue.

'

* This paper is taken from Chapter II of the author’s doctoral dissertation
and was done while the author was a PSL Fellow at New Mexico State University.


GUEST


296 J. Howard

Definition 1.4. A linear operator T: X — Y is said to Dbe strictly
singular if it does not have a bounded inverse on any infinite-dimensional
subspace contained in X.

ProrosIrioN 1.5. Let T: X — Y. Then if T is a strictly singular
operator, T is also a uc operator.

Proof. Assume T is not a uc operator. Then by Lemma 1.3, T has
a bounded inverse on a subspaece ¥ of X isomorphic to ¢,. Therefore 7'
is not strictly singular since ¥ is infinite-dimensional.

Definition 1.6. A linear operator T: X — ¥ is said to Dbe almos;
weakly compact if, whenever T has a bounded inverse on a closed subspace
M of X, then M is reflexive.

ProrostrIoN 1.7. Let T: X — Y. Then if T is on almost weakly
compact operator, T is also a uc operator.

Proof. Assume T is not a ue operator: Then by Lemma 1.3, T has
a bounded inverse on a subspace B of X isomorphic to ¢,. Therefore T
is not almost weakly compact since E is not reflexive.

Definition 1.8. A linear operator I': X — Y is said to be completely
continuous if it maps weak Cauchy sequences in X into norm convergent
sequences in Y.

Remark. An equivalent condition is: A linear operator 7': X — Y
is a completely continuous operator if lim|Tw,| — 0 for every sequence
{z,} in X which converges weakly to 0. ™

ProrosITION 1.9. Let T: X — Y. Then if T is a completely continuous
operator, T' is also a uc operator.

" Proof. Assume T is not a uc operator. Then by Lemma 1.3, T has
a bounded inverse on a subspace F of X isomorphic to ¢,. Let a;, as, ...
be the elements of F which correspond to the unit vectiors of ¢, under the
isomorphism. Then {a,} converges weakly to 0.

Now assume T is a completely continuous operator. Then {T(a,)}
converges: in norm to T'(0) = 0 since {a,} converges weakly to 0. Now
T~ is continuous on T(E), therefore {T7'(T(as))} = {a.} converges
in norm to 0. This is a contradiction since the unit vectors of ¢, do not
converge in norm. Therefore T is not a completely continuous operator.

Example 1.10. If T is a uc operator, then 7' is not necessarily an
almost weakly compact or a weakly compact operator.

Proof. Let I be the identity operator on I,. Olearly I is a uc operator
but not an almost weakly compact operator. Since I is not almost weakly
compact, it cannot be weakly compact for every weakly compact operator
is almost weakly compact.

Example 1.11. If T is a ue opera,tor, then T, is not necessarily
a strietly singular or a completely continuous operator.

icm°
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Indeed, let I be the identity operator on an infinite-dimensional
reflexive space. Since I is a weakly compact operator, it is a ue operator.
But clearly I is not strictly singular. Also, I is not completely continuous,
tor it it were, it would be compaet since every completely continuous
operator with reflexive domain is compact.

2. Properties V and Dunford-Pettis. In [1] several spaces are proved
to have the Dunford-Pettis property.

Definition 2.1. Let X be a Banach space. If for every Banach
space Y, every weakly compact operator T: X — Y is completely con-
tinuous, then § is said to have the Dunford-Pettis property.

A property of similar nature was given by Pelezyriski in [3] It is
the following:

Definition 2.2. If for every Banach space ¥, every uc operator
I X—>Yisa Wea.kly compact operator, then X is said to have prop-
erty V.

THEOREM 2.3. Let X have properties V and Dunford-Pettis and let
T: X — Y. Then the following are equivalent:

(a) T is strictly simgular.

(b) T is almost weakly compact.

(e) T is ue.

(@) T s weakly compact.

(e) T is completely continuous.

Proof. (a) implies (b): This is clear from the definitions of strictly
singular and almost weakly compact operators.

(b) implies (¢): This follows from proposition 1.7.

(¢) implies (d): X has property V.

(d) implies (a): X has the Dunford-Pettis property, hence if T is
weakly compact, then T is strictly singular by proposition 4 (a) of [4].

Hence, (a), (b), (¢), and’(d) are all equivalent. The proof will be
complete if we show (d) implies (e) and (e) implies (e).

(d) implies (e): X has the Dunford-Pettis property.

(e) implies (¢): This follows from proposition 1.9.

Remark. Examples of spaces that have both property V and Dunford-
Pettis property are: B(S), O(8), ¢, ¢y I, and L (8, Z, p).

‘ Definition 2.4. A Banach space X is almost reflexive if every bounded
sequence in X contains a weak Cauchy subsequence.

COROLLARY 2.5. Let T: X — Y and let X be almost reflexive with proper-
ties V and Dunford-Pettis. Then if T is a uc operator, T is a compact operator.

Proof. Let T be a uc operator. By Theorem 2.3, T is a completely
continuous operator. Now since X is almost reflexive, by Theorem 5
of [2], T is a compact operator.
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Remark. Examples of alost reflexive spaces that have properties
V and Dunford-Pettis are' ¢, ¢, and ((S), where § is a compact Haus-
dortf dispersed space [5]. Hence we see that any uc operator T: ¢y — ¥
is compact. Note that 7 is a uc operator and hence compact if ¥ containg
no subspace isomorphic to ¢.
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Principal ideals
which are maximal ideals in Banach algebras

by

RICHARD M. CROWNOVER (Columbia, Mo.)

L. Introduction. Let A be a commutative semisimple Banach algebra
with identity. If for some fe4, the principal ideal Af is a maximal ideal,
then in a natural way there is associated with each element ge4, a formal

power series ):' a,f" with complex coefficients. Indeed, as shown in Theo-

rem 3 below, 1f Af is not in the Silov boundary I', then for each ged,
the Gelfand transform g is given by the power series B

= Zanf“(y)

for all ¥ in the maximal ideal space satisfying ]f(y){ < min{[f(t)]: tel'}.

The phenomenon of a principal ideal being & maximal ideal occurs
in the familiar “disk algebra” consisting of the continucus complex-
valued functions on the plane disk {: |2} < 1} which are analytic in the
interior. The ideal Az is maximal, and each g4 has a power series expan-

sion 3 a,2" holding in the interior of the disk.
n=0

We wish to acknowledge the work of Phillip E. Parker(*) concerning
the relation of the norm and Gelfand topologies on the maximal ideal
space when Af is a maximal ideal, and present a result of his in section 3.

2. Let us suppose throughout this section that 4 is a sup norm
function algebra on a compact Hausdorff space X. This means that A
is a closed subalgebra of the algebra C(X), that

(i) A separates points in X, and
(ii) 1eA.
We wish also to impose the condition that
(iii) the maximal ideal space of 4 is X.
By saying that the maximal ideal space of 4 is X, we mean that

(1) Mr. Parker’s research was supported by National Science Foundation Under-
graduate Research Grant GY 8-4599.
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