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REDSHIFT IN FRIEDMANN’S COSMOLOGICAL MODEL

In a variety of cosmological models, Friedmann’s model, due to the
chronology and remarkable simplicity, may be called the most classical
one. A three-dimensional sphere, with a radius R depending on time,
is the space in this model. To determine the dependence of R on the time
T we may obtain, from field equations of the general theory of relativity,
the differential equation
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where R, is a constant (the so called maximum radius of the universe).
Every solution of this equation (with the exception of the singular ones)
is a funection of time, first increasing from zero to the maximum value R,
and then decreasing again to zero. So the appropriate curve consists of
two monotonic ares; on each of them there exists a one-to-one corre-
spondence between the radius and time. Therefore, the radius may be
accepted as a measure of time which for computational reasons is very
convenient. To avoid the ambiguity due to the described behaviour
of the function E(T) we will distinguish, as in colloquial time measure,
the values of R a.m. (that is the values before summit) and the values
of R p.m. (after the summit).

Metric relations in Friedmann’s space depend on time. This requires
the specification of the distance. There are many useful and essentially
equivalent ways for defining this notion. Here we accept as the distance
the time required for light to travel between the given two points. This
depends of course on the moment of start of the light ray; so that the
defined distance changes in time.

Either classical methods, or those specific for some relativistic models
based on redshift, may be used to determine the distance between objeects
in Friedmann’s universum. By the classical methods we understand here
such well known astronomical methods as the evaluation of distance
either on the measurements of linear and angular sizes of the observed



object or on the comparison of absolute and apparent brightness of the
object. Of course, both classical methods have to be adapted to Fried-
mann’s model since here the geometry depends on time and it is no
longer a plane one. However, classical methods of determining the dis-
tance not always give unique results in Friedmann’s model. In particular,
it may occur that the evaluation of distance on the measurements of the
linear and the angular diameters of an object yields as much as four diffe-
rent results. This will happen if light emitted by the object before “the
noon” is received by the observer after “the noon”. For some values
of the ratio of linear and angular diameters of the object we then obtain
two different values of the distance and for other values of the ratio
four different values of the distance. This follows from a minimax theorem
for functions of two variables as it is shown in [3]. The author is quite
sure that sometimes in the future such pairs and quadruplets of objects
(each of them being in different distance from the observer but having
the same ratio of linear and angular diameters) will be discovered. For
this observation we have to wait perhaps many many millions of years.
It will be probably the longest period in the history of science between
the theoretical statement and its empirical verification; this prospect
making the author especially satisfied.

Now, we will draw our attention to the determination of distance
based on redshift. From the original paper by Friedmann [1] it follows
that the ratio of the emitted wave lenght 1 and the received wave lenght 4,
equals to the ratio of the radius R of the universe at the emission time
and the radius R, of the universe at the reception time.

A R
(#) W R
1 1

Formula (2) may be generalised (see Heckmann [2]) for the case
when the source of light and the observer are moving so that the distance
between them changes in time not only due to the changes of geometry
but also as an effect of additional factors (the movement). In [2] a special
case of movements is discussed in which only the radial velocities of the,
two objects are taken into account; i.e. the velocities are supposed to
have non-zero components only along the geodetic between the source
and the observer. Under such restriction the generalised formula (2)
takes the form

2 RV1I—v,(1—u,)
(3) =

A RY1—ui(1—w,)

where u, and v, are radial velocities of the source and the observer, res-
pectively.
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We turn now to the general case of a movement with arbitrary
velocities. It ocecurs that the redshift in this case depends as well on the
radial components as on the moduli of complete velocities

RV1—v*(1—uy,) .
RYV1—u*(1—wv,)

A
(4) T -

the other components of velocities do not occur in an explicit
form.

Now, let us define a system of spherical coordinates ¢, v, ¥ on the
three-dimensional sphere. This may be done in a solid way so that the
Points on the sphere will not change their coordinates with the change
of the radius of the sphere. As a velocity we understand the ratio of infi-
nitesimal displacement and the corresponding time period. The displa-
cement here is the product of the angular shift and the radius of the
universe R(T) at a given moment of time. ‘

From the pole A with the coordinates (0, 0, 0) a light signal is emitted
at the moment T towards the point B with the coordinates (¢, 0, 0).
This signal will be received there at the moment 7,. Simultanously,
the source of light is moving with a velocity u so that at the moment
T+ AT it reaches the point C(Ap, Ay, 0). Then, the light signal is emitted
towards the point D(p,+Ad¢,, Ay,, 49,) which reaches its destination
at the moment T,+ AT,. The observer is also moving with the velocity v
80 that being in the point B at the moment T, it will arrive to D at the
Mmoment 7', AT,. Here some of the coordinates of the points A, B, 0, B
Wwere chosen to be equal to zero this, however, brings no restriction on
their relative configuration.

The angular distance a between two points (¢, v, #;) and (@, vz, 9,)
On a three-dimensional sphere may be found from the equation

(5)  cosa = cosg,cosg,+ sing, sing, [cosy, cosy,+
+ Sin (%51 Siny)2 COo8 (01 —_ 02)] .

The velocity » of the moving object is equal to

da
nN = R(.T) ﬁ

anq the angular shift of the object moving with the velocity « while the
radius of the universe has changed from the value R, to R,, taking into
account equation (1), may be expressed in the form

2R—R, |*

0 IR

(6) a = Y arcecos
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Starting from (5) and (6) we may come, after some tedious calcula-
tions, to the following condition for the observer and the light signal
to meet in the point D at the moment T,4A4T,

(7) 24R,

_ 2VR\(R,—R,) AR+(dp— 4¢,)[(2R,— R,) AR— 2V R(R,—R) B,(R,—R,)|
B VR(R,—R)

In (7) the velocity of light has been accepted as equal to 1 and

dR dR
ar =’ YToar Tt

Now, let t and ¢, be the times in the local inertial coordinate systems

moving with the source and the observer, respectively. Then, we have

o o
Vi—i' T Vi—e

Let u,,v, be the components of » and v with respect to the geodetic
between A and B(y,d are constants)

(8) AT

Ag Adg,
—_— = R(T .
AT ’ ,vw ( 1) ATI

(9) 4o = R(T)

Using (8) and (9), after further calculations, the condition (7) may be
reduced to the form

R(TV1—o"(1—u,) P

(10) At = -
R(T)V1—u*(1—0,)

Formula (10) expresses the relation between the time interval At spacing
the two emitted signals (measured in the proper time of the source of
light) and the time interval At, spacing their reception (measured in the
proper time of the observer).

If AT is the emission time of a single wave of lenght A, then AT,
is the reception time of the observed single wave. Since 4 = AT and
A, = AT, for the velocity of light equal to 1, then formula (10) gives
also the relation between the length of emitted wave and that of the
observed one

B(TW1—v*(1—u,)
R(T\W1—u¥1—v,)

A
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