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On the area function of Lusin*
by '

CARLOS SEGOVIA (Chiecago)

Introduction. Let f(2) be an analytic funetion of one complex variable
defined on the upper half plane of the complex numbers with positive
imaginary part and belonging to an H”-class, p > 0. In 1965, Calderén [2]
proved that the area function of Lusin

Sufi@ =] [ 1f’(u+it)|zdudt]1"‘

1@~ ]<at

corresponding to f(2) satisfies the inequalities

+ 00 : ‘oo ' +o0 :
o [ f@Pia< [ S(fP@dn<e [ f@Fds,

where ¢; and ¢, are two positi{re constants depending on « and p only.
Partial results of this theorem were known. In the present paper we
extend Calderén’s theorem to the case of systems of conjugate harmonic
functions; see [5] and [8]. The area function that we will use is essentially
that given by B. M. Stein for harmonic functions of several variables
in [7] and [6]. With the intention of avoiding innecessary repetitions of
gimilar arguments, we present our tesults with the generality that the
application which will be the subject of a second part to-this paper will
require.

The material contained here is part of the author’s doctoral disserta-
tion directed by Professor A. P. Calderén at the University of Chiecago
to whom I wish to express my sincere thanks for his help and encourage-

ment.
By E, we ghall denote the n-dimensional Euclidean space of the
n-tuples & = (@, ..., ¥,) of real numbers. The, ball in E, with center

at @, and radius » will be denoted by B(x,, 7). We shall refer to the set

* This research was supported by Consejo Nacional de Investigaciones Cien-
tificas y Tecnicas (Rep. Argentina) . .
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Bf, ={¢0):t>0,zeB} = Byyy 28 the upper hfmlf space and ity
boundary will be identified with B,. In some cases it will prove to be
convenient to denote the point (£, &y, ..., %) bY (%o, -- -, #a); cONseqUently
80z, and /0t will denote the same partial derivative. By Pyu(t, ) we
shall denote the m-dimensional Poisson kernel:

Palt, ©) = D(n+1[2)n=CTIR(|pj2 - g2)~ 4D,

The convolution of a function f(z)eL”(H,) with the Poisson kernel
will be called the Poisson Integral of f (x). Let # < E, and o > 0. For a function
B(t, x) defined on 4.1, we shall denote by m.(B)(=,) the least upper
bound of the values of the function over the cone I,(%,) = {x: [2—ua,
< at}. We shall say that a set P contained in an open set 4 < H, is a polar
sel in A if there exists @ super-harmonic function defined on A4 and such
that it takes the value oo at every point of P. Every subset of a polar
set is a polar set and a countable union of polar sets is a polar set (for
these and more on polar sets see [1]).

CHAPTER I

In this chapter we present some basic results of the theory of H?-spaces
which will be needed later in this paper. Let B(f, ) be a real-valued
function defined on Fj,, and such that it satisfies:

(1.1) The funection B(f,z) is non-negative, continuous and sub-
harmonic on Ej,. :

(1.1’) There exists a constant K such that for every ¢ > 0 we have

[ Bit, 2)'dw < K7,
B, .

where ¢ is a real number greater than 1.
(1.2) ProrosrtioN. The function B(t,x) satisfies the inequality

B(t,2)*< K4
Jor every t>0 and x<B,. Moreover, if 0 <<e<l<lle, e <1, we have
lim B(f,2) =0

12|00

uniformly in .
Proof. See [8], lemma (3.2), p. 37.

(1.3) ProrosIrIoN. There exists a function f(x)eL'(HB,) with norm less

than or equal to K such that B(t, z) < U(t, x), where U(t, x) denotes the
Poisson integral of f(z).

Proof. See [8], lemma (3.8), p. 40.
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(1.4) PROPOSITION. The function mq(B)(w) belongs to LUE,) and

its morm is less than or equal to a comstant times K. The constant depends
on a, n and q only.

Proof. See [8], lemma (3.14), p. 42.
(1.5) PROPOSITION. Let ®(t) be the function defined as
(1) =[ f B(t,a;)qdm]”q.
By,
We have
(i) The function D (1) is non-increasing and conves.
(ii) The limit of @ (%) for t tending to infinity is equal to zero.
Proof. See [8], Theorem C, p. 47.
(1.6) PROPOSITION. Let us assume that the limit IimB(t, z) exists
0

for almost every weB, and denote the limit by B(0, ). We have

[ B(0, 9)%ds = lim [ B(t, o)fd < K°.
Ep 0 By

Moreover, if for ¢ >1 and KE' > 0 we have

[B(0,2)%de <K,
En

then the inequality
[B(t, o) dw < K™
Eﬂ
holds for every t> 0.
Proof. See [8], Theorem D, p. 49.
(1.7) We consider now a harmonic function F(¢, z) defined on Bj,,
with values in a real Hilbert space # and satisfying:
(A) There exists a constant K > 0 such that
JIF (@, @)P do < &?
Eﬂ
for every t > 0. Here p denotes a positive numb'er.
(B) For almost every zeH, the limit
YmF(t, 2) = F(0, z)
exists. 0
(C) For every (i, z)eE;,; we have

oy O/ 0F(t, 2) : . \a|| 9P, 2)
(3 2)Z<T,F<t,w>>+nﬂ(t,w)n 2” 5

where 4, is a positive number less than p. B

2

>0,
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The following lemma shows that condition (C) is eqlliva.lent to the
subbarmonicity of the function |F'(t, @), 6= 89y o0 Brpy.

(1.8) Lemma. Let F(x) be @ harmonic function defined on- an o_fpgyg
set D < B, and with values in a real Hilbert space . The function |2 ()i
s subharmonic on D if and only if for every zeD the inequality

y/ 0F (@), >2 ‘ - I‘ oF (@) |I
1.9 _ B ()2
a9 2>Z< P, py +Ee Y| |
holds.

Proof. The function ||[F(s)|’ is non-negative and eontinuou.s on D,
Moreover, this function is infinitely differentiable at every point zeD
~where ¥ () is different from zero. Then, it suffices to show that t.he lapla-
cian of |F ()] is non-negative at every point where the function F(z)
is distinet from zero. We have

=0

| . | s o/ OF
0ia:~ (17 @)} = aim (P(2), F@)™” = rSHF(w)ll“z<-E(§l, F(w)>
and
i oF :
a%;(mmn") = 8||F ()" [(a~2)< a;i”)., p(m)> +

& F () } 0F(x)

+||F(m)||2(<—a—zzi—,mw)>+ e )]

Hence, considering that F(v) is a harmonie fﬁnction, we obtain for
the sum of the second partial derivatives the expression:

n

b 3
255 (17 @) -

: || oF
— SF@P [(a._z)2<f’§$),mw)> +HiE@e > ” =

2]
and this expression is non-negative if and only if (1.9) holds.
(1.10) ProrostrioN. Let F(t, ») salisfy conditions (A), (B) and (O)
of (1.7). Then we have

[I1F@©, D)fdo<E” and lim [IF (@, 9)—F(0, 2)|"dw = 0.

Eﬂ t%Eﬂ

Proof. By lemma (1.8) the funection B(t,#) = W2, :b)||”° is sub-
“harmonic on ', and since F satisfies (A) it follows that Ef B(t, x) do < E?,

where r = p[§, >1. This shows that we can apply ”propésition (1.4)
1o B(t, ) = |F(t, o)|" and therefore that m,(B)(x) belongs to L' ().

iom°
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‘Fl'onsl the defi_:nition of m.(B)(z) we get that B(i, #) < m,(B)(x), which
implies that E:?B(t, #) = B(0, %) < m.(B)(2) and hence
I1F(t, 2)—F(0, 2)|° < (|F(t, o)l +2(0, 2))° < 2" m.(B) (z).

. This shows tha_l.t the first member of the inequality is majorized by
an integrable function for every ¢ > 0. Then, since lim |F(t, z)— F ©, 2)°
. t0 .
is equal to zero for almost every weH,, it follows from the Lebesgue’s
bounded convergence theorem that ‘

lim [, 2)— PO, )P dz = 0.
= En

The inequality

S, )P do < B
Eﬂ

is a straightforward consequence of Fatouw’s lemma.

(1.11) ProPOSITION. Let F(t, z) satisfy conditions (A), (B) and (C)
of (1.7). The function

o) =[ [P, )P da]*”
En
is conves, non-increasing and im®(t) = 0.
. . >0
Proof. As in the preceding proposition take B(f,#) and apply
proposition (1.5). )

(1.12) PROPOSITION. Let F(i, z) satisfy conditions (A), (B) and (C)

of (1.7) and let us suppose that for a number p' > &, and a constant K’ the
inequality :

[1F@©, o) da<E” ’

holds. Then, for every t >0 we have
1, o o < B

"

Proof. Apply proposition (1.6) to B(t, ) = |F(¢, z)lf°.

CHAPTER 11
' THE GREEN'S FORMULA
Let us denote by gx(t,2),k=1,2,..., the function
N (8, ©) = Tosin (h-11) cos (k1zy) ... 008 (k-12n)
and by Vi the set
Vi={{t, 2): 0<t<kn, |o| <hn/2, i =1,...,n}.
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The purpose of this chapter is to prove the following proposition
which will play an essential role in the proof of theorem (4.2):

(2.1) ProposITIoN. Let F(t,x) be a harmonic function defined on
B, with values in a real Hilbert space 7. We assume that F(t, x) satisfies

(A)il(O) of (1.7) and

(2.2) (D) The set of zeros of F(t,») is a polar set in B,

Let h(x) be non-negative and continuous function with compact support
defined on By,. For ¢ >0 and 5 > 0 we denote by H(t,x) and G(t,s) the
functions

H(t,a) = [Pu(t+e,s—wh(wydu and G, a) = F(t-+n,9)
Eﬂ

respectively. Then, for & > &, we have:
@3)  lm [g, o) 4(160¢ o) Ht, o) dodt
koo 7Y,
= [1610,2)PH (0, z)da.
Eﬂ

Moreover, if 6 = p,

(2.4) [ [ta(le@, o)) dwdt = [ 160, 2)|f da.
4 5,

We begin with some preparatory lemmas.

(2.5) LemmA. Let f(x) be a continuous and subharmonic function
defined on an open set D < B, Let us assume that () s infinitely differen-
tiable in the difference D ~ P, where P is a closed set in D with Lebesgue
measure equal to zero. Then, the Laplacian of f(x) is integrable on compact
subsets contained in D.

Proof. Let z, be a point of D and B(w,, r) a ball with center at ,
and radius r such that B(z,, 7) = D. We denote by ¥(z) an infinitely
differentiable function defined on FE, which takes the values 1 and 0
for me B(w,,7/4) and @<C B(z,, 7[2) respectively. Let g(z) be the function
g(z) = ¥(x)f(z). This function g(x) is continuous on E,, has a compact
support and is infinitely differentiable on H, ~ P, where P, is the set
P ~ B(x,, r[2).

Let &(x) be a non-negative, infinitely differentiable function with
support contained in the unit ball B(0,1) and such that [ &(x)dz = 1.
The sequence {gm(x)}, m a positive integer, given by

gna) =m" [ 9(4) @ (m (2—y)) dy

) ©
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has the following properties:
(1) sup lgm(®)| < sup g(z)|.
K, Tk,

(ii) For every m, the function g, (z) is infinitely differentiable and
its support is contained in the ball B(g,, #/2-1/m).

(iii) The sequence {g,(z)} converges uniformly to g(z). -

(iv) If m > 8/r, the Laplacian Ag,, (x) is non-negative for x B (2, 7/8).

(v) The sequence Agn(w) converges to Ag(x) at every point
msEﬂ NPI.

(i) and (ii) follow immediately from the definition of gm,(z). (iil) is
a consequence of the uniform continuity of g(x). Let us consider (iv):
the Laplacian Ag,(z) will be non negative on B(z,,r/8) if and only if
for every function ¢(z), infinitely differentiable and with support con-
tained in B(x,, r/8), the integral Ef @(2) Agn(x)dx is non-negative. We have

Jo@ dgniayio = | g(@)[4 [ m" D (my)p(z-+y) dy) s,

where the function [ m"®(my)e(z+y)dy is non-negative, infinitely
differentiable and with support contained in B(w,, r/8+1/m) < B(my, r/4)"
By definition of g(x) we have g(z) = f(z) for me B(z,, r/4), therefore,

Jr@dgn@is = [ f@)|4 [ m"®(my)p(o+y)dy|do
n Eﬂ

and since f(z) is a subharmonic function on D, we see that the second
member is non-negative.

Let us consider (v): Since P, is a closed set, we have H, ~ P, open
and therefore, if zeH, ~ P,, there exists an &> 0 such that B(z,e)
< B, ~P,. Let m > 2[e; then

Agni@) = [ g(y)Am" @ (m(z—y))dy.
[B—vl<e)2
Since ¢(y) is an infinitely differentiable function, the expression
above can be written as

Agn(@)= [ m"®(m(z—y) dg(y)dy
z~l<ef2
and now (v) follows from the continuity of 4g(y) on B(z, e).
Let o(x) be a non-negative and_ infinitely differentiable function
defined on B, such that o(w) = 1 for weB(w,, 7/16) and p(z) =0 for
zeB(x,, 7/8). From (iv) we obtain that if m > 8/r, then

dgn(@)io < [ e@ dgm@)de = [ gn(o)de@)dn

B(zq,7/16) B(%g,"/8) B(zo,"/8)
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and applying (i) we obtain
Ago(w)dz < suplg(e)]-sup |4o(2)]-1B(5o, 7/8)i < e,
Bz,r[16) ~ el zellin,
where the constant ¢ does not depend on m. Hence, by Fatou’s lemma,
we have )
liminf Agm (2)ds < ¢,
" B(xp,r/16)
but using (v) we see that liminf Agn (#) = lim Agm (w = Ag(x) for almost
every point zeB(w,,r/16) and therefore
Ag(x)do = Af (w)ydw < ¢
B(zg,r/16) B(2,T/16)

This shows that for every point zyeD there is a neighborhood
B(w,, r16) of z, on which Af(w) is integrable. The integrability of Af(x)
on compach sets contained in D follows immediately.

(2.6) Lumma. Let F(2) be a harmonic function defined on an open set
D < B, with values in o real Hilbert space 5 and satisfying (C) of (1.7).
Then, for every zeD and & > 6,/2 we have '

|gradient (|7 (@)} < 3 —— 4 (I F(@)]").

8
26— 0, 8o
Proof. The partial derivatives of |F(w)|’

[F (@) are given by:
OF ()
o F (w)>

and the Laplacian of

9 o o—2
P (17 (@)} = SIIF (@) <

and
A(|F(2)”)

= 20| F @) [(26 2)2(—-—— F(w)> —I—HF(w)“zZH 01;’;?)

Therefore, for the gradient of |.F(2)| we have

jerad (P ()" = 65|1F<m>n2""‘2<a§;”) #a))

and our thesis can be written as

et LG [(26 2)2<

|

>+IIF( n= OF (@)
69:-

> 8| F (@)~ Z< o
1 (2

|
Pz )>

icm
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or
s, D (T2 50) +irene 3] 2[5,
- i T Ly

but from (C) of (1.7) the expression in brackets is non-negative and the
lemma is proved. _

(2.7) LimmmA: Let F(z) satisfy the same hypotheses of lemma (2.4).
Then, for 8> 8,/2,. the functions (8]0z;) F(w)]]a] i=1,...,m and

A(F@)|*) are integrable on compact subsets of D.

Proof. Lft K be a compact subset of D. Integrating the inequality
[(2/8:) (| F (2)))] < |grad (|F(@)f)] over K and applying Schwarz’s ine-
quality we have

1/2
2da:] ,

Kf ’5 (P @)

where, by lemms (2.4), the second member is less than or equal to

1 ) 12 " f ]1/2

Gas) e[ ateeras

and since the function ]]F(w)l]"’ is subharmoniec, continuous and its set

of zeros has Lebesgue measure equal to zero, lemma (2.5) applied to

f(x) = ||F(x)|® shows that (2.8) is finite and the lemma is proved.
(2.9) LmvwmA. Let F (%) be.a harmonic function defined on an open set

D < B, with values in a real Hilbert space # and satisfying (C) of (1.7)

and (D) (2.2). If 6 > 8o/2 and ¢(z) is an infinitely differentiable function

with compact support comamed in D, we have

do < [K[V [ f |grad (|7 ()]
K

(2.8)

Ef p(0) o (IF@N) 20 = — f F@I 5 (01do

and
(I1F (o)) 4o = f |F (@) Ag(x)dw.

f p(2)4

In other words, for 6 > 8,/2 the pomtmse partial derivatives of |[l7’(m)]|

and the poimtwise Laplacian of 1B (@) eoincide with the corresponding
derivatives and Laplacian in the sense of the theory of distributions.

Proof. Let 2, be a point in D and C(z,, r) a cube with center at a,

and semi-amplitude r such that C(z, 7)< D. AH T = (Byy «eey Bn), We

denote by 4 the point’ (s ..:) @) By and C(zy; ) denotes the set
of all # such that # eC (&, r). Lemma (2.7) and Fubini’s theorem imply
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that for almost every #cC(zy, r) the function :P(S‘;@)a(HFA(S, )| g,
is integrable in the variable s on the segment L () = {s :A(s, @) eC (my, 1)}.
Let us assume that F(s, #) is not identically zero in L(#) and that the
support of ¢(w) is contained in C(w,, ). Then there exists h e such that
the real-valued harmonic function <k, F(y)> has & 1ON-Zero restriction
to the segment L(#). This implies that <k, F(s,®)) is a non-zero real
analytic function of s defined in a neighborhood of the closure of L(z)
and therefore that the set of zeros of F(s, Z) contained inAL(w) is finite.
Let s, < ... < $m be the zeros of F(s, %) belonging to L(x). For almost

every &eC(z,y,7) we have

+o0 6 8—¢ m—18;41-8 400
Frosamanmsal [+ T

oo - m
== [ w6, ar e do-ttim ) I s, g loimey &)

—[|F(8i+ ¢, ";7)”b(p(si+ g, 57)}

+o0 ~
(s, &)
-- i 1765, ff == ds,
therefore, integrating in the variables #,,..., #, we obtain

9 o g (@)
E{ o) 55 (F@)do = “E{ e 2 ao

and analogously for the other derivatives.

We consider now the case of the Laplacian. Since | F(z)|* is a sub-
bharmonic function of D, the Riesz’s representation theorem gives that
for every relatively compact open set A such that 4 = D,

1 1 I(nf2)
W@ = b pat Bala), vhere 0 =22 0EL,

84(x) is a harmonic function on A and u, is the restriction to 4 of the
positive measure x on D defined by

[o@)du(@) = [ |F@) dpda,
D D

that is to say, u is the Laplacian of ||F(2)|* in the sense of the theory
of distributions. Let u =g(#)dz+u be the Lebesgue decomposition
of the measure 4 with respect to the Lebesgne measure restricted to 4

icm
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and let P be the set of zeros of F(z). If ¢ () is an infinitely differentiable
function with cdompact support contained in D~ P, then, since the
function ||F(x)|* is infinitely differentiable in a neighborhood of the
support of ¢(x), we have

B} f (@) dp =E{ |17 ()] Ao () do - f 9(@) 4(I1F (@) az,

which shows that g(@) = A(|F(«)|*) almost everywhere and that the
support of x4 is contained in the set of zeros P.

In order to finish the proof, it remains to be shown that z = 0.
If z # 0, then there exist thfee non-empty relatively compact and open
sets 4;, 4,and A,such that 4, < 4,, 4, = 4,, 4, = D and the restriction

of u to A, is different from zero. Applying Riesz’s representation theorem
to A; we have

1 -
— 1P (@) = On o= ity + Sy (@)

for every wed,. Hence, since the funetion A{||F (z)|) is non-negative,
the Lebesgue decomposition of x gives the inequalities:

@I =ty

o™

*payt+ 84, (2)
1 " . 1
= a,,mT_z *A(||F ()] dw)43+a,,l—wl,,,—_2 o4, + 84, ()

1 _ 1 -
P a’"—[a:]_”"i *pg,+ 84 () > a’n'l;]n_—g *pea,+ 8, ().

The support of g, is contained in the set P ~ 4; and since this set
i a subset of the polar set P, we conclude that the support of 4, is polar
and compact. Applying a result of Evans [4] and Choquet [3] which
asserts that the Newtonian potential of a positive measure whose support
is a compact polar set is equal to infinity at least at one point of the
support, we see that the potential of u4 is equal to infinity at a point
#yecA,. The lower semicontinuity of the potential implies that for an
arbitrary positive number M there exists a neighborhood V of z, satisfying
¥V = 4, and such that

1 -
e, > M
an ]mi‘n—i /“Al
for every point in V. Let us choose M equal to sup |S., (2)|. Then, if z¢V,
we have, Teds
1 —
M = sup |84, (@)l = — 1P (@)|P— |84 ()] = O e *pay > M,
Tedy

which is a contradiction and the lemma is proved.

21 — studia Mathematica
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(2.10) LEmva. Let D be an open set of B and. K a compact subset of
D with boundary 0K smooth enough to assure the validity f’f Gwe(m"s formulg.
Let H(x) and ©(x) be two infinitely differentiable funciions def’med on D
and such that ®(x) = 0 for xe0K. Then, if F(x) is a harmonic function
with values in o real Hilbert space # and satisfies (C) of (1.7) and (D) of
(2.2), we have for every 8 > 0, the Sformula

[ @@ A{|F @ E(@)dn— [ IF @) H (@) 49 ()dz
b4 K

= PP E () 22 4
- J ()= do.

Here do denotes the element of area of the boundary OK.

Proof. Let ¥(») be an infinitely differentiable function with compact
support contained in D and such that ¥(#) =1 in a neighborhood of K.
We define g(z) as

g(@) = P(@) |F ()|

Let gu(x) be the convolution of g(z) with m"p(mz), where ¢(x) is an
infinitely differentiable function with support in the closed unit ball
B(0,1) and [¢(z)de =1. Since the functions gm (), H(x) and P(w)
are infinitely differentiable, we can apply Green’s formula and obtain

[ (@) 4 (gn(@) H (@) d— [ gn(0)H (2) 4D (2) dw
K K .

=a;g(m)H(m) aﬁf) do.
To prove the lemma, it suffices to show that
@ lm [0 40 H@)do = [ 2(0)4(g@H @),
@ lim [ gm(@) H (2) A0(@)dz = [ gm(2) H(z) AD () i,
and 8 "
® e @E0 5 - [o0B@ 2 4.

For the first limit (1) we have

@11) | [ 9(0)4lgn@ H@)—g(@) H(@)]da| < ¢ [ |4gn(2)— Ag(o)|do+
K K

+0Kj1gmd(gm(m))—gmd (g@)da+C [ lgm(@)—g(x)lde,
K
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where C is a constant depending on @, H and K. Using lemma (2.7) it is

easy to verify that g(x), dg/dz; and Ag are functions in L(E,). Moreover,
lemmsa (2.9) implies that

Agn () = A(g*pm) = (4g)*gn
and
d

7} dg
axigm(m) —6‘%(!]*(}%) :B—m * Qi .

Therefore, we have

lim [ |dgn(z)— Ag(a)|dw = 0,
m-»coEn

lim f
Mm—o0 En

Ogm (@) _ 0g ()
a.’ﬂ,; 6:@

dr =0

and
lim [ |gn(@)—g(a)de = 0,
ME’A

which shows that the second member of (2.11) is arbitrarily small for m
large enough and therefore that (1) holds. The proofs of (2) and (3) are
similar to that of (1) and even simpler.

Proof of Proposition (2.1). Let M (¢, z) be either the function
H (i, ) described in the formulation of this proposition or M(¢, z) = 1.
Sinee M (¢, x) is bounded, we have

[le, ot u, ndo< o [16G, ) de
B, E),
and from (1.2) and (1.12) we eonclude that if § > p, the second member
above is a bounded function of ¢ converging to zero for ¢ tending to in-

finity. If 6 < p, we take ¢ = p[6 >1, ¢ = ¢q/(¢g—1) and an application
of Holder’s inequality gives

[16¢, o)’ u (¢, oyan<( [l6, m)llpdw)llq( [ h@* anfr,
Ey, B, By,

which shows that again the second member is a bounded function of ¢
converging to zero for ¢ tending to infinity. It follows then that in all
the cases considered in this propesition we have

212)  [l6t, o)P M (t, 0)dn < O and lim [ 6, o)l M (¢, 5)da = 0.
Ee,  En
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Since the functions ge(f, #) and M (¢, ) are infinitely differentiable
for t > 0 and gi(t, ) vanishes on the boundary of V3 we can apply lemma,
{2.10) obtaining )

[ 0e(t, @) A(6 1, ) H(t, o) dais

f||G t, o)l M (1, @) Aga(t, o) dudt— f||Gz o) M, x): 0t @)do.

vy

Let us show that

(2.13) lim [ 16, DI M (t, 2) Agu(t, @) dads = 0.
0 Fr

A simple computation gives |4gi(t, )] < (n+1)/k and therefore
we have

° M (t, x) dudt.

| [ 160,006, 0) s, )0t <
Yk

From (2.12) we know that given ¢ > 0 there exists a number ¢, such
that

[le, o)’ M (¢, 0)dw < s for t>14,
Ey,
hence, if kx >1, we have

| [16, @) 2, 2) 49t o)t
Ve

< (";1) Gt o)l M2, o) drt ™

‘n

f«zt fna(t D)\ M, v)d

1
Ot,‘z +7!6,
which shows the convergence to zero of (2.13).
Next, we define the sets By, Trand Cr;,(j = 1,...,n;¢ = Lor —1) a8
By = {(t, ®):t = 0; os] < km/2,4 =1, ..., m},

Ti = {(t, #):t = ks ool < k2,4 =1, ..., n}
and

Orje = {(t, 2):0 <8< br; |2 < b2 for 4 #7, m; = ekm[2}.
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With this notation, the boundary 4V is given by the union:
(2.14) OVi=Byu Ty v (U Crie)-
1,6
We will show that

. » ? i
@.15) Jim kf 16, DM, 0) gt e = [ 1600, 9IF (0, 0o

(2.16) i [ 16090 210,05 0nt 00 =0

and

(2.17) lim f!IG(t o) M, w)igk(t, z)do =0
k00O e on

for every j, e.
The decomposition (2.14) of the boundary of Vi and the limits
above imply

lim - fna—(t, WM, m)—-gk(t ©)do = qu 0, o)’ M(0, z)ds,

koo gpy,

which, together with (2.13), proves (2.3).
Let us consider (2.15). On the hypersurface B the normal derivative
and the element of area have the expressions

b7} a .
%gk = ——-—679;,(0, x) = —cos(k—tw,) ... cos(kta,)

and
do = dmy ... dvn

respectively. Therefore, the integral over By is equal to
f 1640, @)’ M (0, z)cos(k~2a,) ... cos (b~ a) do; ... dop
|zl-|<kn:/z

and since the integrand is an increasing sequence of non-negative functions,
we obtain that the limit of the integral above is given by

[ 160, 2)If (0, z)dz.
Eﬂr

Let us consider (2.16). On the hypersurface Ty the normal derivative
of gr(t, ®) is given by

;‘gk = %g,,‘(kﬂ, @) = cos (k@) ... cos (b~ @)
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and do = d», ... dz,; then, on T} we have

"'ka G(t, =)° M (¢, m)?%gk(t, )do

< |G{kr, x)|| M (kr, z)da gEJ G ke, )| M (kre, @)de
2| <Frej2 n
and, by (2.12), the last integral converges to zero for & tending to infinity.
Finally, for limit (2.17) we see that on the hypersurface Oy;, the
normal derivative is )

] .
%gk(t, @)= —sin(k-1¢)cos (k1a,)...co8 (k~1a;_;) cos (k1m.1). .. cos(h1x,)
and
do = didw, ... doj_ dwyq ... dioy;
then,
7]

2.1 l — f ’ —
18) | = | 166 a0 310, 9 5= uct, 010

kn  knj2 k)2

<f f f WGP L (ty @y, vy By, OB [2, g, -, @) iy ...
0 —kn2 ~Tem 2

e Qs dayy ... d,.

The point (i, @y, ..., @1, €kw/2, #1y, ..., ,) belongs to the cone
Iy(@yy ooy @iy, kw246t 2541, ..., 2,) and therefore, the second member
of (2.18) is less than or equal to

kr  Emp2 krf2
Jo Lo [ ma61ym (M) (@, ey 35, G2 et G ey ) X
¢ —kwj2 —kf2

XAtdw, ... Az dwyyy ... do,.

Changing variables and enlarging the domain of integration we see
that the integral above is majorized by

(2.19) [ ma(161) my (M) () do.

252
If 6= p, the integmlEf my(|G)°) (@) de is finite and since my (M) ()

is bm;nded, it turns out that (2.19) can be made arbitrarily small by
choosing k.lzurge enough. If 6 < p, we take ¢ = p/é > 1 and q =qlig—1)
and applying Holder’s inequality we obtain that (2.19) is bounded by

& [ w61 @)ae)"( [ h(a) aa]'
Ep

|Z|=kn)2
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but since the integral J my (|G (z)dw is finite, it turns out again that

N
(2.19) can be made arbitrarily small by choosing % large enough. This
completes the proof of (2.3). In order to prove (2.4) let us observe that
A(HG(t, w)H") is a non-negative function and that the sequence gz(¢, @)
converges increasingly to ¢ for % tending to infinity. Then, we have

lim [ autt, @) A(I6 2, @)} dwat = [ [¢4 (|62, o)) dide,
Il 4% 0 E,

which completes the proof of the proposition.

CHAPTER III
SOME ALGEBRAIC LEMMAS

(3.1) LM, Let F(2, @) be a harmonic function defined on By,
with values in a real Hilbert space # and satisfying (C) of (1.7). Then,
for almost every (t, @) By, and 8 > 0 we have '

A(|F(t, 2)|)+ 28,6 [grad (|F'(2, &)|)]* > 0.

Proof. From the expressions for A(|F(t, 2)|*) and d(|F(t, »)|’)/0w:
given in (1.8) we see that

A(IB(t, 0)|[)+ 28,6 grad (1F (¢, 2|

s ; LLICIOAY
— 28| (t, )| [(26—2+5n)02<1'“’””)’ Oa >+

+IE G, w)nzzn i

0

= OF(t, m)\?
> 26||F(t, w)n“'“[(ao—m;‘@(t, ), c,fwi m)> +

+IE(E o)l D)

[

F(t, o)
Xy

0F(t, x)
6%‘.,;

l
and sinee by (C) of (1.7) the expression in brackets is non-negative, we

obtain the thesis. _ ) B
(3.2) Definition. Let F(t, #) bea harmonic funection defined on By,

with values in a real Hilbert space 5 and satistying (C) of (1.7). Let
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8> 6,/2 and a>0. We define the area function S.(I1FP) (5) of

I7(t, 2 as
172
SL1P) o) = [f JEE all 220 41ty |

(3.3) Definition. Let F(f, ») satisfy the assumptions of definition
(3.2) and let 8 > 0, @ > 0. We define the modified area function T,(|\F|’)(x)
of |F(t, )| as

T (|IF)°) (o)
a(y
U f . (ff %) [4(12 @, w)I*)+28,61| grad (|F (£, w)]°)[] dudt]
The two area functions just defined are related, at least for 6 > §,/2,

by the following lemma:
(3.4) LemmA, The inegqualities

20
TL(F1 @) < (55
hold for every 8 > 6,/2.

Proof. The first inequality is apparent. As for the second, lemma
(2.4) implies that

1/2

8s(17") () < 8 ([17)°) ()

-
§

A(F (2, 2)]¥)+ 28,5 grad (I (2, o))

A(F (&, 2)[*)

for every 6 > 6,/2 and the lemma follows by integrating this inequality.
(3.5) LiemmA. Let r> 1 and 8 > 0. Then

To(IIFI) (@) < (1P ™ (@) Tu(1E]) ().

Proof. Since r 1, we have
iy oF |
—1)|(8,—2 2
t—1)[(80-2) > (G >+||Fu = | >0

which implies

(r2o—3r—3,=2) (3L #) + -1y Y|

[)

oF

6501'

[2

=
f

(*) The funclion ya(f, #) denotes the characteristic funotion of the eone I'x(0)
= {&: |%] < af}.

icm
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Adding and subtracting 267 into the firgt parenthesis, we obtain

2 hid 2
2} +or-vime 3 |2

[(r20—2r+18) — (2r6— 24 8,)] Z<g~f, =0
0

and from this it follows that
5/ OF  \2 . >
rlo—2+ 602(735;, Py + ey “gwf” ]
s S Ao S

Now, multiplying both members by 26r|F|***, we have

. n oF . n "
aarsyapr-@o—a-a9 3)(5F, ) e 2
0 v 0
20r_4 __ n1 oF g
> 20|17 [(zar 2+ao>;<a~m€,1ﬂ>

or, which is the same,

=

P2 FPCILA(|FI) + 26,6 [grad (|F|°) 2]
1
=4 (HFH“’)-I-?%'E‘ |grad (I )")|?
and integrating we obtain

(") (@) = f f 2o T AP+ 3005 lemd (1)1 dude

<re f f 2ol 22D e LA (L) + 20,6 lrad (I

< g (1B (@) To(1F)) (@),

which proves the second inequality of the thesis. -

(3.6) LEMMA. Let 8, >0,5,>0,0< o<1 and 6 = of,+
Then, the modified area function T, satisfies

(1—0)Bs-

l—o

1 1 ) i _1— s
S nm @ < [ namee] [5-z.0mpe)]
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Proof. We shall study first the function @(s) =1g(A+B/s), where
A,B>0,4+B>0 and s >0. The second derivative of this function,

d*p(s) _ B(24s+B)
dst  (As*4Bs)’

is non-negative and therefore @(s) is & convex function of ¢ for s >0,
which means that for 0 < o<1, ;>0 and >0,

W(‘Tﬂl‘}“ (1—o) ﬂz) < op(B)+ (1—a)p(Bs)
‘holds. This inequality implies
PP+ 0f) [3'?(»71)]" [6'1’(52)]1—“

and, replacing ¢(s) by its definition, we obtain

B BT B]l—o‘
7 hid 2 a2 .
3.7) A+ <[A+ ﬁl] [ +4

Let us consider now the expression -

o TAQIEI)+ 28,8 grad LE) 2
. n_@y( B ”<6FF>2
— 7| 4[4.20]<6%,F +12(s, 2)20: G 7))+
= || 87|\ 1
+at 53]
S /0F _\*
A=4Z<E,F>
Sy /O _\® || 0P |2
B=26,:-2) Y (5 7) +2||Fn22”~a;“ ,
0 v 0 v

‘then (3.7) implies

If we take

and

;1;[41 (1) + 2848~ [grad (|F) 2]
< {%[A(HFH”’"HZ%/?TI lgrad(llFllﬂl)l”]} X

1 1—0
X {EM (IF1P#2) 428, 7 lgrad(nFn"zw} .

e ©
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Finally, integrating this and applying Holder's inequality to the
second member, we obtain

Lo [1 r1
S TP (@) < [ﬂ— Ti(luﬂnﬁl)] [ ;

2
2

1—0o
Ta( IIF!iﬁE)] ;

which proves the lemma.

CHAPTER IV
THE MAIN THEOREM

(4.1) LewMA. Let F(t, ) be a harmonic function defined on By 1 with
values in o real Hilbert space # and satisfying (A) and (C) of (1.7). Let
us denote by G(s, ) the fumction F(ti+s,3),t>0. Then, if 6 >0 and
g > 0 satisfy dq = p, we have

[ mal61 (@)de < 0 [ (160, )| P do
By Ep,

where the constant O d(;pends on n and 8q[é, only.

Proof. The function [|F(t, )| satisfies the hypotheses of proposition
(1.2); then, if {>0, we infer that |G(t, z)|’® is bounded and satisfies the
same hypotheses. Let dg = p’. We have

[ LiGs, 2)foP ™ ds < sup [ |G (s, 2)|” dz
E, 520 g,

n

= [16(0, )" dw < (sup|6(0, &) *) [IF(t, 2)fdw < oo.
By Ep

Hence, proposition (1.4) implies that

[ ma(l@1%0) P (z) do < GEf 160, @) da

Ep
or

[ ma (161 @)z < O [ [16(0, )T de.
Ep, By,

(4.2) TemorEM. Let F(f, ) be a harmonic funciion defined on B,
with values in o real Hilbert space #. We shall assume that F (i, z) satisfies
conditions (A), (O) of (1.7) and (D) of (2.2). Then, there exist two positive
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constants ¢, and ¢, which depend on a, n and P only and such that

cl[ f I (¢, )] l"'dw]

<17 fs )
<al [ime alPas]”

for every 1> 0.
Proof. For the sake of simplicity, we shall denote by My(g),p >0,
the “p-norm” of p(z); in other words,

My(p) = [ f Ip () |”dm]

Let ¢ be positive and fixed. As in Iemma. (4.1), G(s, z) will denote
the function F(t+s,s). The function G(s,),s >0, satisfies all the
assumptions made for F(¢, #) and from proposition (1.2) we obtain that
G (s, z) is a bounded function for s > 0. Therefore, if ¢ > p,

/2 1p
du ds] dm]

[16(s, @)]*de < sup||G(s, )"~ [ 1IG(s, 2)|” dw
Eﬂ ’ En '
for every s3> 0. This shows that G(s, ) satisfies the assumptions of our

theorem for every ¢ = p.
Let 6> p/2. We will prove the formula

(43) OML(IG1°) = M, (S.(161°),
where O is a constant depending on » and « only.
‘We have

M3 (8.(161%) f e f J 182 07 W) 416k, ) ) duds

-0 f f s 411G (s, w)|* duds
b
and by proposition (2.1)

f Ef s (|6 (s, w)*)duds = [[I6(0, w)|**du = M3(IG1),
[ E,

hence (4.3) is proved.
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The next step in the proof will be to show that if g and ¢ satisfy
¢<2,0> 8/2 and d¢> p, then,

(4.4) M, (Sa(161°) < O ML (6,

where the constant ¢ depends on a, p,n and 5 only. Let r denote the
number 2/g. Obviously, » > 1. From lemmas (3.4) and (3.5) we have

Bo(IG1°) < Ta(161°) = (G < rma (J6°) 97, (6P
which, integrating and applying Holders inequality gives
25 (Sa(I61)) < My fma (61°) 12 T, (P
S My gy (ma(1G1°) ") Moo (T (1T

Now, since r = 2[g, we have §/r = 6g/2> p[2 > 6,/2 and hence,
Dby lemma (3.4), we obtain

Moy (T(IGIPY) = M2 (TL(I6177) < OME (S (161°)
and by (4.3)
Moo TullGIM) < OME(SL(IGPT) = CME(IGI) < OMF (IGH°).
Applying lemma (4.1), we also have
My gy (ma(JGH°)TDU) = MG (mq(I61°)) < CHME-OP (161",
hence we can write the inequality
ME(Sa(1I61°) < OMGOR (16 MY (161°) = C MG (6,

which proves (4.4).
Now, we will show that it ¢ and J satisfy ¢ > 2, 6 > 6,/2 and g > p,
then there exists a constant ¢ which depends on 6, ¢, » and a such that

(4.5) M, (8.(161) < OML (16
In order to prove (4.5) we will assume that
(4.6) M (Sa(61) < o0

holds. This assumption will be removed later.
Let k(xz) be a non-negative and infinitely differentiable function
with compact support. The functions k() of the form

h(z fP 7, o—u)k(u)du

obtained by varying > 0 and %(#) are dense in the set of non-negative
functiens of L' (B,) for every r>1.
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We have the identities

f S (@) b (2) do = Jh(w ) dw f J 185 01 4 ) duds

E,

=f fA(HGu” )duds fh(x M,

7lv

then, using the well-known inequality

285 9) 5Py (s, ),

Sn—l
we obtain
[ serr@r@an<o | [saqer)ads [ Puis, a— i),
g B
and denoting by H (s, u) the Poisson inbegral of h(w), the second member
above reads:

@1 836 (@ h@)ds< C [ [sa(61*) B (s, u)duds
By, v B,
= Olim [ gi(s, w) A(|IF*)H (s, w) duds.
k—»myk

Since the function H (s, ) is non-negative and harmonic, we have
A(GPH) = HA(G)+2 (grad (|61*) grad (H))
which implies

A(|GIPH) > HA(|GI)—2 |grad (|G1*)|- |grad (H)|
or
HA(HP) < A6 H) +2 |grad (16]%)] - |grad H].

Then, replacing HA(|@*) in (4.7) by the second member of the last
inequality above, we obtain

[ 8a01611)(@) b (@) do
En

<Olm [gi(s, u) AQGH)duds+0 [ [ s|grad (I61)] " |grad H| duds.
k—)ka 0 By,

The last integral is equal to a constant times

@  faof [BOIT a0 grma | duds,
Eﬂ

e ©
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which, by Schwarz’s inequality, is less than or equal to

Ef dw[f Ef 282 gma Izduds] x
U f xa(s e Igradﬂlzduds] "

From lemma (2.4) we know that
|grad (I61F) 12 < CA(I61*)
and, therefore, (4.8) is majorized by a constant times

Ef Sa(IG*) Sl H) s < Mgy (Sa(I61*) 2L (S (H)

where ¢ is the conjugate exponent of ¢/2 > 1. Since G and H satisty the
hypotheses of proposition (2.1), the limit for % tending to infinity of the
integral [g(s, w) 4 (||G|*° H)duds is equal to

Vi

f 1610, @) (@) do < MG(IG") Mo (R).

Collecting results, we have
[ 8a(l61°)? (2) 1 (w) dw
B

< OMyps (Su(IGI™)) M, (So(H)) 4 C MG (|G) M, ().

By theorem 4 in [6], we have M, (S,(H))< CM.(h) and therefore
we can write

[ 8.(161) (@) () d < O{Ma (S (16" + M3 (I1G")} - My (B)
En

which, using assumption (4.6), implies

(4.9) (S (I61)) = M (Sa(IGT)) < oo.

Going back to (4.8) and using grad(J&*) = 2[G|’-grad (I61°) we
obtain

f f s lgrad (|61%%)| - |grad H| duds

<o [maare f J 282070\ graa (161 rod Hlduds
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and applying lemma (2.4) and Schwarz’s inequality as we did before we get

f f s;gradmau“)i-lgradmduds<OEf ma (|61 Sa(IGII") Sa(H) (@) duv
0 Ey n

which implies

ama(161°)) Mo (8o (IGII%) 22,

fw [ s lgrad (161} lgrad H| duds < CM. »(Sa(H)
3 E,

the refore we also have

[ Ba(lI6°) (@) hia) dow < €' { MG (IGI) + Mo (16 M (S (IGH")) ) DL (1)
Eﬂr

and so it follows that
ME(SL(I6H0)) < O M (16°) 4 O Mo (11611°) Mo (S 16H]°) -

By (4.9), all the terms involved in this mequahty are finite and since
the constant €' is independent of G, we conclude the existence of a con-
stant C, also independent of @, such that

M8 (I61F)) < CML(16H).

Now, we want to remove assumption (4.6). This can be done by
induetion: If ¢ is any number between 2 and 4, more precisely, 2 < ¢'< 4,
we have 1< ¢/2<2 and (26)(¢/2) = d¢ > p and (4.6) follows from (4.3)
or (4.4). In the same manner, if 4 < ¢< 8, (4.6) follows from-(4.5) for
2 < g< 4, which has just been proved, an so on. Therefore, we have
proved that if 6 > 6,/2 and d¢ > p, then there exists a constant
depending on 4, ¢,n and a such that

{4.10) M, (S(1161°)) < CHL (|61
In particular, taking 6 =1 and ¢ = p, we have
M,,(S (“GH)) e M, (|6))

which is the second inequality in the thesis.
Let us consider the first inequality in the thesis. We _ detfine
=(p+1)/2 if p>2 and g = (p+J,)/(2p) if p < 2. The number 1 we
have defined is greater than 1 for p > 2 and smaller than 1 for p < 2.
Let o, 4, » and » be the numbers given by
—2 —2 —2
o = p y U = [Ap , P = —-Ly P =
up—2 n(p—2) 2(p—1)
These numbers satisty:

= w

11 : ’
0<o<l, u>1, ;+;=1, >0, 1=out+(l—o)y.

icm°
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"From (4.3) we have
‘ M(161) = M(IGIP?) = O M3 (S(IIP™)
and applying lemmas (3.4) and (3.6) we obtain the inequalities
Sa (101" < To (161 < CLTu (IR FITL (16 75
Squaring and integrating, we have
M3 (S(IGIP)) < OM, (T (lIGFP27° T l@ye=)
and, by Holder’s inequality
M (lI6) = CH3(S.(IG1") < OM(

From the identity M, (T.([lG|"**)*) =
that pp/2 > 8,/2, (20u)(up[2) =
clude that

M (To(I6)) < O Mg (SL(I61F™) < O M2 (6117

Also, M, (T, (|l))y**~)
therefore,

TGP 7) M, (T (1620,

Mg (T (IG]*") and cosidering
=p, by lemma (3.4) and (4.10) we con-

= CME™(&).
< O, (8.0161) = CMZ*(S,(|&) and
M6l <

C M (|6 ME" (Sa(61),

M, (IGH) < O3 (S (I61D)

and the theorem is proved. %

which implies

CHAPTER A4
APPLICATION TO HP. SPACES OF HARMONIC FUNCTIONS

Let U(t, z) be a harmonic function defined on Ej- w1 80d with valyes
in a real Hilbert space #. By definition, the gradient VU(t, ») of UWIS
the set of n--1 functions 8U/at, dU oz, .. ., 0U[0x,. This gradient
can be interpreted as a harmonic function F (=, t) from B, , tp the Hilbert
space AtV of all (n+1)-tuples of elements of #. The sealar product
of b =(ho,..., k) and k = (ky, ..., kn), tWo elements of #"+Y, ang
the norm of h are given by :

Bl = <y By = [ X

respectively. Observe that we use the same notation for the scalar product
and the norm in both 4 and H#®+Y;

(5.1) LemMma. The d-power of the norm of VU(t m) s a subhmmomc
Sunction on By, for every 6= (n—1)/n. o

Chy by = Z‘(hi, k>  and

22 — Studia Mathematica
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Proof. The gradient ¥(f, ») of U(t, ») is a harmonic function from
B, to Y, therefore, by lemma (1.8) we infer that | (¢, #)| is sub-
harmonic if and only if

2 5| OF (2, o) ||?
(5.2) (5_2)2<?%%ﬁ),_p(t,m)> +||F(;,m)|122“ﬁ a(wiw)

holds for every (i, z)e By, ;. Let {h}er be a basis of #. If we denote the
sealar product (U(t, z), h> DY U,(t, ), we have

= Y Uut, )1y and  VU(t,2) = ZVUZ(t 2)hs
F3

or, writing Fy(t, z) = VU(t, ),

= Zmz, z)hy.

Since Ui(t, ) is a real-valued harmonic function on E}, ., we know
from [8] that the d-power of the absolute value of the gradient Fy(t, x)
of U, is a subharmonic function on Ei , provided that 6> (n—1)/n
or, which is the same,

(5.3) (6— 2)2(-—— I’x) +”P/1“22

for &> (n—1)/n. We use this fact to prove our lemma.
For 6> 2, inequality (5.2) is apparent, so we will assume in the
sequel that 6 < 2. We have

(o)~ (- S22
S - 3 S( E) e n)
SIS ATIS AT - S AT

2 [)

oF, 1>

0x;

Now, from (5.3) and using Schwarz's inequality, we obtain

S et 3w S 2)“;1
<3y Sme 3 3] < st Sl

which implies (5.2) and the proof of the lemma is complete.
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(5.4) LevmA. Let U(z) be a harmowic function defined on an open
and connected set D = B, with values in a real Hilbert space . We wil
assume that the gradient of U(x) is not identically zero on D. Then, the se

{: VU(z) = 0}
is a polar set in D.
Proof. Let V(x) be a non-identically zero real harmonic function

defined on D and let V(VV(z)) be the set of functions obtained by taking
the gradient of all the components of VU. We will prove that the set

N = {&: VV(z) =0 and V(VV(z) #0}

is a polar subset of D. Let xeN and V; = 8V [0z, =1,...,n. The
Jacobian matrix

[6V1/6m1 6V1/0x"]

OV, [0, ... OV, [0z,
is symmetrie, different from zero and

NV N\ T

= N2 _vy—o.
0x; 4 oxk L

traced () =

Since J(z) is symmetric, there exists an orthogonal matrix P such that

a0
PI@mP = - |=4.
0 I

From the fact that J(z) is not the null matrix, we conclude that
at least one 4; is different from zero. Let us suppose A 7 0. Then

0 = traced (x 2’7% implies 0 # 4 = — ZZ and therefore, there is

an b # k such t]mt An # 0. This proves tha,t m = rankJ (x) =rankA >
Without loss of generality, we may assume that the determinant

oVy(z) avy(z)
dr, T 0zm

OV ) OV ()
oz, ' 0w |

is different from zero. Therefore, by the implicit function theorem we
have that there is a neighborhood S, of the point # such that the set
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of points yeSyy, where Vi(y) =0,i=1,...,m, forms an infinitely
differentiable. manifold - 4, whose dimension is n—m <n—2. So, for
every zeN we have an open neighborhood 8, of #-and a manifold 4,
of dimension less than or equal to #—2 such that

Nf\Sq;C-Am- I

We can ehoosé a sequence of points w;eN suqh that
. S i . N
N UWNA S8 el A4y
Lot . 1 )

and since every submanifold of F, with dimension less than or equal
o n—2 is a polar set, the set N, which is a subset of the union of a coun-
table family of polar sets, is a polar set itself.

Now we will cons?der‘th’e case when U(z) is a real-valued function
satisfying the hypotheses of the. lemma.! I ze M = {x: VU(x) = 0},
then there exists k3> 1 such that Vﬁ(m) =..=VU(x) =0 and
VL () £ 0. Otherwise, we would have V*U(z) for every & which

would imply U(z) = constant and therefore VU(z) = 0 on D. Then,

it immediately follows that
Mc My My={z: V*U(x) =0 and V**'U(z) + 0}.
k

The first part of the proof shows that, for every %, the set M} is polar
and then, sinee M is a subset of a countable union of polar sets, it turns
out that M is also a polar get. ‘

Finally, let us consider the case of a harmonic function with values
in a real Hilbert space #. Since the gradient of U(x) is not identically
zero, there is he s such that the gradient of (U (z), k) is not identically
Zero and the lemms follows from the inclusion | b

{o: VU(2).= 0} = {w: V((U(a), b)) =P}
~ (6.6) Definition. Let U(t,») be.a harmonic funection, defined on
B, with values in a real Hilbert space J#. We say. that the gradient

VU(i, ) belongs to the class H”(#), p >0, of Hardy if the following
conditions are satisfied:

(i) There exists a constant K >0 such that
[IvO, o) de < E”
Bpio: :
for every ¢ > 0. ‘
(ii) The limit E}mV_U(t, ) exists for almost every weF,. This limit
will be denoted.by. VU (0, z).
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(5.6) TEEOREM. Let VU (£, @) H? (), p > (n—1)[n. The area function

o 172
]duds]
satisfies the inequalities

o [Ef VT (0, o)iPda] ™ < [Ef S(VUY @) da] ™

n

8. _ xn(s,w—u)[
(VO)() [E+f o Z

ovU(s, u)
650,; :

[

<el [IVO(0, 2P aa]”,

where ¢, and ¢, are two positive constants depending on a,p and n only.

) Proof. Observe that conditions (i) and (ii) of definition (5.5) coincide
with (A) and (B) of (1.7) for VU(t, z). Moreover, lemmas (56.1) and (5.4)
show that the gradient VU(t, ) satisfies (C) of (1.7) and (D) of (2.2)

with §, = (n—1)/n. Therefore, theorem (4.2) holds for F(t,z) = VU(t, x)
and we have,

60 af [Ivoe, opa]”

Ey,

| . < ‘E{ Lf xa(sgna_pl—u) [i‘,@VU(;;;s, u)

n—1

27 v 1/p

]d’uds] dwl

<a[ [V, appa]” ’
Hp,

for every ¢ > 0. To prove the theorem, it suffices to show, that the pre-
ceding inequalities still hold for ¢= 0. We introduce the following
notations:

M i

L A i
. o= (s, u), dg;=-—_"s(ﬂ_’l“) duds,

fulo, w)' = (BVU(S—}—;/m, %) - oVU(s+1/m, u-i—a:)),
. v t : On;
and S
9a(, 3) = (o, D) = Y

0

VU (s+1/m, utx)
0:(:,;

2

Now, we have

19— G| < [l = 1] < W Foell Ul Uil -
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Integrating with respect to do and applying Schwarz’s inequality
follows that

[ 1gm— g do < [ 1,y =LA fnll + 1l do
< [ 1 fuldo] P [( Ul de) " (] U nli2de) ]

and integrating the p/2-power of this inequality and applying Schwarz’s
inequality once more, we obtain

S tom— gt da] ™ < 2 [ [ ] U o] 2]
(1S 1fmlirao] 0]+ (] lf ol ao]"™ )"}

7), gives

1 tm— gl
< 9PR.9. KPP &)

which, using (5.

[ [IVU(m,a)— VT, o)\ da] "
En

By proposition (1.10), the second member of the inequality above
tends to zero for m and m’ tending to infinity. This shows that the
sequence {g} is a Cauchy sequence in the complete metric space of mixed
norm L®P®. Therefore, the sequence {g,} is convergent in this space
and there is a subsequence which is pointwise convergent to the limit
of {g}. Now, since hm gmlo, ©) = |VU(s, u-+z)|* at every (o, ), the

limit of {g,,} in the spaee L7 must coincide with |VU (s, u+ o) and
‘we obtain,

(58) ~ lim f [ f Gl m)do-]plzdm

1im [fxa(@w M[an

0

VU (s+1|m, u)
0«’.191',

H

I »[2
‘ ]duds} dx

t
n+l

S S ]

On the other hand, from proposition (1.6) we obtain

Il

{5.9) lim f[IVU(l/m, 2)|? do = f{IVU(O, 2)|P da;
=00 By, Ey,

therefore, taking ¢ = 1/m in (5.7), the limits (5.8) and (5.9) show that
(5.7) holds for { = 0 and the proof of the theorem is complete.

icm°
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