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and in view of (36), it is easy to see that (36) is satisfied. Now we shall
prove that (ii) is also satisfied. To do so, let us remark that from the proof
of part (a) it follows that there exist two real finite numbers a, « such that
#(A4) < apy(4) and p(A)<ou(d) for each Borel set A. Therefors if
suffices to show that (ii) is satistied when we replace the measure » by By
For this purpose let us put L, = f, where 4 is from (16). Further, in view
of Lemma B, it follows that there exists a positive integer s, such that
¢0(dy) = Mfor iy =1,2, ...,k where A, is from the proof of Lemma 4,
Since ¢% is a local diffeomorphism and in view of the remarks proceding
Lemma 4, it easily follows that there exists a finite real number L, such
that uy(p"(Z)) < Lops(Z) for each Borel set Z. Now lot us put for cach
seb Ay, (0 = 1) n = n and w, = n-+s,. Then (ii,) and (ii,) are satistied;
to prove (ii,) it suffices to apply (21) and act as in the proofs of Lemms 4
and (31) (see the proof of the theorem on p. 525 in [4]). Thus the proof
of part (b) is completed.

It remains to prove (c). In fact, in view of (a) and (b), the part (c)
follows from the well-known theorem which states that any invariant
?Jormalized measure absolutely continuous with respect to a normalized
invariant ergodic measure is equal to this measure.

Added in proof. After the paper was submitted for publication,
the paper [7] came to our attention. As we understand, there is announ-
ced the following result: for each expanding mapping of the compact
manifold M into itself there exists an invariant regular Borel measure u
positive on each open set in M.
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Existence of differentiable structure in the set of submanifolds
An attempt of geometrization of calculus of variations
by

JERZY KIJOWSKI (Warszawa)

1. Imtroduction. Vigorous development of caleulus of variations
we witness recently shows only too clearly the effectiveness of the funec-
tional analysis approach towards this branch of mathematics. Thanks
to the systematic studies started by Eells and his school (see e.g. [4] or [5])
we know that many important families of mappings, encountered in the
calendus of variations, can be naturally equipped with the structure of
an infinitely dimensional differentiable Banach manifold. B.g. the set
O"(K,X) of r times continuously differentiable mappings of a compact
manifold K into a finite-dimensional manifold X, is a manifold modelled
on some vector space C"(K, Y).

Such approach enabled Palais and Smale (see [11], [12] or [13])
to found the unified general Morse theory, the method of steepest descent
(cf. also [2]) and to prove many beautiful global theorems about func-
tionals of the calculus of variations. The excellent report by Eells [6],
containing also wide bibliography on the subject shows how considerable
is the bulk of work done in this field.

As it appears, however, for many purposes like

a) classic field theory

b) differential geometry
the Banach manifolds fail to suffice. E.g. let us consider the classic elee-
trodynamics. In the relativistic Lagrange formulation of the theory the
essential role is played by states of the field in bounded domains of the
space-time, limited within the dimensibns of the laboratory and the
duration of an experiment. Such a state is therefore a section over compact

2
set of the bundle AT*(R'), where E* is the space-time. (As we know,
the electromagnetic field is an exterior differential 2-form). The range
of such a section is a compact 4-dimensional submanifold with boundary

of /Z\T* (B%. Among all such submanifolds with common boundary only
the one which is the critical point of action is of interest for physicists.
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As we see it is worth considering the family £, (X) — of all m-dimen-
sional compact submanifolds with boundary of the class C" in the finite-
dimensional manifold X. But such family can not be naturally equipped
with the Banach structure. It is connected with the fact that Z,(X)
is the result of division of the manifold C"(£2, X) (where 2 is some fixed
model compact manifold with boundary) by the equivalence relation
which identifies mappings having the same range. The received quotient-
manifold is not even of the clags ¢* (although it is a topological manifold).
If to caleulate in this quotient-manifold the mappings (x,0x;") giving
the change of a coordinate chart, we see that their derivatives contain
differential operators, which are not continuous in spaces C"(Q, ¥).

The remedy for this is as follows: we must deal from. the beginning
with the set £, (X) which containg only elements of the clags ¢, In thig
case the model-spaces will be the spaces (* (2, Y), in which differential
operators are continuous.

Although the satisfactory theory of differentiation in general locally
convex topological vector spaces does not exists (which predetermines
character of the attempts at studies on non-Banach manifolds as merely
tentative and having not much to do with concrete applications and
models — see e.g, [1]) still for wide class of spaces — which are at the same
time Fréchet and Schwartz spaces — such theory has been put forward
in [9].

Using this theory we prove in present paper that 2, (X) is a differ-
entiable manifold of the (®-class, the tangent spaces of which are
Fréchet and Schwartz spaces. It comes out that these tangent spaces
have the simple representation: its vectors are geometrical objects in
the finite-dimensional manifold X.

We give the formulation of variational problems in ¥ in the terms
of differential caleulus and local differential geometry of £,,(X). This
language is especially useful for the problems with free boundary. As
we know, in this case and in the case of calculus of variations in non-linear
spaces as well, the variational problem can be defined by means of homo-
topies (see e.g. [3]).

The present paper investigates homotopies, i.e. mappings

Qx]—s&,¢[(p, 1) —>hip,t)eX,

where Q¢2,(X), and h(p, 0) = p.

S}nce the sets O} = {& (p,9): pe L} ave elements of #,,(X), so a homo-
topy is & representation of a curve in Zn(X). We caleulate the tangent
vector to the curve given by a homotopy.

Ingtead of the definition of the critical point of the functional f,
based on homotopies:

icm°
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“For every homotopy % such that £} = @, the following is true:

2 (-@i‘)f =0
dt Ei=°
we propose the differential definition: f'(2,) = 0.

The present paper is a continuation of [8], where the differential
structure in the set of all compact sections of the topological bundle
was constructed.

My grateful acknowledgments are due to dr. W. Tulezyjew who
encouraged me to write this paper and who devoted a lot of time for
very fruitful discussions.

I am also very much indebted to prof. X. Maurin for his lively in-
terest in the paper, his valuable suggestions and construective criticism.
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2. Preliminaries. All constructions will be carried out in some fixed
n-dimensional C*-differentiable manifold X.

We shall consider m-dimensional, compact C -submanifolds (possibly
with the boundary) imbedded in X. (For the notion of imbedded sub-
manifold see e.g. [14].) For the sake of language simplicity we shall mean
the above-mentioned objects saying ‘“compact m-submanifolds”, or
simply ‘‘e. m-s.”. .

The set of all compact m-submanifolds in X will be denoted by £, (X)
or simply £, if it does not lead to any confusion.

Let Qe#,,. It follows from the definition, that for every r cintQ
there exists such a coordinate chart (x4, 0):

05> —u(@) = (2*, ..., &")eR",
where O is a neighbourhood of z, in X, that
(1) (£ ~ 0) < (2 =0 for j > m)

and fa(z): = (@ ..., 8™ eR™ gives a coordinate chart (4, 2 () O) com-
patible with the differentiable structure of the manifold 2.

Moreover, for every z,¢02 (the boundary of 2) there exists its neigh-
bourhood O =« X and the coordinate chart (u, O)

05 > p(@) = (@, ..., a") e R"

that )
2) (e A 0) < (& =0 for j > m;a™<<0).
It follows from (2) that in this coordinate ehart

(28R ~ 0) < (& = 0 for j=m)

and that the coordinate charts (4, 2 ~ 0), where (@) = (& ..., 2™

and u satisfies (2), define in 9Q the structure of an (m—1)-dimensional
C*-differentiable submanifold of X.
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3. Topology in the space of compact submanifolds. We shall introduce
in #, an inductive topology, defined by the family of mappings.

Let us settle the following notation:

By Eg (where QeZy) we denote the seb of all 0°-diffeomorphisms
transforming Q in X (a differentiable mapping of the manifold with the
boundary £is a mapping which is differentiable in the interior of £ (int Q),
and in every coordinate chart of a type (2) it admits a differentiable exten-
sion beyond the boundary).

‘We shall treat the B, as a topological space with the topology of
uniform convergence of all derivatives (the derivatives ean De counted
in the fixed covering of the manifold 2 and its image by the domaing of
coordinate charts. Those derivatives, however, depend on this covering,
but the topology of their uniform. convergence does not depend on it).

Let us define the mappings I,

Hos > La(1) e Py
where Io(n): = () (of course n(£) is a compact m-submanifold as
a diffeomorphic image of ).

Now the space &, can be equipped with the inductive topology
with respect to all pairs (Eg, Ip). This topology will be denoted by I~
(it is the finest topology in which all I, are continuous). It is characterized
by the following

THEOREM 1. The space (P, T) satisfies the first amiom of countability.
The base of netghbourhoods {¥"5}32, of the point 2ePn, can be given as
Y= Io(V3),
where {Vi}is, is a base of neighbourhoods of the identical map in By,
This theorem immediately follows from the given below compa-
tibility condition for mappings Ip.
Levwva 1. If V, < Hp and V, < g, are open sets, then the topologies
T, and Ty, given in the set
V= Iﬂl(vl) N I!Jz(Vz)
by Lo, and Lo, respectively, are identical.
Proof. Let %<7 be an arbitrary 7 -open set. This means that

U = I} (@) < By,

is Qpen' We shall show that 15;(%) < By, is also open, i.e. # is 7 ,-open.
This means that 7, = 7,. In the analogical way we receive I, < Iy,
whence 97, = 7,.

So if # is non-empty set let us take an arbitrary neelpn, (%). Let
71€U Dbe such that n,(0Q,) = 5,(2;). Writing 270, = 5: 2, —~ &
we have 5, = 5,07. -

icm°®
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On the contrary, for every diffeomorphism g: Q, - 2 and every
neU we have gonela, (%).

Denoting by ZeHg, the set of all diffeomorphisms 2, on £y, we
can write the result of the above discussions as follows:

Ioj(@) = U U non.

neZ n1eU
But for fixed # the set V, = | 9,09 = Ho, is open when U is open.
1160
It follows from the fact that the mapping

Bga,en01 —>171077017"1 = 1, eHp,

is continuous, and ¥V, is the inverse image of U.

8o I5, (%) is open as a sum of open sets.

Remark. The Belly’ standard procedure (see [4]) enables us to in-
troduce the structure of infinitely dimensional manifold into the spaces
E,. Unfortunately #,, is not locally homeomorphic to Eo, so this method
is not useful in defining the differentiable structure in Pp,.

#,, is locally homeomorphic to the spaces Hp/E, where R is the
equivalence relation:

M1y 13) € R < 71 (2) = ().

4. Differentiable (% — §)-manifolds. In this paper we shall consider
such differentiable manifolds, tangent spaces of which are not Banach-
spaces, however, they are topological vector Fréchet spaces of the S-type
(Schwartz-spaces). Such spaces will De called (% — S)-spaces. The
definition of Schwartz space was given in [7] (it is also rewritten
in [9]).

T)he differentiability in (#—8)-spaces will be understood in the
gence of [9].

Definition. A differentiable (#—8)-manifold (resp. Banach-mani-
fold) of the class C" is the triplet (#, T, K), where

1° # is a topological Hausdorff space;

2° T = T(P) = U Tp(#) and all T,(#) are vector (& —8)-spaces

=L
(Banach-spaces Tesp.);

3° K = (J K,, where every K, is a non-empty set of homeomor-
=

phisms mapping neighbourhoods of pe# on neighbourhoods of zero in
Tp(@);
4° the following axioms are satisfied:
a) If xe<K,, then x(p) = 0.

Studia Mathematica XXXIIL
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b) If #,,%.eK, then the mapping (x40 'l s a *-Qiffeomor-
phism (on the set where it is well dofined).' o . .
) If ny, %ye Ky, then (xg0 27 ")’ (0) = I (I denotes here the identical
operator in T). .
d) The set K is complete in the sense that every larger set does
not satisfy the axioms (a), (b) and {c).
The space T,(2) is called the fangent space at the point p (it will
be also denoted T, when no confusion is to be afraid of).
The above definition is a little more general then the standard one.
It admits the fact that the spaces T and T, (p # ¢) can he non-isomor-
phie, however, they are isomorphic if p and ¢ lie in the same eonnected
component of . So these two definitions coincide in every connected
component of Z.

5. Differentiable structure in £,(X). Now we are going to define
the tangent spaces Th (%) and projections xe K, which give the differen-
tiable structure in £, (X).

Let us denote by I'(2, T(X)) the set of all C*-sections of the tangent
bundle of X the domain of which is £ < X (such a section is a (*-vector
field tangent to X, defined on ). Since £ is not, in general, an open
set, we mean the differentiability of a mapping defined on £ in usual
sense: it can be differentiably extended on some neighbourhood of 2 « X.

Let us denote by I'(Q,7(2)) c I'(Q, T(X)) such vector fields
which are infinitesimal transformations of @2 (which are generators of
one-parameter groups of transformations of the manifold ). The set
re, T(Q)) congists of such vector fields which are tangent to Q2 at every
point zeint 2, and are tangent to 902 at every point xed Q.

The vector space I'(Q, T (X)), equipped with the topology of uniform
convergence of all derivatives is an (% —8)-space. The set I'(Q, T(2))
ig its closed subspace. So the quotient space F(Q,T(X))/F Q,T(2))
is also an (F—8)-space.

Definition. To(Pyn): = I'(Q, T(X))/I(Q2, T(Q)).

The elements of the space To(%,) can be treated as fields, defined
on £, the values of which lie in the spaces T(X)/T,(9) for weint 2 and
in Tu(X)[T(02) for 0.

Now it is obvious why, while defining the differentiable manifold,
we have admitted the possibility of non-isomorphic tangent spaces:
if Q, and Q, are not diffeomorphie, then _Egl and. ng can be non-iso-
morphie. Thus #,,(X) is not a differentiable manifold in the sense of the
standard definition, although its connected components, consisting of
diffeomorphic compact m-submanifolds, are.

In order to eonstruet the mappings x < K, let us introduce the follow—
ing notion:
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Definition. Every m-dimensional % imbedded submanifold O
of . for which Q < intQ will be called the extension of Q

LeMwms 2. For every QeZ,(X) and Q — its ertension, there erist:
(1) the neighbourhood O = X of R; (2) the vector bundle N of the base .Q
the fiber of which over xe!) is an (n—m)-dimensional subspace of Tl ‘X),
t)ansversal to T, (Q) ) C®-diffeomorphism @: O — N such that, for er

D(x) = O, (zero in the fzbe; over &), and @'(x) is the identical operator in
To(X) (it is easily seen that for ze D both spaces To(N) and T,(X) can be
naturally identified).

The proof of this fact will be given in the last section of the paper.

Let us apply Lemma 2 to the (m—1)-submanifold 0R e Py, 1(.Q)
‘We shall obtain the vector bundle H with the base 90 (02 having no
boundary is the extension of 942 itself). The bundle H can be obtained
explicitly as in [8], that means constructing a wvector field transversal
to 94. The fibers of this bundle will be 1-dimensional integral eurves
of this field. The section of this bundle can be treated as C®-function
on the manifold 92, so it can be trivialized: H = 902 X B'. To each point
(2,1)eH corresponds the point of the manifold .Q obtained by translating
of the point p G2 for the i-distance along the integral curve of the field.

So let the bundles N, H and their isomorphisms @, ¥ with some
neighbourhoods of the sets 2 = X,92 = O be fixed.

Let us take any weTo(#n). For each element u(z) eI (X)[T,(2),
zeint 2, there exists unique representative Uy (1) eTo(X) being the
vertical vector in .

For each element wu(r)eT,(X)/T,(0Q), wedQ, there exists unique
representative of the form uy(2)--ugz(z), where uy(z) is vertical in N
and wug(x) is vertical in H.

So to every ueTo(#y) corresponds the pair (uy, ug), where uy is
the section of ¥ over 2 and uy is the section of H over 90Q.

PROPOSITION 1. For fized (N, D, H,¥) the mapping

3) To(@Pm)> 4 > (uy, ug)eI'(2, N)xI'(6Q, H)

is an isomorphism of topological vector spaces provided the spaces I'(2, N)
and I'(09, H) are equipped with the topology of wuniform convergence of
all derivatives.

It is easy to see that there exists a neighbourhood 7 of Qe#,, such
that all elements of the set ¥~ correspond by @ to sections of the bundle
N. 8o we can define in 7~ the mappings » in the same way as it was done
in [8].

We are going to deseribe shortly this construction.
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TIf to trivialize the bundle H, one can treat points in some neighhour-
hood of 92 in O as pairs: (p,1)edQx]—e, &l

Let us write 4,: = {(p, t): p = constant, te]—e, e[}. So 4, is the
fiber of H.

If the sets my'(d,) (Where my is the projeetion in the bundle N)
are treated as bundles over A,, then the choice of an arbitrary linear
connection ¢ in N defines in these bundles the absolute parallelism.

So points in some neighbourhood of the set 02 in X can be treated
as elements (p,%,0)edR2 X ]—¢, e[ X275 ().

Now let us take an arbitrary C”-function £(?) such that

1° supp £el—e/2,8/2[;

2° §(0) =1;
3% £(t)=0.
For every ¢eC®(04), satisfying the condition
dEt) )“
e < (SHPIW

the following diffeomorphism of ¥ on N can be defined:
Nsz=(p,t,0) ~ Tp(#): = (p7i+‘77(p)' (1), a)
for #'s which can be represented as a triplet (p, ¢, ), and 7,(w) = = for

the remaining #’s.
Let us notice that the mapping

102, H) = 0°(02)> ¢ - 1,eC°(N, N)
is continuous provided both spaces are equipped with the topology of

uniform. convergence of all derivatives.
Definition. For such «eTq(Py) for which it is well defined we take

#H(u) = Do,y (rangeuy).

Ag it is shown in [8] the above mapping is an injection. So for every
fixed (¥, ®, H, ¥, 0, £) the mapping » is well defined.

TEROREM 2. The set K° of all above-constructed mappings » satisfies
the amioms (a), (b), (¢). 8o (P, T, K) (where K o K° is the maximal
set of mappings satisfying (a), (b), (¢)) is an (F —§)-differentiable manifold
of the clags 0. .

6. Elements of differential caleulus in #,(X) and its connection
with the calculus of variations.

(a) Differentiable curves. For the purpose of the calculus of variations
we (spa]l consider curves in the space #,(X), i.e. the one-parameter
families of e. m-s. The most useful representations of such curves are

icm°
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differentiable homotopies
QX J=ryr[s(p,t) > h(p, t)eX,
‘where 2 (p,0) = p and h(-,t)eE, for every te]—r, r[.

If the function k is a ¢®-function then it defines the (®-curve in %»,.
We shall show that the reverse is also true: every eurve in &£,(X) can
be given by a homotopy k. Of course, this correspondence is not one-to-one.
The different homotopies can define the same curve.

For the curve Q(t), 2(0) = Q, the corresponding homotopy can
be taken as follows:

Take some » = »(N,®d,H, ¥, 0, &), defined in the last section.
Define u(t): = x(Q(t)). Then h(p,t): = o zygoun(p,t) for (p,i)e
2% J—r, r[. The following is true:

THEOREM 3. If Q(t) is the curve corresponding to homotopy h, then

B [ah(-, D) ]
t~t, - " i, ’

where 0h [0tlimsy < I'(2(to), T (X)) and [0h[0t):_s] is its image by the canon-
ical mapping I'(Q(to), T(X)) — Touy(Pw). Plainly, the right-hand side
of (*) does not depend on the particular choice of homotopy h.

COROLLARY. If v is a vector field defined in some neighbourhood O « X
of 2 = X, then the mapping exp(t-v) defines the curve in Pm, the tangent
vector of which at the point 2 is [v] 2] (by v| Q. we denote the restriction
of v to Q).

Remark. This corollary gives us the simple method of construction
of the curve in £,(X), the tangent vector #eTy (%) of which is given:
if % = [v], then one can take any representative vel'(Q, T(X)), and its
differentiable extension on the neighbourhood of 2 < X. Then the one-
parameter group of transformations, given by this field, defines the required
curve.

(b) Integral functionals as differentiable functions on %n(X). The
most important examples of differentiable functions on £, arve the func-
tions given by integrals. E.g. let 2 be an oriented compact m-submanifold.
There exists, of course, an open neighbourhood ¥~ = 2, of 2 which consists
of orientable c.m-g. Moreover, ¥ can be such, that one can choose ‘“con-
tinuously” the orientation of each submanifold. Such sets ¥ will be called
orientable sets.

So let ¥ « &, be orientable and let its orientation be fixed. Then

every m-exterior differential form wel'(X, 7\ T*(X)} defines in ¥~ the
function

Pp(X)5 2 > fu(Q): = [ 0.

Q
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Let 4 e Ty () and let £; be a differentiable curve passing by Q, = 0,
the tangent vector of which is

= U,

d
— £
at

Then
(4) £Q)u = ”ézd? ( J co)

5

=0
It is very easy to compute the right-hand side of (4), taking e.g.
£; a8 in last Remark (cf. [3]),

(5) : ful@u = [v_tdo— [v_jo,
Q2 an

where ve[v] = u is any representative of 4. The right-hand side of (5)
does not depend on the choice of » because the first integral depend on
v only by terms (W,v_Jdw)> = (W A v, do), where Wel'(2, 7\ Q).
So if voel'(Q,T(Q)), then (W,v_ldwd = (W, (v+4v) _lde> because
of the equality W A v, = 0.

Apalogically the second integral does not depend on the choice of v.
) So we can write symbolically:
(6) fol@u = [u_ldo— [u_lo.

. 2 a2

(¢) Variational problems. In the caleulus of variations the mogt
important are one-parameter families of submanifolds with the common
boundary. Such curves correspond to homotopies “restreintes’” (cf. [3]).
It follows from Theorem 3 that the set of vectors tangent to such curves
constitutes a closed subspace of the tangent space:

Bo: = {4eTo(Pm): w02 = 0}
(?t;means that if [v] = u, then v(p)eT,(0R) for pedQ). So for wely
(7 fol@u = [u_ldo.
Q

Definition. Let f be a ("-function defined in the domain % = #,,.
The compact m-submanifold Qe is a eritical point of fif
f'(Q)’Rg = 0.

) Using (6) and treating every vel'(Q, T(X)) as a limit of such v for
W}uc].l.vk[(’)!) = 0 one can check the following mufficient. and necessary
condition of being a critical point for functions Jo:

f@de =0 for every vel'(Q, T(X)).
a2

icm

Set of submanifolds 103

Exept of R (B = {Folow,,x)) the following distribution tends to
be defined:
Lo = {uelp(Pn): ujint 2 = 0}.

One must not imagine that the econdition u|intQ2 = 0 gives, by
continuity, % = 0. This condition says only that if ve[o] = u, then
v(2)eT,(2) for all meintQ; so by continuity v(w)eT,(2) for all reQ.
For welo we have
(8) ful@u = — [u_o.

an

Of course Ry () Lo = 0. Unfortunately the spaces R, and L, are
not complementary: Ro@®Ls # To. So the natural dream of everyone
who only started to see the ins and outs of the calenlus of variations —
to decompose the variational derivative into two parts: the lagrangian
one, dependent on the variation of intQ, and the other one, dependent
on the variation of the boundary — can not come true.

It is 'worth noticing, that the distribution R is absolutely integrable.
It means that for every 2,¢%,(X) there exists unique submanifold
M= M(Q,)) = Pn(X), containing 2, and such that To(M) = Ry for
every 2 < M. It is very easy to find sueh A :

M(Qy): = {QecPu(X): 00 = 00y}

The distribution L is not absolutely integrable, although through
every 2, < Z,(X) there pass an integral manifold of L, e.g.:

Pu(Dg) = {QePp(X): 2 = 25}

(!30 is an arbitrary extension of £,). But this integral manifold is not
uniquely determined: for different extensions £, we obtain different
integral manifolds.

Remark. To every m-dimensional submanifold ¥ < X corresponds
a submanifold Z,,(Y) of £,,(X), which is an integral submanifold of the
distribution L.

(d) Problems with free boundary and with constraints. In the course
of many years the mathematicians studying the caleculus of variations
were guided by the idea of geometrization of this branch of mathematics.
This idea was one of the causes of foundation of functional analysis.
Already in the thirties the classical works by Lusternik (cf. [10]) sought
to geometrize the problems with free boundary.

In the present formulation those problems, as well as problems with
constraints (e.g. isoperimetric problem) can be formulated in a natural
way.
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Definition. The element 2 < &Z,(X) is a critical pointé of the func-
tional f for the problem with free boundary if f'(£2) = 0.
Definition. The element 2 < £,(X) i8 a eritical point of the func-
tional f for the problem with free boundary and-with constraints g, it
g(Du=0=f(2)

(e.g. for the isoperimetric problem m = 1 and g is the length of the curve).

uw =70

7. Proofs of theorems. Before the proof of Lemma 2 we shall show
the following

LevMumA 3. Bovery com-s. Q  Pp(X) has an extension, and even the
mawimal extension.

Proof. Let {0:}%_, be a covering of the set 32 < X with the domaing
of coordifiate charts (O, u;), having property (2). Let us define in O

(@) .
the veetor field ';, which in the coordinate chart (0;, p;) has the following
coordinates: (0,...,0,1,0,...,0) (unity on the m-th place I {fi}rea
is a partition of umty submdmated to the covering {0;}°_;, we take

0= Zfz @)

ded
where ¢ is such that suppfi < 0.

For p<0LQ we have v(p)eT,(Q) and v(p)¢T,(0R2) as a convex linear
combination of vectors lying in one, convex half-space of the space T, n(82)
(this half-space can be characterized by the condition z™ > 0 in every
coordinate chart of type (2)).

There exists such ¢ > 0 that for every te]—e, s[ the Cauchy-problem

de(p,t

_“((‘ZII;;) = w(m(p, t))
with the initial eondition x(p,0) = p has the solution for all Ppedf.
The set Q1 = {w(p,t)eX:te]—e, c[, pcdQ} is a O™-differentiable mani-
fold: any coordinate chart p = (p', ..., p™!) in 802 gives the ecoordinate
chart in £, by the mapping (p, 1) - a(p, #). Such coordinate charts are
compatible with the d]iferentlable structure of Q in the get @, ~ 2

= {z(p,t)e2,: ¢ << 0}. So 8:=00 £, is the extension of Q.

The set of all extensions of Q satisfies the hypotheses of Zorn-Kura-
towski lemma, 80 it containg maximal elements.

Proof of Lemma 2. Let us take any riemannian metric in the
neighbourhood of @ = X. The bundle ¥ can be given by the geodesic
system connected with Q which. means that the fiber over pe!) is the
(n—m)-dimensional mamfold composed of all geodesic lines passing by p
and orthogonal to .
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Proof of Theorem 2. (a) The first axiom is satisfied in virtue of
the definition of .

. (b) Let £;e2,(X),i =1,2. Let the fixed systems (N, &@;, H;,
¥y, Gy, &) define the mappings »;: #,,(X) > #7; — To,(Pm)-
The mapping (#50%7") can be factorized as follows:

T.Ql( m): Vl ) I(QlyN )XF(dQI?H)
L5 1(Q, N XT(00,, Hy) 25 Ty (7).

The mappings F; and ¥, are of the class C as linear isomorphisms
(cf. Proposition 1). So it remains to show the (®-differentiability of F,.
Let us trivialize the bundles H; Let (v, ¢)e V = I'(Q;, Ny) X C°(0.02,).
Write Fy(v, ) = : (0 (v, ), £(v, @) eI'(Qy, Na) XC®(3Q,). Tt is sufficient
to show that both & and y are of the class 6. Let us take the mapping
(for the sake of simplicity we identify objeets isomorphic by @)

0Qy3p — B(v, 9)(D): = 7, 0mN,07,{0(p)) €02,
which is a diffeomorphism of 92, on 09,. Of course the mapping
T(£:, ) XO=(02,)5(v, 9) ~ B, ) 07 (0924, 002)

is continuous if each space is equipped with the topology of uniform con-
vergence of all derivatives. Also the mapping

(2, 9) = (v, 9) 71 0?(00,, 022,)

is continuous in this sense.
Let us take the following mapping in the bundles H;:

His(p,t) = 2 = yi(x) = teR'.
Then
9)  2(2,9) (v, 9) (D) = yeomw,07,(v(p)) = : 8(p, 9(p), v(p))-

If to trivialize locally the bundles N, in the neighbourhood of 62,,
then the mapping

009, x 1—&, e[ Xam (p)o(p, 1, @) > 8(p, t, a) e R

is of the class O™
Let us define the mapping

T(Q,N1) X C®(082,)5 (0, ¢) — 3(v, ¢) 0 (02y)

by the formula 8(v, ¢)(p): = 8(p, 9(p), (p))-
Now (9) can be written in the form

(10) (v,9) = E(v, 9)6(v, 9},
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where K (v, ¢)(p): = yofi(v, p) " 0%(02y) for every peC™(0Q,). Bus _
it was shown in [8] that mappings of type (10) are U"“—differentiauble, 50
2 is of the class (™.

Now we shall prove the (®-differentiability of @.

Let us take the mapping

T4, N) X C(02)5 (v, ) — (v, 9) 02 (L2, )
given by )
B0, ) () = ra(x(v, ¢)) " 0my, 07, (v(p)),

where z,(y) for pe0®(8%,) denotes the translation in the bundle N,
along the fibres of X, (analogous to 7, In N,). The mappings g’ (v, ®)
are diffeomorphisms of 2, on Q,.

The mappings (v, ¢) — f'(v, 9) €0 (Qy, 23) and (v, p) = p' (v, p)~
«C(Q,, Q,) are continuous in the topology of uniform convergence
of all derivatives. Let us notice that

O(v,9)(8'(v, 9)(0)) = 7a(1(0, ¢))*oIoT,f0(p)) < w8 (v, ) (p)),
where I is a diffeomorphism N, — NV, 2, induced by the identity O - ¢
ie. I = P00,

Suppose for an ingtant, that the bundle N 5 s trivial,

Ny = 0 xB""5(p, a) = o,

a.ufi th.a,t cartesian product structure of N, is compatible with the paral-
lelism in the sets yz;,;(Ap). Let us introduce the following 0*-differentiable
mappings:

1° Nosw = (p, @) = y(2): = aeR™™;

2° C®(09Q))>¢ - eC™(£2,), where

q??(p) _ ‘P(W;Hl(?))' 51(?’1(]9)) forpeH, ~ a4,
0 elsewhere;
3 Ny xR (d, s) - &' (o, §)eR™ ™ where &'(d/,s) = yolorg(a').

]:;ere 7s denotes, as usually, the parallel translation in N, along curves
of H,.

It 5'(0, 0)(m): = 5'(0(p), $(p), then

(11) O, 9)(9) = (0, K (v, 9) &' (v, p)(q)) < Vs,

Wher]egli’ (v, p)p: = pop' (v, @) eC®(Qy, R™™) for every pe % (0, R™™).
u

(12) 0 (v, 9) = K' (v, p) &' (0, ¢)

iy C-differentiable (see [8]), so that same iy true about &.
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If the bundle N, is not trivial, then taking the covering of ¥, by
sets which locally trivialize N, and using the partition of unity connected
with this covering we can show that @ is a finite sum of mappings of
type (11), so it is C*-differentiable mapping.

(¢) Let QePy(X), and two system (N;, @;, Hy, ¥, Ci, &), 6= 1,2,
defining two mappings ,, x,e K, be given:

1
(20571 (D)1 = 1inol 5 (90267 ) (s)
8-

1 1
= lim — FyoF,0 F,(su) = FS(lim—Fg(s'Flu) .
80 § 550 8

Let Fiu = (v, ¢)el'(2,N,)xI'(02, H,).

The above written limit exists in the sense of the uniform conver-
gence of all derivatives. So it suffices to calculate the limit at every point
peQ. Let be first peint Q.

Take the following point:

g: = f'(sv, 89) () —> .

850

Now we can write

(13) ]J.mi Fy(sv, sp)(p) = limi 75(x (57, 89)) " o Loty (s9(q))
850 § >0 §

= E?Tz()t(sva 3‘79))_1 [‘}1(3' Tsp ('v (Q)))] :

Bub 74,((g)) —> ©(p), so the vector tangent at p to the curve
T—e,e[s5 = s-15(v(g)) is equal to v(p) modulo Tp(L). Bub
o
hm—I(s-rs¢{v(q)))
850 S
is the vertical (in &V,) component of the tangent vector at p to the curve
1—e,e[>8 —>I(s-rsq,(v(g))), 50 it is equal to o(p) modulo T,(L2) (we recall
that I'(p) =1 — the identity in the space Tp(X)). -

Because of the convergence ,(x(sv, squ))—l—s? 1 (uniformly on
compact sets), we get that the right-hand side of (13) is equal to v(p)
module T, (£2). This means that for peint 2

[(#20% ') (0)u](p) = w(p).
For ped let us notice that the mapping
O x (N102)s0(p)+ ¢(@) > 4{o(p)+¢(p)) = D lo7,(v(p))eX
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(here N |02 denotes the restriction of the bundle) satisfies A’ (p) = 1 —
identity in Ty (X) (of course Ty (H x N |02} = Tp(X)). But Fy(sv, sp)(p) =
A;l-A](sv(q)—l—.s’(p(q)], where q: = B(sv, sp) (D) = So the later proof

goes as for peint Q. We get

tim X 7, (sv, 50 () = 0(p) + ¢(p) modulo T,(12)

50 8

and so, for ped@, [(xy0% ") (0)u](p) = u(p).
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On the class Llog L, martingales, and singular integrals*
by

RICHARD F. GUNDY (New Brunswick, N. J.)

In a recent paper, Stein [9] has characterized the class of functions
f(@) such that

[ 1filog* |fide < + oo,

the class LlogZ, in terms of the Hardy-Littlewood maximal function
as follows:

(8) The Hardy-Littlewood maximal function Mf is integrable if and
only if f belongs to LlogL.

On the other hand, Burkholder [1] has characterized LlogL as
follows:

(B) Let fy, Iz, ... be o sequence of stochastically independent, identically

distributed random variables; let An = ( 3 fi)/n. Then A* = sup|A,]
k=1 n

is integrable if and only if f, belongs to Llog L.

Stein proves Theorem (8) by first obtaining the converse to a well-
known inequality, due to Calderén and Zygmund, for the distribution
function of Mf. The final result is then obtained by integrating both
sides of this converse inequality. Burkholder’s method. is entirely different.
He derives~the final result without benefit of a converse inequality.

In the first section of this paper, we show that both theorems may
be viewed as facts about special martingales. The converse inequality
for Burkbolder’s problem is stated as Theorem 1. Theorem 2 extends
Stein’s converse inequality to a class of martingales, in which his result
is a special case. While the martingale approach reveals that (S) and (B)
are essentially the same theorem, there are differences. Theorem (S),
in the martingale setting, holds for nonnegative functions only. (This
fact is obscured in Stein’s paper because the Hardy-Littlewood maximal
function is always non-negative). Theorem (B), however, is stronger in
the sense that the function f; is not assumed to be bounded below.

* This research was supported in part bj N8F Grant GP8056.


GUEST




