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(here N |02 denotes the restriction of the bundle) satisfies A’ (p) = 1 —
identity in Ty (X) (of course Ty (H x N |02} = Tp(X)). But Fy(sv, sp)(p) =
A;l-A](sv(q)—l—.s’(p(q)], where q: = B(sv, sp) (D) = So the later proof

goes as for peint Q. We get

tim X 7, (sv, 50 () = 0(p) + ¢(p) modulo T,(12)

50 8

and so, for ped@, [(xy0% ") (0)u](p) = u(p).
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On the class Llog L, martingales, and singular integrals*
by

RICHARD F. GUNDY (New Brunswick, N. J.)

In a recent paper, Stein [9] has characterized the class of functions
f(@) such that

[ 1filog* |fide < + oo,

the class LlogZ, in terms of the Hardy-Littlewood maximal function
as follows:

(8) The Hardy-Littlewood maximal function Mf is integrable if and
only if f belongs to LlogL.

On the other hand, Burkholder [1] has characterized LlogL as
follows:

(B) Let fy, Iz, ... be o sequence of stochastically independent, identically

distributed random variables; let An = ( 3 fi)/n. Then A* = sup|A,]
k=1 n

is integrable if and only if f, belongs to Llog L.

Stein proves Theorem (8) by first obtaining the converse to a well-
known inequality, due to Calderén and Zygmund, for the distribution
function of Mf. The final result is then obtained by integrating both
sides of this converse inequality. Burkholder’s method. is entirely different.
He derives~the final result without benefit of a converse inequality.

In the first section of this paper, we show that both theorems may
be viewed as facts about special martingales. The converse inequality
for Burkbolder’s problem is stated as Theorem 1. Theorem 2 extends
Stein’s converse inequality to a class of martingales, in which his result
is a special case. While the martingale approach reveals that (S) and (B)
are essentially the same theorem, there are differences. Theorem (S),
in the martingale setting, holds for nonnegative functions only. (This
fact is obscured in Stein’s paper because the Hardy-Littlewood maximal
function is always non-negative). Theorem (B), however, is stronger in
the sense that the function f; is not assumed to be bounded below.

* This research was supported in part bj N8F Grant GP8056.


GUEST


110 R. F. Gundy

The second section deals with martingales and singular integrals.
We show that the norm inequalities for singular integrals are special
cases of a more general theorem about mappings defined on martingales.
The discussion here revolves around the Calderén-Zygmund lemma ([4],
p. 91) in relation to a decomposition for Ibounded martingales [71,
and uses results from the first section.

1. Converse maximal inequalities and LlogL. Given a sequence of

n
random variables Xy, X,,... let S, = 3 X; and 4, = S,/n. We define
Fe=1 .

a sequence of maximal functions:

Ay =max Az, n>1.
1<ksn
Kolmogorov’s inequality for the Strong Law of Large Numbers
has the following two-sided version: .
TEEOREM 1. Let X;, X,, ... be a sequence of independent, identically
distributed non-negative, integrable random variables. For every fizved n
and 2> [ X, we have

1 ’ 1 "
= [ map<ruisn< - [ zuap.
{An>idy) (4> 4
The right-hand side inequality has been known for a long time.
The proof is & standard argument applied to the martingale
A =4y, Ap_4, ...

(See Doob, [6], p. 341-342). The proof of its converse, the left-hand side
inequality, is achieved in virtually the same way by replacing the usual
lower bounds by wupper bounds as follows:

Proof of Theorem 1. Define the stopping time

» X1)

t = max {k: 4 > }.
1<k<n

This is well-defined on the set where there is a crossing, i.0., on the
set where Ay > 2> A,. This is all that matters, and we shall leave it
undefined elsewhere. The stopped sequence

’ A = (Apy Ay yy ooy Ay g, gy 4y
is a martingale. Furthermore, on the set where § — k,

8y 8
%ﬁ::Angl aﬂld‘ '761=A7.;>l.

iom®
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By virtue of the fact that X, 1122 0, these two inequalities may be
combined as
A< Ay = ij < ﬁk-—*]f‘;ﬁl = —7\‘_]1'_-}— ki1

< 24

PR

50 that 4 < 4; < 24. Therefore we find that

1 1
PAL> D> PA> D> o [ ai=on [ x,
Az “ en

where the final equality holds because 4% is a martingale obtained by
stopping A = (4y, 4n_y, ..., X,). This completes the proof of Theorem 1.

The crux of the preceding argument should be clear. The speéial
structure of the non-negative martingale A is such that:

(1) When the martingale crosses level 4, the excursion is bounded
above by a multiple of A.

This property is also shared by a class of martingales discussed by
Chow [5] and the present writer [8], the so-called regular martingales.
We state a definition here in the spirit of Proposition-1, p. 727 of [8].
Let #, = #,,, be an increasing sequence of o-fields, where &, is the trivial
field consisting of the entire space and the empty set. A martingale

n
D, n > 1, with respect to Fuyn =1 18 said to be (L®) regular if it
k=1 n
can be written as 3 wvpdy, n> 1, where:
¥=1

(i) The random variables dp, %> 1, are an orthonormal system of
uniformly bounded martingale differences, i.e. d; = 1, E(d|F;_,) = 1,
B(@|Fr1) =0,k>2, and d = s%p]]dk]|m< + o,

(ii) The multipliers v, &> 1, are integrable and have the property
that o, is measurable with respect to #j_;, &k > 1, v, = constant.

A given triple (Q,%,,n= 1, P) is an (I™)-regular probabilily space
if every martingale sequence on it is (L®)-regular where the bound d is
uniform for all martingales.

An interesting (L™)-regular probability space has Dbeen introduced
by Chow [5]. The sequence &,,n > 1, is generated by successive refine-
ments of a partition of the space into disjoint “atoms” of positive measure.
The regularity condition is satistied by requiring that for any two atoms
By belonging to #y, By, belonging to Fy,, with F = Bry1, we have
0 <0< P(Bhyy)/P(By) for some 6 >0 and all k& >1. The representation
of any martingale on this space in terms of vy, dy, k> 1, is stated as
Proposition 1 of [8]. In particular, if the underlying space is the unit
cube of R", partitioned into congruent sub-cubes with sides parallel to the
coordinate axes, the resulting sequence of o-fields is regular with § = 2™,
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n

TanoREM 2. Teb fo = ) e, 0> 1, bo @ non-negative (L*)-regular
k=1

martingale and fn = max fi, n > 1, the corresponding sequence of mamimal
l<kcn

functions. Then for any A > [fils, n >0,

1
e f fadP <P(fi>1) <= f fadP,
A Us>n >4

where the constant C depends only on the L*-bound d = s;lp”dknm.
{

Remarks. The proof consists of a stopping time argument parallel
to the one given in Theorem 1. When the underlying space is the unif
cube in R, with the usual partitioning, an equivalent argument is given
by Stein [9] using the Calderén-Zygmund lemma mentioned above.
The probability viewpoint, however, seems to us to be both more general
and natural since all restrictions are on the functions without invelving
the geometry of the underlying space.

Proof of Theorem 2. Since the stopping time part of the argument
has been given, we only prove that (L*)-regular martingales satisfy (1).
The following argument, suitably amplified, is basic to the results in [8].
The sequence dgx, k > 2, has the property

E(d |Fr-1) = B/ |F11)[2 > E (60| F5_,) > (2d),

where d = sup|/dill.- By a lemma of Paley and Zygmund (see {8],
Lemma 1), *
P(d; > (44) || Fr_y) > (88)2 > 0.
If a crossing at the level 4 occurs at the index F,
feer <Ay fo=fo1tvuds > 4.
Since we assume that f is non-negative, it follows that
0 < (vt < froy < Ae

Furthermove, v, and f;_; are both measurable with respect to Fp_.
These facts, together with the lemma of Paley and Zygmund, lead us
to conclude that o] < 4d4, and finally

fo < 244022 = (1+4d2) 2

as stated in (1).

The following variant which iy proved in the same way as Theorem 2,
is stated for future reference:

icm°
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%

THEOREM 2a. Let f, = Y vydy be an (L®)-regular martingale that is
k=1

bounded below by the constant — %, 2 > ||full;- Then for any o > 1,

¢ ’ 1
= | nee<egza< [ g,

(Fhzaty {Fhzaly

where C depends only on d = sup|jdelle-
k

Remark. The two-sided inequalities just given can be integrated
to obtain two characterizations of Llog L for non-negative random varia-
bles. The regular martingale statement is essentially Stein’s theorem.
The Strong Law statement is a weak form of Burkholder’s theorem
in that the variables are assumed to be nonnegative. This asymmetry
is erucial. Cancellation of positive and negative values oceurs with regular
martingales as the following simple example shows. Let »,(z),n =0,
be the Rademacher functions, I, (z) the indicator function of [1/2", 1/2™)
which is measurable with respect to the o-field generated by 7y, 71, ..., s,
n = 1. The sequence

ful@) = 3 2L (@) Py (@)
k=1

is an (L*)-regular martingale, and sup|f.(z)| = |f(»z)] which belongs

to L' but not to LlogL. On the other hand, such cancellation cannot
take place for the Strong Law. In this case X* act almost independently
so that if sup|4,| is integrable, a version of Fubini’s theorem may be
applied to show that both X* and X~ belong to LlogL. We omit the
details; an interested reader may wish to provide them himself or consult
Burkholder’s paper [1] where a stronger theorem is proved.

2. On singular integrals and martingales. Some of the real-variable
techniques used by Calderén and Zygmund [4] in their study of singular
integrals may -be applied to certain problems in probability theory. In
particular, their decomposition of a function into “good” and ‘bad”
parts should be compared with a similar result for L'-bounded martin-
gales [7]. This martingale decomposition has been used by us to obtain
the norm inequalities for martingale transforms, due to Burkholder [2],
which in turn should be compared with the analogous inequalities for
singular integrals, due to Calderén and Zygmund.

In the present section, we develop this analogy further (). The norm
inequalities for singular integrals and martingale transforms are proved

(*) It is interesting to note here that both the theory of singular integrals and
martingale transforms have a common root in the papers of Paley, Marcinkiewies,
and Zygmund.
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in a unified way by appealing to the general martingale decomposition
theorem. The remark that the singular integral inequalities constitute
a special case of a general fact is a theorem whose proof relies on results
of the previous section.

In outline, we proceed as follows. A singular integral operator is
viewed as & mapping from martingales to functions. We may then apply
a general martingale theorem regarding a class of admissible mappings
to obtain the weak type and norm inequalities, at least for 1 < p 2.
There is only one awkward point: singular integrals visibly satisfy only
three of the four conditions for an admissible map. However, the martin-
gales involved are (L*)-regular. This fact, combined with Theorem 2 from
the pi'exrious section, shows that for these martingales, the fourth admissi-
bility condition follows automatically from the other three.

Since what follows is, to a large extent, a commentary on [7], we
adopt the notation used there. Let f = (fi,fs, ...) denote a sequence
of random variables such that f, is measurable on the subfield #,,
Fn €S Fny1,m =1 Let @ = (py, s, ...) be the f-increment sequence, so

n

that f, = ¥ ¢ , > 1. The I”-norm of a martingale sequence f iy defined
k=1

by Ifll, = sup|lfllp. The letter ¢ = constant, not always the same from
k

line to line. Random variable sequences are added in the natural wuy:

F+g = (fi+ g1, fat g2y ---), and maximal functions are denoted as usual:

f* = sup |fa]. Simple martingales, by analogy with simple functions,
n

are those for which fu,x = fa, k> 1, for some n. As usual, in probability
theory, we assume that the total measure of the space is unity. This
regtriction is often unnecessary, but we shall adhere to it in order to
simplify the discussion. In particular when we refer to the special case
where the domain is R", we mean the wunit cube in E".
The following analog of the Calderén-Zygmund decomposition of

functions is proved in [7]:

. TuporREM. Let f be an L'-bounded martingale. Corresponding to any
2> 0 the martingale f may be decomposed into three martingales o, b, d,
30 that f = a+b-+d.

n
(1) The martingale & = (ty,6y,...), @ =), a8 L'-bounded, |jall,< C|f|
: =

and the increment sequence o = (ay, ay, ...) ’i; such that P(a* 7 0) = O]l /A
B . n

(i) The martingale d = (dy, dy, ...), dn = 3 8, is uniformly bounded,
lllo < €, 1@ < Clfll, and lldls < OZ|fl,. *=

n
(iii) The martingale b = (by, by, ...), by = > Bry ds absolutely con-
Ie=1

vengent, | 2 Bl < |-
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Actually, the Calderén-Zygmund lemma corresponds to the speeial
case where the underlying space is R", and the o-fields are generated
by successive refinements of a partition of the space into congruent cubes.
Their two-fold decomposition, in which (iil) never appears, may be extended
quite easily to the (L®)-regular case. One of our purposes in this section
is to try to clarify the role of (iii) and its relation to the (L%)-regular case.
To this end, we point out the following additional fact that is not mentio-
ned in [7]: For the purpose of proving weak-type (1, 1) norm inequalities,
it iy clearly sufficient to restrict ourselves to the case 1 > [fll;. In this
cage, in the decomposition given above, the martingale b is bounded below
by — A. In fact, in the notation of [T}

n
bo= D ar—Elex||Fu) 15 > F)

k=1

> — YE@|Z )=k > -1, n>1,

n
Je=1
and sinece A= ||flly, by definition & = 0.

We now revise the definition of class # of mappings, given in [7],
to accommodate both probability and singular integral applications.

Definition. A mapping 7T is said to be of cass Z relative to (2,Fy,
n>1,P) it its domain is the collection of simple martingales and its
range is a collection of random variables such that:

1. T is quasi-linear: |T(f+g)1 < C(ITf1+1Tql),

2. T is loeal: |Tf] < {(Tf)al+ |(Tf)el such that

(22) P(|(Tf)yl # 0) < CP(f* #0);

2b) I(Zf)oh < Clflli-

3. The mapping 7T satisfies the following norm inequalities:

(3a) IIZfll. < Clfle; . .
(3b) T 2 (1Tf1 > Dl < Cllgllfpfll]n where f = (fi, ..., fa)s f =i§¢i,

k> 1, is bounded below by —4,4 > 0. The symbol x(|Zf| > A) denotes
the indicator function of the set in parentheses.

The modifications in the definition from [7] are in 2b and 3b. In
probability applications the mappings are usually strietly local (f*(z) = 0
implies (Tf)(z) = 0). To handle singular integrals, where ‘‘smearing’”
is present, we have added 2b. Condition 3b here is a weakening of the
corresponding statement in [7] in that we demand that the inequalities
hold only on functions that are bounded below.

The decomposition theorem allows us to prove the following

PROPOSITION 1. A Class & mapping T is of weak type (1,1) on the
class of simple martingales.
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© We remark thas, usually, we may extend 7' to all L'-bounded martin-
gales as a weak type (1, 1) mapping. This possibility is realized when,
for example, the map is linear.
The proof of Proposition 1, given in [7], requires some modification
beeause of the addition of 2b and 3b. Condition 2 is to be applied to the
martingale @, which is supported on o small set. We have

[Tal < [(Ta) |-+ (Ta)yl,
so that it suffices to show
P((Ta)| > 2) < Clfl /2, i=1,2.
First,
P((Ta),| > 2) < CP(a* # 0)< C|fl /A

and, then
P(((Ta)s > 3) < C|[(Ta)sls/A < Cllalls/2 < Olfila/2-

Condition 3D is to be applied to the martingale b of the decomposition.
As we have remarked, b is uniformly bounded below by —A if 2 > |f],.
In this case,

AP(IT8 > 2) < |T ()2 (170] > Ml < O Y 1Bul]], < Ollf .-
k=1 *

The treatment of the martingale d = (d,, d,, ...) is the same as in [7].

Singular integral operators in periodic case, are Class # mappings
if we let the probability space be the unit cube (" in R" and #,,n > 1
be the o-fields generated by the usual partitioning. In this case, (C", Fn,y
n>=1,dz) is an (L”)regular probability space. Integrable functions
J(z) ave uniquely associated with martingales E(f|#.),n > 1 , and if
I = (f1y .-, fa) is a simple martingale on this space, f, is & simple function.
Given a kernel k(z), define

T(f)(@) = [ T@—y)faly)dy.
gn

Following Calderén, ([31], p. 436), we check that T is linear, L*-bhoun-
ded, and satisties condition 2 for a class 4 mapping. We now may apply
the Calderén-Zygmund two-fold decomposition to conclude that T is
of weak type (1, 1) on simple martingales, and ultimately on all Z'-bounded
martingales, without mention of the condition 3b. That is, in return for
restricting the probability Space, we have avoided the invocation of
condition 3b. However, this is an illusion. The following theorem. states,
in effect, that condition 3b follows automatically in this case so that
singul@r integrals on O™ may be considered as special cages of Clags &
mappings.
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THEOREM. Let (2,F,, n =1, P) be an (L™®)-regular probability space.
Let T be a quasi-linear, local, L*-bounded mapping from simple martingales
to random variables. Then

o

WEH 2 (T > D < O D o]

Je=1

1?

where f 35 a simple martingale bounded below by —1i, 4> ||fll. That is,
T satisfies condition 3b and so is of Class Z.
Proof. In what follows, to avoid subscri,}xts we let f stand for the

simple martingale f = (fi,fsy ..., fa), fr :i;: @i, a8 well as the final

term, i.e., f = f,. Sinece T' is of weak type (1, 1), we may adapt Marcin-
kiewicz’s computation as follows: Let fi,) be the martingale f stopped
when it crosses al, a > 1. Then

P(ITfl > ad) < P(IT(f—fuq| > ai[2)+P (| Tfyq| > ak[2)
¢

f fual P +—%
{i(a)>R ((l/'l)

¢ ¢
< — \f— fiwldP -+ ——
<fz<a)f> oty (ad)

[ ifarar.

{fy(a) <ot
Sinee 0 <f™ <4< al <fyy on the range of integration, we may

write

¢ ¢

| fwaP<— [ fi+adP
ad fifa)>H @ {fi(a)>%

¢

< —
at

¢
f+2f_ +ft(a)dP<E fg(u)dP
{Ft(a)> R {fio)y>h

°

Y yay>on

faP < CP(f* > ),

where the last inequality is obtained by using Theorem 2. Also

C c
e f |ft(a)|zdP < ’J f ft(a) ap
(ad) e(a)> o) {Fia)> Ry
-9 fAP < CP(f* > ad),
ok {fi(a)> R
and N
C

c
S | verap =g [ i,

iy <oty {f<aly
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Tf we recombine all of these inequalities and integrate with respect
to a, we find
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=]

fP([Tﬂ ) do < cf( (f* > az)+o»m)—2(f<fw /12aP) da.

The left-hand side of the above inequality may be written
[Pz > ayda > 770 2127 > Dl — G5l
1

The right—hand side consists of two terms:

! P(f* > ad)da < 27|l f 1(ai2( [ 1fIPaP)da < 2],

(r=eny

This leads to the final inequality

0

(I (T > Dl < OUF R+ IAD < 0| 3 g,

k=1

This completes the proof.

The author would like to thank Professors B. M. Stein and D. L. Burk-
holder for several stimulating conversations related to the subject of
this paper
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