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as seen from Theorem 3.4 H, of [4], where 4 (@) is Bymard’s algebra
of Fourier transforms.

We also remark that presumably the results of Gaudry in [7] can
be interpreted as the identification

Homg,@(Ce(@), (Co(6))*) 2= (0o(@) Boye O (B)*

(where tensor products must now be defined for modules which are locally
convex topological vector spaces) together with a eoncrete representation
of C.(¢)®c,@ (@) as a funetion space analogons to the representations
given in Theorems 3.3 and 5.5.
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On invariant measures for expanding differentiable mappings
by

K. KRZYZEWSKI and W. SZLENK (Warszawa)

This note concerns expanding differentiable mappings first studied
by M. Shub, see [5] and [6]. These mappings ave closely connected with
Anosov diffeomorphisms. But while it is not known whether there always
exists a finite Lebesgue measure invariant with respect to an Anosov
diffeomorphism (see [1] and [6]), it turns out that such a measure always
exists for any expanding differentiable mapping. The purpose of this
note is to prove this fact. It seems that this may be of some interest and
that is why we publish the proof although the arguments used in it have
some points of similarity with the proof of Theorem 1 in [3], p. 483.

The authors are very much - indebted to Professor J. G. Sinai for
his valuable remarks concerning this paper.

In the sequel M will always denote a compact, connected differ-
entiable manifold of class C™ unless stated otherwise. If ¢ is a map of
clags " of I into itself, then dp will denote the derivative of ¢ which is
the map of the tangent bundle T(M) into itself. We shall say that ¢ s
expanding if there exist a Riemannian metric ||-] on M, a positive real
number @ and a real number ¢ greater than 1 and such that
(1) 1™ (@)] > ac”
for each aeZ(M) and »=1,2,...

ExaMpLe. Let ¢ be a differentiable mapping of the 2-dimensional
torus into itself given by the formula

olz, y) = (ma+ny+e-f(2,y), pr+ gy +eg(2, y)) (mod1),

0<r<1,0<y <1,
where

(i) m, n, p, g are integers;

(ii) the eigenvalues of the matrix (m’ n) are real and their moduli are
greater than 1; P

(iii) f and g are the real functions of class * on R?, periodic with
period 1 with respect to each variable;

(iv) e is a real positive number.
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Tt is easy to see that if e is sufficiently small, then ¢ is expanding,
For more general examples of expanding mappings see [5] and [6].

Let # be a Borel measure on. M. We shall say that u is the Lebosgue
measure if u is equivalent to the Riemanmnian measure on M induced by
a certain Riemannian metric on M. Now we may state the following

TaEOREM. If ¢ is an expanding map of class O of M into ilself, then

(a) there ewists a novmalised Lebesgue measure u on M invariant with
respect to @;

(b) the dymamical system (u, p) 18 exact (Y) and therefore ergodics

(e) if u is any normalised Borel measure on M absolutely continuous
with vespect 1o & ceriain Riemannion measure and invariant with respec
to @, then u = u.

For the proof of the theorem the following lemmas will be needed.

LevmA 1. If @ is an ezpanding map of M into ilself, there ewist a Rie-
mannian metric |||, of class C° on M and o real number oy greater than 1
such that
(@)
for each aeT'(I).

Proof. First we shall prove that there exsits a Riemannian metric
[|-li1, not necessarily of class C, such that (2) is satisfied. For this purpose
let k be an integer such that ac® > 1 and & > 1, where @ and ¢ are from (1).
Then we may define the Riemannian metric |||, on M as follows:

(3) lalff = Nl ...+ I(de™*) ()2,

Wh'er.e aeT (M) and where ||| is from (1). Since M is compact, there exists
a finite real number A such that

(4) Ide) @IF + ...~ [l(de™ ") (a)|* < Al

f(z)rz;cxeT 2(]_V[ ). Now let ¢; be any real number such that 1 < ¢, < ad® and
@ ¢"—06 > A(c{—1). Then it is easy to see that (2) is satistied. Now
we shall show that |||, may be chosen to be of clags 0. For this purpose
let us assume that (2) is satistied for the Riemannian metrie |[+|;. I we

prove that for any positive number & theve oxists & Riemannian metric
Il of class € on M such that

() llala— Nl < & [l

for each aeT' (M), the proof of the lemma will he completed. In fact, if
We choose ¢ such that 14z < ¢}(1—s), then |||, will satisfy (2) with

the constant ¢, ]/ 1—e,
14

l{dop) (@)l 2 o1 [lally

(*) For the definition of exact dynamical systems seo [4].
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If we apply the standard method based on the C®-partition of unity,
the proof of (5) may be reduced to the proving of the following:

(6) for any &> 0 and any point pe M there exists a Riemannian
metric ||- [, of class C* on some neighborhood U of p such that

el — llals,ol < ellalff  for aeT(M)[U. .

Condition (6) may easily be proved by a uniform approximation
of the coordinates of ||-||, in some coordinate system on M containing p
by real functions of class C*. Therefore the proof of (6) will be omitted.
Thus the proof of the lemma is completed.

From now on, ¢ will denote, unless stated otherwise, an expanding
map of class (% ||, will denote the Riemannian metric on M given by
Lemma 1, and dy(-, ), #; will denote the natural metric and the Rie-
mannian measure induced by ||-|l; on M respectively.

The following two lemmas may be proved in the standard way and
therefore we shall omit the proofs:

Lemya 2. Each expanding map is an N-fold covering, where 1 < N
< oo,
Leyva 3. If §(-) is a real function of class C* on M, then there exists
a finite rveal mumber L such that

Ifle)—F(w)| < Ldy (=, y)

Let @ be a map of class C' of a Riemannian manifold (X, ||-|) of
clags (% into a Riemannian manifold (X, ||-]l«) of class 0, where dim X
= dim X,. Then we may define on X the function D¢ as

(Dg) () = uE () (4)

for #eX, where A, is any Borel set in T, (X) of measure 4” equal to 1 and
4% ¢ are the natural measures induced by the Riemannian metries
Il and |||}« on T,(X) and T,(X,), respectively. This function, as is easy
to see, is well-defined and will be termed the scalar derivative of @. If ¢
is of class C% then Dy is of class C*. Further, if ¢ is a diffeomorphism X
onto X, then

for @, ye M.

palp(4) = [ (Dg) (@) du(w)

a
for each Borel set A = X, where u, s are the Riemannian measures
induced by |1, |I-ll« on X, X, respectively.

Now we may prove the following
LEMMA 4. There exists a real finite number a such that

(M ol (4) < apa(4).
for each Borel set A < M and n=1,2,...
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Proof. In view of Lemma 2 and the well-known property of the
Riemannian metric of class €%, there exists an open cover {U;
of M such that

(8) ¢ is a diffeomorphism of each component of ¢~ '(U,) onto T,
for i =1,2,...,p;

)
Sisli<p

(9) for each pair of points @, y belonging to U;, there exists u regulax
curve joining # and y, contained in U; and such that d,(z, y) is equal
to its length, 1 =1,...,p.

Let 6 be the Lebesgue number of the cover {U.}ici.p; then there
exist a positive integer k and open sets Aq, i (154l ky Legdg <0 N,
vy 1< i < N) for m =0,1,..., where N is from Lemma 2, such that

k
(10) gy (M— J 4y) =0 and 4, £ @ for {g=1,..., k%
ig=1
(1) Ay, 0 Ai‘,)wﬂ,, = @ for each pair (i, ..., 4a)y (fgy ..., in) of
different admissible (n-1)-tuples of indices for = ==0,1,...;
N
(12) (F_I(A’.Ov"’in) = U AiO:""f7L)7.DL'I-1;
=1
(13) ¢ is a diffeomorphism of Afo,__,_,;n_H onto Ay i
(14)  diam(d;, ) < d/ey;
(1) dl(q;(m),zp(y));» c1dy (2, y) for each pair of points =,y belonging

to A, where n = 0,1, ...

oyl

The above sets will be defined by induction. First we shall define
Ay for 4 =1,2,..., %k For this purpose let us remark that there exists
@ cover {Bi}icicr 0f M such that B; are open bally of radii not greater
than 6/2 and such that u,(Fr(B;)) = 0fori =1, 2,...,% Then the open
sets defined as

have the required properties if one rejects empty sets. Let us now assume
that thg sets Aio,“_,ij have been defined for 1 =4, by Ll iy N, ...
...,I1<1j<N, yhgre J=0,1,..,n If (4y,...,4%,) is any admissible
(n-+1)-tuple of indices, fhen in view of (14) there eoxists an Tigyent

K

(1 <7y, 1, <p) such that Aio,m,,:nc U, .. On account of (8)
I 00T

—1 .

@ (4y,...,1,) Is equal to U Aio,.wf”’iwl where Aiy gy g =1, ...

nt1=1

:1’15) are the ir_mersections of W](Aio,“.,in) with the components of
o ( ,1.0’.“,%). It is easy to see that (11) and (13) are satistied if one
replaces n by »-1, and in view of (9) one obtaing (15) and thercfore (14)
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for Ay, iyt =1, .0y N). Now we shall prove that there exists
a finite real number g such that
.D n

(16) ( ¢ﬂ)(y) <p

- (Dg") ()
for #,yed;, i,n=1,2,... For this purpose let us assume that
@, Yedsy,. i, Where n is any positive integer. Then, in view of the chain
rule for scalar derivatives, one obtains

(DM 1T De)le'®)
1 Dely) _ 1 e W)
40 oo~ L] Golet)
H (1 ‘ 1(qu>(q"<.v>)—qu;)(qﬁ'(y)H)
R AU (Dg)ly* (@)
n—1 . .
_ (Dp)le" () — (De)g" (y)}l}
e {2:; Do)y () '
On account of Lemma 3 inequality (17) implies that
(D¢") () LN, i
Do) (@) < exp {Tg‘; &(¢' (), @ (?J))}=

where y = inf (Dp) (), and L is the eonstant given by Lemma 3. From (15)
xelM

it follows that ] o i )
dyp (@), ¢ () = (e ()5 ' ()

for i = 0,1,...,n—1. This implies that
(18) g (@), ¢ @) = 47 ' (@), ¢ (0)
for 4 =0,1,...,n—1. From (18) it follows that (16) is satisfied with

the constant g equal to

L .. ¢ }
exp {7 diam (M) b

Now we may prove (7). For this purpose let us remark that in view
of (11), (12) and (13) it follows that
(g™ (A) = [(Dgigr i) @) A (@),

1< <N 4

(19)

—

where A is any Borel set contained in A; (1 <4< k), a.ndﬂDwo,_..,in
- . n
denotes the scalar derivative of the inverse map @i, 0 ¢ [Aiy. . i
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But (16) implieg
sup (Do~ 5,) (®)

(20) My <p
inf (Der,” )W)
’”‘Aio

From (19) and (20) one obtains

g™ (A) < prmld) D Inf (Dri? ) (@),
1< <N Fedyy

1<ty <N
Since, in view of (24),

mlo™™(4y)) = pa(dy) D) int (Dgi i) (),
1I<O<N mEAiO

taking into account (10) we find that (8) is satisfied with a constant «
equal to Bu, (M) /1 gdiaK #1(44). Thus the lemma is completely proved.

<<

LeumA 5. For each open non-empty set U < M there ewists « positive
integer no such that ¢™(U) = M.

Proof. Let (M., n) denote the universal covering of M. Since = is
a regular map of class 0%, the Riemannian metric ||-||4, defined on M,
a8 llalls = [I(dm)(a)ll, for aeT(DM,) is of class 0. Let I" denote the group

of cover transformations of the covering (My, ). It is well known that .

I'is the group. of isometries of the Riemannian manifold (M oy I 1)+
Now, since M is compact, there exsists an open set Z = M, such that

(21) w(Z) =M and diam(Z)= 8, < oo

(the diameter of Z is in the metric dy(-, -) induced on M, by |- |l). Now
let us remark that

(22) W(K*(-’”o; 5*)) = M,

where K, (@, ds) is any closed ball of radiug equal to §,. Indeed, in view
9f (21) ‘there exists an FyeZ such that m(z,) = 7 (%) . '.E‘urthor’ sinee 7
is transitive on each fibre of the eovering (1, =), there exists a ’q el’ su(ﬁt
that @, =g(%). This implies that g(K. (3, ds)) = Kx(zo, 85) and in
view (?f (21) we infer that (22) is satisfied. ,

SuChS;Ezz (M 4, 7) is universal, there exists a continuous map @u: My —> My

(23) 0% = T,

It is easy to see that (M is th i i
s of olass o s o * ®s) e cover}ng of M, and ¢*.1s a regular
+ 18 simply connected, it follows that 18 a homeo-
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morphism, and therefore a diffeomorphism of class C* of M, onto itself.
In view of the definition of |i- |+, we obtain

(24) I(dgs) @ > el
for aeT(M,). Since g is a diffeomorphism, (24) implies
(25) dulps(@), paly)) = 1dula, y)  for @,ye M.
Now let us assume that U is any open non-empty set, U = M. There

exists a closed ball Kiu(z,,7) in M, such that rz(K*(;mD,r)) U,
K. (2, 7) © Z. Now it suffices to show that

(26) o™ (w{E u(o, 7)) = I
for a certain ﬁositive integer n,. In view of (23), (26) is equivalent to
(27) (0K, 7)) = M.

To prove (27), let n, be such a positive integer that
(28) A1 > Ox.

Then, on account of (22) and (27) it suffices to show that
(29) K*(‘PZO(%% 5*) < ?«’:‘)(K*(%: 'V))‘

To prove (29) let us assume that, on the contrary, there exists
a KL {gho(@y), 04— @u0(E (@, 7)). Then there exists a regular curve
%:<0,1> — M, such that k(0) = ¢i%(z,), k(1) =y and La(ks) < duts,
where L, (k|;) denote the length of % and & is such that cfr> d.+¢,
&> 0. Further, it is easy to see that there exists a %, 0 <1, <1, such
that & (to) <Fr (¢ (K (2o, 7)). This implies that Lau(kl0) < 64t and
therefore du (@i (@), k(to)) < 85+ ¢, bub in view of formula (25) we have
xR0 (30), k(t,)) = 6x+e. Thus the proof of the lemma is completed.

The following lemma is, in fact, the theorem on p. 525 in [4], suitably
moditied for our purposes. Therefore its proof will be omitted.

TmvMa 6. Let o be an endomorphism of o Lebesque space (I, u) with
the measure vonishing on poinis. If

(i) there emists a family < of measurable seis of positive measure such
that finite sums of disjoint sets belonging to & are dense in the space of all
measurable sets;

(i) there ewist real fimite numbers Ly, L, and for each Ae o7 there
ewist positive integers My, My, Ny < Mo, SUCh that

. oy 7 HZ)
(11,,,) l"((p (Z)) = Ll ,LL(A)
(iip) ple™(4) =1,

for each measurable set Z < 4,
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(fie) p{¢™ ™ (2)) < Lou(Z) for each measurable set Z < ¢™ (A); then
@ 18 exact.

Proof of the theorem. We may assume that the measure pu, ig
normalised. From Lemma 4 it follows that

() + o (AN A (" ()

(30) !y (4)

M

for each Borel set 4 and # =1, 2, ... From (30), in view of Theorem 9
in [2] on p. 667, it easily follows that the sequence

1 .
= N (e ()

=1

is convergent (see the proof of Theorem 1 on p. 483 in [3]). Let us putb

4(4) = lim A At Al i(fi))

N300 n

From Corollary 4 in [2] on p. 160 it follows that w is a normalised
Borel measure on M. It is evident that u is absolutely continuous with
respect to uy. It remains to show that p, is absolutely continuous with
respect to w. For this purpose we shall prove that

‘ §31) it (e (4s,) + 0 for some Ay, then the condition u(d) =0
implies u;(4) = 0, where A is a Borel set contained in Agy .

For this purpose let us assume that (A ) 0.7 in vi
8§ g ; . Thy "
of Lemma 4, it follows that ﬂl(‘P ( 10)) o e

(32) it gy ™" (Ae)) = i, > 0.

Further, keeping in mind the notation fr the f of I ]
on6 obtains rom the proof of Lemma 4,
o Q

(33) " A) 2 ma) Y
1<heN

1<, <N

inf (Dq;.;a”f_.

“‘Aio

i) ()

1

> P

= — i (4) E sup (D™« )(w).
b 1<ieN i o) ()

From (32) it follows that

(34) sup (Dgr™ ' %
Pityransin) (®) 2 ———me .
1<%7N wedy, ) i (Ayy) m4)

1<t <N
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From (33) and (34) we find that

1 a;

—n Y
pale™ (4)) 2 o ———
A E
for . =1,2,... Tt is easy to see that this completes the proof of (31).
Part (a) of the theorem will be completely proved if we show that
(81) is satisfied for each €4, 1 < 4, < k. Suppose, on the contrary, that there
exists an g, 1< 4o < k, such that (31) is not satisfied for 4. Then, since

w(4)

k
(M) = 3 mlp™"(44y),

ig=1
there exists an 4, such that (31) is satisfied for 4,7 . Then in view of Lemma
3, there exists a positive integer m, such that ¢™(4y) = 4g. Let us
put B =@ "(4y) ~ Ay . The set B is open and non-empty; therefore
in view of (31)

pale™(B)) + 0.
But ¢""(B) < q:‘_”""U(A,-;)) for n=1,2,... This implies that ,ui(qv“"(B))——*»O;
thus we obtain a contradiction. This completes the proof of part (a) of
the theorem.

Now we shall proceed to part (b). For this purpose it suffices to show
that owr dynamical system satisfies the hypothesis of Lemma 6 (3. To
do s0 let o/ be the family of all sets A; _4,(n>1), from the proof of
Lemma 4. Then, to prove that (i) is satisfied, it suffices to show that for
each ¢ > 0 and each open set & there exists a set G., & <= @, equal to
the finite sum of disjoint set belonging to & such that

pG—G) <e.
For this purpose let us put Gp = {o: ©e@, d,(Fr G, 2) > 1/k},

(35)

h=1,2,... Then Gy < Gy for b =1,2,... and U G = @. Therefore
k=1

there exists a &, such that p(G—G) < e In view of (14) there exists
an n, such that

1
di (A, 1) < I
Vo

(36)
for each admissible (1, 1)-tuple of indices. Now let us put G, = U AiOv-w“:n’
where the sum is over such admissible (n,+ 1)-tuples of indices (Ggg ey tn)
that Gy, ~ A'iﬂ’-wino # @. Since

wM— U Aig i) =1

(io.---f’[no)

(%) In fact, to apply Lemma 6 one has to complete the measure.
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and in view of (36), it is easy to see that (36) is satisfied. Now we shall
prove that (ii) is also satisfied. To do so, let us remark that from the proof
of part (a) it follows that there exist two real finite numbers a, « such that
#(A4) < apy(4) and p(A)<ou(d) for each Borel set A. Therefors if
suffices to show that (ii) is satistied when we replace the measure » by By
For this purpose let us put L, = f, where 4 is from (16). Further, in view
of Lemma B, it follows that there exists a positive integer s, such that
¢0(dy) = Mfor iy =1,2, ...,k where A, is from the proof of Lemma 4,
Since ¢% is a local diffeomorphism and in view of the remarks proceding
Lemma 4, it easily follows that there exists a finite real number L, such
that uy(p"(Z)) < Lops(Z) for each Borel set Z. Now lot us put for cach
seb Ay, (0 = 1) n = n and w, = n-+s,. Then (ii,) and (ii,) are satistied;
to prove (ii,) it suffices to apply (21) and act as in the proofs of Lemms 4
and (31) (see the proof of the theorem on p. 525 in [4]). Thus the proof
of part (b) is completed.

It remains to prove (c). In fact, in view of (a) and (b), the part (c)
follows from the well-known theorem which states that any invariant
?Jormalized measure absolutely continuous with respect to a normalized
invariant ergodic measure is equal to this measure.

Added in proof. After the paper was submitted for publication,
the paper [7] came to our attention. As we understand, there is announ-
ced the following result: for each expanding mapping of the compact
manifold M into itself there exists an invariant regular Borel measure u
positive on each open set in M.
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Existence of differentiable structure in the set of submanifolds
An attempt of geometrization of calculus of variations
by

JERZY KIJOWSKI (Warszawa)

1. Imtroduction. Vigorous development of caleulus of variations
we witness recently shows only too clearly the effectiveness of the funec-
tional analysis approach towards this branch of mathematics. Thanks
to the systematic studies started by Eells and his school (see e.g. [4] or [5])
we know that many important families of mappings, encountered in the
calendus of variations, can be naturally equipped with the structure of
an infinitely dimensional differentiable Banach manifold. B.g. the set
O"(K,X) of r times continuously differentiable mappings of a compact
manifold K into a finite-dimensional manifold X, is a manifold modelled
on some vector space C"(K, Y).

Such approach enabled Palais and Smale (see [11], [12] or [13])
to found the unified general Morse theory, the method of steepest descent
(cf. also [2]) and to prove many beautiful global theorems about func-
tionals of the calculus of variations. The excellent report by Eells [6],
containing also wide bibliography on the subject shows how considerable
is the bulk of work done in this field.

As it appears, however, for many purposes like

a) classic field theory

b) differential geometry
the Banach manifolds fail to suffice. E.g. let us consider the classic elee-
trodynamics. In the relativistic Lagrange formulation of the theory the
essential role is played by states of the field in bounded domains of the
space-time, limited within the dimensibns of the laboratory and the
duration of an experiment. Such a state is therefore a section over compact

2
set of the bundle AT*(R'), where E* is the space-time. (As we know,
the electromagnetic field is an exterior differential 2-form). The range
of such a section is a compact 4-dimensional submanifold with boundary

of /Z\T* (B%. Among all such submanifolds with common boundary only
the one which is the critical point of action is of interest for physicists.
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