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A representation theorem for (X,—1)(X,—1)..(X,—1)
and its applications

by D. Z. Djokovi¢ (Waterloo, Canada)

1. Introduction. The representation which we shall establish
is given by formula (1). The proof is constructive. For instance, if n = 2
we obtain by this method the following representation:

2(X—1)(Y—1) = (XY 12— Y X—1)2—2X (Y —1)224(Y—1).

We apﬁly representation (1) to the difference operator and obtain
an analogous representation of the iterated difference operator. Finally
we apply this result to the difference functional equation

A™f(z) =0

and obtain the generalizations of some recent results of McKiernan [2].
In this paper, by definition, a monomial in the indeterminates
X1y ...y Xn is any expression of the form

i1 yia 7
X' X ... X",

where i,, ¢y, ..., 1n are non-negative integers. Note that there is no scalar
coefficient in this expression.
2. Representation theorem.

THEOREM 1. Let R[X,, ..., X,] be the polynomial ring over a commu-
tative ring R with unity 1. Then there exists a non-negative integer s such
that the polynomial

(e [ [ (xi—1)

=1

belongs to the ideal I generated by the polynomials

(X4, Xgpooo X —1)" (1< << ...< B <N).
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In other words we have a representation

n
(1) @y [[xi—1= Y Py aWXuXy. Xe—1)
i=1 IS <. . <N
where P, 5 € R[X,, ..., X4l
For the proof we need the following

Lemma 1. If X, .., X, are elements of a commutative ring with
unity 1, then we have the identities

@ Dt D XXy Xe-1)"
k=1

1<) <ia<...<ix<n

and
n

G =1 Y (XaKa Xy 1)
k=1

1< <2< <<

=_2n+(_1 n

)
m=1

(;) !jl (X7 —1).

Proof. Let us perform all multiplications on both sides of (2) and (3).
By inspection we conclude that all these four sides contain only the
monomials of the form

(4) (Xil.sz'"X‘k)m ’

where 1<, <t < ..<t<n and 0 <m < n. If m > 0 the coefficient
of monomial (4) on both sides of (2) is equal to

(—1)"(—1)"‘"‘(”) ,

m

and the corresponding coefficient on both sides of (3) is equal to

)

It remains to verify the equality of constant terms in (2) and (3).
By this what we already proved we know that the difference of the left-
hand side and the right-hand side in (2) and also in (3) is a constant.
In order to prove that these constants are zero it is sufficient to verify (2)
and (3) for some particular values of X,, ..., X,. It is convenient to take
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X, =X, =..=X, =1. Then in (2) both sides vanish and (3) reduces

to the identity
n \7 [N n
2 Z (—1‘)"\’6) — o,
k=1

Proof of Theorem 1. Let P be the polynomial which is equal to
both sides of identity (2). Identity (2) implies that PeI and also
that P is divisible by (X;—1)(X,—1)...(X»—1). We have

(5) P=gQ 1_7 (Xi—1),
where ©
n ﬁ m—1
0= (—1)"‘(;’;) (> x).
m=1 i=1 r=0

From this formula we obtain

(6) Q1 .y 1) = j(—l)’"(?’;)m" = (—1)n!,

m=1

where we made use of a well-known identity (ef., for instance [1],
Chapter II, § 12, Exercise 16). Let us introduce the new indeterminates
Y; = X—1,i=1,..,n From (5) and (6) we infer that

P=(-1)"Y,Y,..Yun!'—Q),

where @’ is a polynomial in Y, ..., Y, with zero constant term. Multiplying
both sides by

8—1
8 =[]ty +@r)
we obtain
(—1)"8P = Y, Y,... Y [(»))* —(Q')*] .

It follows that
(7) )Y, Y,...Yn = (—1)"SP+Y,Y,... Yu(Q")*.

Since @’ has zero constant term we can choose s so large that every
term in the expansion of

(@)

is divisible by at least one of the polynomials Y77} i =1, ..., n.
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Since PeI and obviously Y7 eI for all ¢, formula (7) implies

that also (»!)*Y,Y,...Y, € I. This is equivalent to (1). The proof is
completed.

8. Applications to difference operator. Let 4 be an abelian
semigroup and M an abelian group, both written additively. We shall

denote the set of all mappings f: A —~>M by M“. We define the shift
operator

E: MASMY  (ued)

W

as follows: the image of f ¢ M* under F is the mapping Ffe M* which
is defined by ‘
(8) (Ff)x) =fle+w) for all zed.

The identity operator 1: M<—>M“* maps each fe M? onto itself.
The zero operator 0: M4 M4 maps each fe M“ onto the zero function
0 ¢ M“ which is defined by 0(z) = 0 for all # ¢ A. The zero on the right-

hand side of the last equation is, of course, the neutral element of .

The context will always make clear in what sense we use the symbols 1
and 0.

If m and m; are integers and ;e A, we define the operator

(9) E=m1+) m-E
uq
by equality

(EN) (@) = mf () + ), mef (@ +uq)

which holds for all ze A and all fe M4, If
E=m14+dmieE, E'=m"1+)miE,
Uy u’

are two operators of form (9) we define their sum [’ F*, and their
product F’F’ in a natural way:

Er_|_ Eu — (m;_l_mu)l_l_Zm;E"_l_Zm;:E’:’
Ug Uy
EIEI’ — mlmll'1+2 mllmé.E_*_Z m'm;'"E—I—Z m;mljl.EE .
i u v g uf uy’

One can easily check that, with respect to these operations of addition
and multiplication, the set of all operators of form (9) has the structure
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of a commutative ring with unity 1. In the sequel we denote this ring
by E. If A has neutral element 0, then we can strike out the term m-1
in (9) since in that case f =1.

0

The difference operator A (u ¢ A) is defined by
u

4L p_1.
u

u

We recall that E is commutative and in particular we have

(10) EA=AF, A4=44.

v U

. We dffine the powers of an operator [ ¢ E in usual way: [° =1,
E*=FEE*" for k> 1.

THEOREM 2. Let A be an abelian semigroup and t,,...,t, € A. Then
we have a representation

(11) (444 = Y my-E A,

ity In k Uk Vk

where s > 0 and my are integers and ur, vp € A depend on t,, ..., 1.

Proof. Let R be the ring of integers and let P(Xy, ..., Xn)
e R{X,, ..., X,). Further, let us define the mapping of R[X,, ..., Xu]
into £ which maps

P(X; ooy Xn) > P(E, ooy F) -

This mapping is a ring homomorphism. By applying this homo-
morphism, representation (1) gives rise to representation (11).

An example. The formula from the introduction gives rise to the
following representation

244 = B—F A—2 [ A+ 4.
uw v v

u v ut+v 2u u

COROLLARY 1. Let A be an abelian semigroup and M an abelian group
satisfying the condition: (n!)w = 0 (w € M) implies = 0. Then the equations

(12) A =0 for all ued
and *
(13) AA..Af =0 for all tse A,

t ta in

are equivalent to each other.
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Proof. (13) implies (12) by putting ¢, = ... = t, = u. (12) implies (13)
by force of representation (11).

4. A functional equation. Let 4, M have the same meaning
as in the preceding section. A function f,: A" >M is said to be additive
in the first variable if

fa(@l + 87, Tyy covy Tn) = fal@1, Tgy ouvy Tn) +Fal@ly Toy ooy 1)

holds for all x;, @\, a,, ..., ¥» ¢ A. Similarly we can define additivity in
other variables. We say that f, is symmetric if

fﬂ(xlr Loy eeny ‘L‘n) Ifﬂ(a"in Ttyy oney a;'in)

-

holds for all z,,...,z, ¢ A and for all permutations 4,, i, ..., 4, of the
sequence 1, 2, ..., n.

We define the diagonalization f; of f, to be the mapping A -M
defined by

fhx) = falz, 2, ...,2) for all zeA.

LEMMA 2. If fa: A" —>M is symmetric and additive in each variable,
then

0 if p>n
14 AN AfE ={ . ’
( ) uy Uz upf n!fn(ul7 crey u””) ?’f p=n.

Here 0 denotes the zero mapping which maps each < A onto 0 ¢ M,
and n!fu(uy, ..., uz) denotes lhe constant mapping which maps each x e A
onto n!fa(ty,y ..., us) € M.

Proof. (i) Let first p > n.

If » =1, then ff =f, and we have

(daff)@) = E —E—uE+1)f1*)(w)

Uy Uz uituz Uz
= f1(®% -+ uy + %) — fH(® + u,) — fi(@ + u,) + fi(2)
= ful@ 4 uy + %) — [i(@ + u)) — fu(@ + up) + fi(w) .
By additivity property of f; the right-hand side reduces to zero.
This proves the first part of (14) for n = 1.

Now we use induction. We assume that the first part of (14) is true
for smaller values of n. We define f, 1u: Ay by

at
Tl @rs ooy k) = fal@yy ey Biey Uy oey 4) .
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Making use of the symmetry and additivity properties -of f;, we
find that

(‘flﬁ:)(%) = fu(® 4+ up) — fa(x)
= ful@+Upy ooy T+ Up) — ful, ..., T)

n—1
n
= 2 (k)fﬂ(w’ vy By Upy ooey Up)
k=0 i ok
n—1
\ /7"
= D () temta)
=0
Since this holds for each # ¢ A we get
n—1
- \ [n
(15) afz= ) (3 )hess
k
Up k—o

By induction hypothesis
(16) AA.. A frru, =0

U1 Uz Up—1
for each ¥ =0,1,...,n—1. Applying the operator
a44.. 4

%1 U2 Up-1

on both sides of (15) and using (16) we obtain
AA.Afr=0.

wu) U2 Up

(1) Now, let p = n.
If n =1 we get

(ffl*)(w) = (ffl)(w) = file +u)— fu(@) = filw,) .

Hence Aff is a constant function which maps each = ¢ A onto fi(u,),

U1

i.e., the second part of (14) is true for » == 1. Assume that the assertion
of the second part of (14) is true for smaller values of n. Formula (15)
1s applicable in this case also:

n-1

afz = D1 (1)t

k=0
Applying the operator
44.. 4

U Uz Un-1
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on both sides and using the result proved in (i) we get

(17) AAAfE=nAA.. A frnru .

U U3 Up Uy U2 Un~-1

By induction hypothesis

(18) 44.. 4 fr':.n—l.uu = (n_l)!fn,n—l.un(un L] 'un—l)
Uy Uz Up-1
= (n—l)!fn(ul, seey u'n) .

From (17) and (18) we deduce
AA..Afp = nlfa(tyy ..., tn) .

U Uz Un

Now, we can prove the following

THEOREM 3. Let A be an abelian semigroup and M an abelian group
satisfying the condition: for each a € M the equation (n!)w = a has unique
solution o = af(n!). If f: A —>M satisfies the functional equation

(19) A" =0 for all ued,

u

then

(20) f=

s

*
gk
k

I
=)

where g¥ is a constant mapping and g;: A¥ >M are symmetric and additive
in each variable.

Conversely, any function having form (20) satisfies the functional
equation (19).

Proof. The second assertion of the theorem follows immediately
from Lemma 2. Let us assume that f satisfies (19). By Corollary 1
equation (19) implies that
(21) 44.. 4f=0

U uz Un+1

for all u,, ..., Up41 € A. It follows that the function

AA.Af

Ul Ug Un

is a constant function. Let us define the function g,: A" —>M by

1
(22) gn(ul, ey un) - ;r? (A A ...Af) (50) .
c U U2 Up
We remind again that the right-hand side is independent of z ¢ A.
The function g, is symmetric since by (10) the difference operators.
commute each to other. We shall prove that g, is also additive in each
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variable. By symmetry, it is sufficient to prove that g, is additive in the
first variable. We have

(n)[gn(us 441’y Ugy ooy Un)— Gn(ULy Ugy oooy Un)— Gn(©, Ugy ...y Up)]
=( A4 A.4f)(z)—(AA...Af)(x)— (4 A...Af)(z)
ultuyu,  u, up Uy Uy w'uy,  u,

=(( 4 —A—A4)A...4f) @)

witul’ wl uwl u,  wu,
— (44 4...Af)(=).

LN
uyuy’ uy U,

The last expression is zero by force of (21). Hence, g, is additive in
each variable.

The theorem is evidently true for n = 0. Now let % > 1 and assume
that the theorem is true for smaller values of ». Introducing the function
h =f—g; we get

A"h = A"f— A"gh .

Since by Lemma 2
A"gn = nlgn(u)
u
and by (22)

we get
A"h =0 for all ued.

By inductive hypothesis

where gi: A¥— M are symmetric and additive in each variable. Finally,
we obtain

The proof is finished.
COROLLARY 2. The equation

(23) A"f =g(u) for all ue A

has a solution in f € M if and only if there exist gn: A™ —~M which is symmetric
and additive in each variable and such that g = nlgy. The general solution
of (23) is then f = gn+h, where h is the gemeral solution of A"h = 0.

u
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Proof. 23) implies that A®"'f = 0. By Theorem 4
u

012
S

=

k

i
=)

By Lemma 2: A"f = n!gk(u). Hence, g = nlgh.
u

Conversely, if g =n'gy, then f = gn is a solution of (23) by force
of Lemma 2. '
COROLLARY 3. A mnecessary and sufficient condition that f: A -M

has the form f = g%, where g,: A" —>M is symmetric and additive in each
variable is that

(24) AYf =n'f(u) for all ueA.

Proof. If f =g}, then Lemma 2 implies (24). Conversely, if (21)
holds, then f = g5 by Corollary 2.

Remarks 1. Corollary 1 of Theorem 2 for the case when A is also
an abelian group was proved earlier by Van der Lijn [3].

2. If A = M ==real numbers and if we additionally assume that
the function f in (19) is measurable, then formula (22) implies that g,
is also measurable. In that case the additive property of g, implies that
Gn(®1y ooy Tn) = €T, Z,... 2, consequently gn(z) = czn. Hence, f is a polyno-
mial of degree < =.
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