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1. Let

(1.1) f(s) = 2 anexp(8ia) ,
n=1

where 0 << Ay < dp41—>00, 8§ = o}+1it, represent an everywhere absolutely
convergent Dirichlet series. If

Mo, f)= ludb. [f(e+it),

—oo<t<oo

then log M (o, f) is an increasing convex function of ¢, and

(1.2) o = limsup loglog M(a, f)

¢—00 (o)

is called the Ritt-order of f(s).
We define the mean values of f(s) as

(1.3) W(o) = W(s, f) = hm 1 f \f (o at)Pde
(1.4)  ws(o) = ws(o, f) = e—i—c f W (x)e’*dx

— O
11-23021'6"” fflfa:+zt)|e drdt, 0<d< oo.

—o0 —T

One of the present authors has obtained in [2] a few properties of
the mean values vs(c, f) of f(s), where vs(c, f) are defined as

o

(1.5) vs(o, f) = %f W(z)e*dx = ws(c,f)—A, 0<d< oo,

0
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where 4 is a real constant depending on é and f. It easily follows from (1.4)
and (1.5) that for large o the behaviour of w(o, f) is the same as that

of vs(o, f), and all the results that have been derived for v(a, f) in [2]
can be obtained for ws(o, f). Thus we shall have ([2], p. 309)

(L.6) wia, )= wo, [P >0, o>,

where w;(o, f’) is the mean value of f'(s), the derivative of f(s), i.e.,

wla, )= = [ Wiz, f)e=da

e T
1 ) ! 7 - 2
= lim oo ]_jT f (@ +it)Pedzdt, 0< &< co.

Rahman ([4], p. 1114) has proved the following lemma:
LEMMA A. Ifin f(s) = D anexp(sin) all the coefficients {as}, n—1,2,...,
n=1
are non-negative, then for large values of o,

M(o,f) > M(a, ) EE @D

In the present paper, using Lemma A, we establish a refinement of
inequality (1.6) and derive some more results for w,(o, f') and ws(o, f).

2. We establish a refinement of (1.6) in the following theorem:
THEOREM 1. If ws(o, f') is the mean value of f'(s), the first derivative

of f(s), then

(2.1)  wy(o, f')— wa(o) (log;'::(o))z > (21)2 wy(o)logw,(o)log (log;‘);(o))

for o > a,.
Proof. For all ¢ < oo, we have ([2], p. 308)

Wi(o) = 2 |an|2e292n |

Therefore, by (1.4),

(2.2) ws(o) = f (Z lanlzemﬂ)e”dm

—oo n=1
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The series under the integral sign is a uniformly convergent series
of continuous functions for ¢ << co and hence

[} o0

1 R b |a,,|2
= — S 22T — _1%al" o202,
(2.3) wy(o) = " . _J |@n|2€%n 32 d 7 &e .

n=1
Similarly, it can be shown that
Alan|*

(2.4) w0y IV = 2, 2.+ 9

=1

e20}-n

Now, consider the functions represented by the Dirichlet series

] " Anlanl?
(2.5) exp(siy) , exp (sia) .
2in+ 6 — 2Ma+9

78
5

For the first function we have, for every o << oo,

|@n/* |aa?

maX 134, +0 S o+ 0

Res<2c

exp(si,)| <

exp(204s),

and Zzl Gn” exp(204,) is convergent, its sum being ws(o, f). Thus,

In+6
2
the series %—aexp (s2,) represents an entire function g(s), while
ne=1
09 2
the series 2;‘“_?_' aexp(s/l,.) is ¢g'(s). The functions g(s) and g'(s)
=1

clearly satisfy the hypotheses of Lemma A, and so we have, for large
values of o,

oo

(2.6) Z

eXp (26 Aﬁ)

00 log(Z 2)'.‘:1 < exp (20/1,.))

l%' n=1
> ( 2M+6exp(2a}.,,)) o

n=1
and

L
(2.7) 2Alz_léexp(2aln)
=1
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Thus, for sufficiently large o, say ¢ > o,, we have from (2.4), (2.6)
and (2.7),

2
(0, f) = Z 2n e“’l"
n=1
L2 T :
o a2 ( (24 200+ (562 ' )\)
> (m 3 20 +

[==]

1 \ [anl® i ( 2 -
+(2a)2(1% Gy R L gmwé'ﬂ )X

(log ( 2 2;'L,.—+'—a))

20

xlo

~ o) (PE T 4 L (o) loguan(a)tog )

which is (2.1).
Next we prove
THEOREM 2. If f(s) is of finite Ritt-order, then

(2.8) logws(a, f')~logws(c, f) as ¢—>oo.

Proof. It is known ([3], p. 140) that if f(s) = ) a.exp(sis) is of
n=1
finite Ritt-order p, then, for every & > 0,

(2.9) M(o,f') < M(o,f)exp{o(e+e)}

if ¢ is sufficiently large.
Since
1 [ 1 -
(210) o, = [W@edz< LMo,y [orde=1 (0,

[0 ¢}

—y 2
the Ritt-order of the function represented by the series Z 3 Aai 36<P (2845)
n

n=1

is at most po. Hence, for every ¢ > 0 and sufficiently large o, (2.9) gives

(2.11) 22’;”';'1: exp(2024) < (2_, 21" eXP(%M))eXP{G(Q-I-E)}-

n=1
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Since the Ritt-order of a function is the same as that of its derivative,

o o)
 2A,1a,2
ﬂiﬂlx

the Ritt-order of the function represented by the series 52,1 0
-

n=1

X exp(2s1,) is not greater than p. So, (2.9) gives

Y 475 |an)?

\ 211;
(2.12) ST exp(20h) < { 3 /L.lj:la exp (2a1,,)}exp {c(o+e)) .

Inequalities (2.11) and (2.12) lead to

(2.13) ws(a, f') =

2 srnl exp(201a))exp 20+ )

- iw.s(o,f>exp{2a(e+e>} :

This fact, together with (1.6), implies that, for functions of finite
Ritt-order,

logws(a, f') ~logws(o, f) as o—oo.
3. Azpeitia [1] has proved that if

(3.1) Jim 221084 _
nooo lOgn

then the Ritt-order ¢ of the function f(s) 2 anexp(si,) is given by

o= Lim sup inl_og_ln_
noo - log las| ™!

Hence if f(s), defined by (1.1), is of Ritt-order g (0 < g < oo0) and (3.1)

v laa®
2)1.+6

holds, the Ritt-order of the function defined by the series

X exp(2siy) is also p. So, if (3.1) is satisfied, then

logloglz exp(2a).,,)}
22,16
(3.2) limsup loglogwy(a, f) = limsup + =p.

6—00 g—>00 o
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Further, £
o e A1
(3.3) ll,i'_l.g‘fm =35>0,

then ([4], p. 1117)

(3.4) liminfloglogzv(a’f) — 1,
where
A = liminf l°g1°g£“"’f)

is the lower order of f(s).
If (3.3) holds, then

Wio,f)= ) lanPexp(20ia)

(=]

. |
< (,.=1 2;‘:':ll_aexp {21,,(0+§D+1+e)}) X

oo

X (Z (2An+ d)exp {— Zln(%D+1+8)})

n=1

< Kws(c+3D+1+¢,f).

From this, (2.10) and (3.4) it follows that

(3.5) 1iminf1°gl°g2""(“’f )_ ;.
We are now in a position to prove
THEOREM 3. If (3.1) s satisfied, then

(36) limsup log{wg(a,i’)/wo(o',f)} — 29

0—>00

and if (3.3) holds, then

(3.7) timint &A% )00, I} _ 95
g

a—>00

Proof. From (1.6), (2.13) and (3.2), the first result (3.6) easily follows.
Now, (1.6) and (3.5) give

(38) llmlDfIOg {W.;(O‘,f’)/’w&(d,f)} > 21 .
g

o—0
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To obtain the reverse inequality, we proceed as follows. It is known
([3], p- 139) that the inequality

-M(O'yf’)g‘)l;M(U'l‘V’f)’ y>0,

holds for the entire function f defined by (1.1). Applying this result succes-
gively to the entire functions

Y 2l S
2}%—'— K] exp {2}‘"(8 27)} ’ < 2}."-*-6 exp {2}'7‘( 27)} ’
we get
(3.9) wolo— 27, 1) = ;;T' olSal exp (2a(0—27)
n=1 +
1 2
<+ 2’}:11"'6 exD (2ha(0— 7))
2:’::_ 3 exp(20i,)

1
—4—})2100 (6,f), »>0.

Now, since ([2], p. 308) logws(o, f) is an increasing convex function
of o, we have

(3.10) logws(a, f) = logws(,, f)+ [ (@) da,

where o, << ¢ and @(x) is a non-decreasing function of z. So, if 4 < oo
and ¢ is a fixed positive number, (3.5) and (3.10) give

c+2

af'qs(w)dx < logwy(a+2, f) < exp{(c42)(A-+e))
for a sequence of values of ¢ tending to infinity; say, for ¢ = gy, 65, ...
oy Ony .. —>00. Since D(z) is non-decreasing, we get

2@ (on) < exp{(a,,+2)(i'l+ £)} ,‘ n=1,2,..,
and since ¢ is arbitrary, we can write
D (an) < exp {on(A+ £)}

for sufficiently large n. (3.10) then gives

loguw(on, f) < logws(oa— 2y, f)+ 2yexp {oa(A+-¢)} ,



96 O. P. Juneja and K. N. Awasthi

and if we take y = }exp{— on(A+¢)}, we obtain
logwi(on, f) < logw (. —2y,f)+1

for sufficiently large »n. Substituting this value of y and the corresponding
estimate for w ' - f) in (3.9), we see that, ¢ > 0 being given, there exists
a sequence of values of ¢ such that

(3.11) w (06— 2y, f') < ws(o— 2y, f)exp {20(A1+¢)} .
Since y < 1, we can even write

wy(o—2y, f') < wlo—2y, flexp{2(c—2y)(1+¢)}
instead of (3.11). It follows that

(3.12) li.[ninfl()g {wﬁ(a?f’)/wts((r? f)} < 21 .
g

a—>o0
Thus, if 4 <. cc, the inequality in (3.8) can be replaced by equality.
If 2= oo, then from (3.8) we have

liminf lOg {w,g(O',f')/’w,s(O',f)l — oo

ag—>00 U
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