ANNALES

POLONICI MATHEMATICI

XXII (1969)

On squares of differentiable functions

by M. Kuczma (Katowice)

Squares are meant here in the sense of the superposition, i.e. $f^2(x) = f(f(x))$. Let D_k^r denote the family of all the mappings

$$f: R^k \to R^k$$

that are of class C^r in R^k , $1 \le r \le +\infty$, and have a positive Jacobian in R^k . Further let Q_k^r be the set of all squares of the functions from D_k^r :

$$Q_k^r = \{f \colon f = \varphi^2, \overline{\varphi \in D_k^r}\}$$
.

In [2] Z. Moszner has asked:

1º Whether $Q_k^r = D_k^r$,

or, more generally,

2° Whether every function $f \in D_k^r$ can be represented as a superposition of a finite number of functions from Q_k^r ?

In the preceding paper [1] we have proved that the answer to 1° is negative, even in the one-dimensional case (k=1). In the present paper we answer 2° in the positive in the case k=1. For k>1 question 2° remains still open.

Thus the purpose of the present paper is to prove the following

THEOREM. Every function $f \in D_1^r$, $1 \le r \le +\infty$, can be represented as a superposition of at most four functions from the class Q_1^r .

The proof of this theorem will be based on several lemmas.

LEMMA 1. For any system of real numbers $\varepsilon > 0, d > 0, c_0 > 0, c_1 > 0, c_2, c_3, ...,$ such that

$$(1) c_0 < dc_1,$$

there exists a function g(x) of class C^{∞} on $\langle 0, d \rangle$ such that

$$(2) \hspace{1cm} g^{(i)}(0) = 0 \;, \hspace{0.5cm} g^{(i)}(d) = c_i \;, \hspace{0.5cm} i = 0 \,, \, 1 \,, \, 2 \,, \, \ldots \,,$$

and

$$(3) 0 \leqslant g'(x) \leqslant c_1 + \varepsilon \quad \text{for } x \in \langle 0, d \rangle.$$

Proof. We shall only outline the proof. By a B-function we understand any function of the form

$$B(x) = egin{cases} P(x) \exp{[(x-a)^{-2}(x-b)^{-2}]} & ext{ for } x \in (a,b) \ 0 & ext{ for } x \in (-\infty,a) \cup \langle b,+\infty \rangle \ , \end{cases}$$

where a < b are constants and P(x) is an arbitrary function which is positive and of class C^{∞} on $\langle a, b \rangle$. As is well known, every B-function is of class C^{∞} in $(-\infty, +\infty)$.

By Whitney's theorem [3] there exists a function $g_1(x)$ of class C^{∞} on $\langle \frac{1}{2}d,d \rangle$ such that

$$g_1^{(i)}(\frac{1}{2}d) = 0$$
, $g_1^{(i)}(d) = c_{i+2}$, $i = 0, 1, 2, ...$

We define $g_1(x)$ on $\langle 0, \frac{1}{2}d \rangle$ as a *B*-function with the support $\langle 0, \frac{1}{2}d \rangle$. Thus g_1 is of class C^{∞} on $\langle 0, d \rangle$, positive on $(0, \frac{1}{2}d)$, and fulfils the conditions

$$g_1^{(i)}(0) = 0$$
, $g_1^{(i)}(d) = c_{i+2}$, $i = 0, 1, 2, ...$

Let $M = \sup_{(0,d)} |g_1(x)|$ and let $\delta > 0$ be chosen so that

$$(4) 0 < d-\delta < \min\left(\epsilon/2M, c_1/2M\right).$$

By adding, if necessary, to g_1 a B-function with the support $\langle 0, d \rangle$, we obtain a function g_2 , of class C^{∞} on $\langle 0, d \rangle$, positive on $(0, \delta)$, and such that

(5)
$$g_2^{(i)}(0) = 0$$
, $g_2^{(i)}(d) = c_{i+2}$, $i = 0, 1, 2, ...$

(6)
$$|g_2(x)| \leq 2M \quad \text{for } x \in \langle \delta, d \rangle$$
.

Adding or subtracting from g_2 a finite number of B-functions with supports contained in $(0, \delta)$ we arrive at a new function, $g_3(x)$, of class C^{∞} on $(0, \delta)$, positive on $(0, \delta)$ and fulfilling the following conditions:

(7)
$$g_3^{(i)}(0) = 0$$
, $g_3^{(i)}(d) = c_{i+2}$, $i = 0, 1, 2, ...$

(8)
$$\int_{0}^{\delta} g_{3}(t) dt = c_{1} - \int_{\delta}^{d} g_{2}(t) dt.$$

(It follows from (4) and (6) that the expression on the right-hand side of (8) is positive.) Since

$$g_2(x) = g_3(x) \quad \text{for } x \in \langle \delta, d \rangle,$$

relation (8) implies that

(10)
$$\int_{0}^{d} g_{3}(t) dt = c_{1}.$$

Now we put

(11)
$$g_4(x) = \int_0^x g_3(t) dt.$$

By (7) and (10) the function $g_4(x)$ fulfils the conditions

$$(12) g_4^{(i)}(0) = 0 , g_4^{(i)}(d) = c_{i+1}, i = 0, 1, 2, ...$$

Moreover, since $g_3(t) > 0$ in $(0, \delta)$, we have by (11), (8), (4) and (6) for $x \in (0, \delta)$

$$0\leqslant g_4(x)\leqslant g_4(\delta)=c_1-\int\limits_{\delta}^{d}g_2(t)\,dt\leqslant c_1+\int\limits_{\delta}^{d}|g_2(t)|\,dt< c_1+\varepsilon\;.$$

On the other hand, for $x \in \langle \delta, d \rangle$ we have by (11), (9) and (8)

$$g_4(x) = g_4(\delta) + \int_{\delta}^{x} g_2(t) dt = c_1 - \int_{x}^{d} g_2(t) dt$$

whence by (4) and (6)

$$|g_4(x)-c_1| \leqslant \int\limits_{x}^{d} |g_2(t)| dt < \min (\varepsilon, c_1).$$

Consequently

$$(13) 0 \leqslant g_d(x) < c_1 + \varepsilon \quad \text{for } x \in \langle 0, d \rangle.$$

Adding and subtracting a suitable combination of B-functions with supports contained in (0, d) we may make $g_4(x)$ to satisfy additionally the condition

$$\int_0^d g_4(t) dt = c_0$$

(cf. (1)). In virtue of (12), (14) and (13) the function

$$g(x) = \int_{0}^{x} g_{4}(t) dt$$

fulfils conditions (2) and (3) and evidently is of class C^{∞} on (0, d).

LEMMA 2. Let F(x) be a function of class C^r on $(-\infty, +\infty)$, $1 \le r \le +\infty$, such that

$$\lim_{x \to -\infty} \sup F(x) < +\infty$$

and

(16)
$$F'(x) > -1 \quad \text{for } x \in (-\infty, +\infty).$$

Then there exists a function H(x) of class C^r on $(-\infty, +\infty)$ fulfilling the following conditions:

(17)
$$H(x) > 0 \quad \text{for } x \in (-\infty, +\infty),$$

(18)
$$H(x) > F(x) \quad \text{for } x \in (-\infty, +\infty),$$

(19)
$$0 \leqslant H'(x) < F'(x) + 1 \quad \text{for } x \in (-\infty, +\infty).$$

Proof. At first we shall define an auxiliary function G(x). By (15) there exists a positive constant M such that

(20)
$$F(x) \leqslant M \quad \text{for } x \in (-\infty, 0).$$

We put $x_0 = 0$,

(21)
$$G(x) = M+2 \quad \text{for } x \in (-\infty, 0) = (-\infty, x_0),$$

and

and
$$G(x) = \begin{cases} G(x_{2n}) & \text{for } x \in (x_{2n}, x_{2n+1}), \\ F(x) + 1 + k_n(x - x_{2n+1}) & \text{for } x \in (x_{2n+1}, x_{2n+2}), \\ & n = 0, 1, 2, ..., \end{cases}$$

where

(23)
$$x_{2n+1} = \inf \{x > x_{2n}: F(x) > G(x_{2n}) - 1\}, \quad n = 0, 1, 2, ...,$$

$$(24) x_{2n+2} = x_{2n+1} + 2, n = 0, 1, 2, ...,$$

and

$$(25) k_n = \frac{1}{2}(m_n + 1),$$

where

$$(26) m_n = \max \left(\frac{1}{2}, \sup_{(x_{n+1}, x_{n+2})} \left(-F'(x)\right)\right).$$

If the set on the right-hand side of (23) is empty, then the sequence $\{x_n\}$ is finite, with last term x_{2n} , and $G(x) = G(x_{2n})$ in $(x_{2n}, +\infty)$. If x_{2n+1} exists, then

(27)
$$F(x_{2n+1}) = G(x_{2n}) - 1 = G(x_{2n+1}) - 1.$$

On the other hand, we have for x_{2n}

(28)
$$F(x_{2n}) \leq G(x_{2n})-2, \quad n=0,1,2,...$$

In fact, for n=0 (28) holds in view of (20) and (21), and for n>0we have by (22), (24) and (25)

$$G(x_{2n})-F(x_{2n})=1+k_{n-1}(x_{2n}-x_{2n-1})=1+2k_{n-1}=2+m_{n-1}>2$$
.

By (23) and (24) the sequence x_n increases to infinity and thus formulae (21) and (22) define the function G(x) in the whole $(-\infty, +\infty)$.

G(x) is continuous in $(-\infty, +\infty)$ (the continuity at x_{2n+1} results from (27)) and of class C^r in the set

$$(29) \qquad (-\infty, x_1) \cup \bigcup_{n=1}^{\infty} (x_n, x_{n+1}).$$

In intervals $(-\infty, x_1)$ and (x_{2n}, x_{2n+1}) , n = 1, 2, ..., G(x) is constant and thus in view of (16)

$$0 = G'(x) < F'(x) + 1$$
.

In intervals $(x_{2n+1}, x_{2n+2}), n = 0, 1, 2, ...,$ we have

$$G'(x) = F'(x) + k_n.$$

By (26) and (16) we have $-F'(x) \leq m_n < 1$, whence according to (25)

$$-F'(x) < k_n < 1$$

and by (30)

(31)
$$0 \leqslant G'(x) < F'(x) + 1.$$

Thus relation (31) holds in the whole set (29). This shows that G(x) is non-decreasing and hence positive in $(-\infty, +\infty)$, since M has been assumed positive. It follows from the definition of G that

$$G(x) \geqslant F(x) + 1 > F(x)$$
 in $(-\infty, +\infty)$.

As we see, the function G has all the properties required except that it is not of class C^r in $(-\infty, +\infty)$. Now we shall modify the definition of G in a neighbourhood of each x_n , n=1,2,...

Let us fix an x_{2n+1} . Let us put

$$\varepsilon = \frac{1}{3}(1-k_n)$$

and let U be an open interval containing x_{2n+1} such that

$$|F'(x) - F'(x_{2n+1})| < \varepsilon \quad \text{for } x \in U$$

and

(34)
$$F(x) < G(x_{2n+1}) \quad \text{for } x \in U.$$

Next we fix u_{2n+1} , $v_{2n+1} \in U$ such that

$$(35) x_{2n} < u_{2n+1} < x_{2n+1} < v_{2n+1} < x_{2n+2},$$

$$(36) F'(v_{2n+1}) > 0,$$

$$(37) \quad G(v_{2n+1}) - G(x_{2n+1}) < (v_{2n+1} - u_{2n+1}) k_n < (v_{2n+1} - u_{2n+1}) G'(v_{2n+1}).$$

In particular, condition (36) can be realized in virtue of (23) and (27).

By Lemma 1 there exists a function $h_{2n+1}(x)$ of class C^{∞} in $\langle u_{2n+1}, v_{2n+1} \rangle$ and fulfilling the conditions

$$(38) h_{2n+1}^{(i)}(u_{2n+1}) = G^{(i)}(u_{2n+1}) , h_{2n+1}^{(i)}(v_{2n+1}) = G^{(i)}(v_{2n+1}) , i = 0, 1, 2, \dots, r .$$

$$(39) 0 \leqslant h'_{2n+1}(x) \leqslant G'(v_{2n+1}) + \varepsilon \text{for } x \in \langle u_{2n+1}, v_{2n+1} \rangle.$$

Relation (39) guarantees that $h_{2n+1}(x)$ is non-decreasing on $\langle u_{2n+1}, v_{2n+1} \rangle$, and hence by (38) (i=0) it is positive, and by (34)

$$F(x) < G(x_{2n+1}) = G(u_{2n+1}) = h_{2n+1}(u_{2n+1}) \leqslant h_{2n+1}(x)$$
 for $x \in \langle u_{2n+1}, v_{2n+1} \rangle$.

Moreover, we have in virtue of (39), (30), (33) and (32) for $x \in \langle u_{2n+1}, v_{2n+1} \rangle$

$$h'_{2n+1}(x) \leqslant G'(v_{2n+1}) + \varepsilon = F'(v_{2n+1}) + k_n + \varepsilon$$

$$< F'(x_{2n+1}) + k_n + 2\varepsilon < F'(x) + k_n + 3\varepsilon = F'(x) + 1.$$

A similar construction leads us to a function $h_{2n}(x)$ which is positive and of class C^{∞} in an interval $\langle u_{2n}, v_{2n} \rangle$ such that $x_{2n-1} < u_{2n} < x_{2n} < v_{2n} < x_{2n+1}$, and fulfils the conditions:

$$h_{2n}^{(i)}(u_{2n}) = G^{(i)}(u_{2n}) \;, \quad h_{2n}^{(i)}(v_{2n}) = G^{(i)}(v_{2n}) \;, \quad i = 0 \,, \, 1 \,, \, ... \,, \, r \;,$$
 $F(x) < h_{2n}(x) \quad ext{for } x \in \langle u_{2n}, v_{2n}
angle \;, \ 0 \leqslant h_{2n}'(x) < F'(x) + 1 \quad ext{for } x \in \langle u_{2n}, v_{2n}
angle \;,$

n = 1, 2, ... Putting

we obtain the required function H(x) fulfilling all the conditions of the lemma.

LEMMA 3. If $f \in D_1^r$ and $f(x) \neq x$ in $(-\infty, +\infty)$, then $f \in Q_1^r$.

This has been proved in [1].

For an arbitrary function f on $(-\infty, +\infty)$ we put

$$\begin{cases} L^{+} = \limsup_{x \to +\infty} \left(f(x) - x \right), & L_{+} = \liminf_{x \to +\infty} \left(f(x) - x \right), \\ L^{-} = \limsup_{x \to -\infty} \left(f(x) - x \right), & L_{-} = \liminf_{x \to -\infty} \left(f(x) - x \right). \end{cases}$$

LEMMA 4. If $f \in D_1^r$ and at least one of limits (40) is finite, then f is a superposition of two functions from the class Q_1^r .

Proof. Let us suppose that $L^- < \infty$. We shall distinguish two cases.

$$I. \lim_{x\to +\infty} f(x) = +\infty.$$

The function F(x) = f(x) - x fulfils the hypotheses of Lemma 2 and consequently there exists a function H(x) of class C^r in $(-\infty, +\infty)$ fulfilling conditions (17) through (19). We put

(41)
$$f_1(x) = f(x) - H(x).$$

The function f_1 is of class C^r in $(-\infty, +\infty)$ and by (19)

$$f_1'(x) = f'(x) - H'(x) > f'(x) - (F'(x) + 1) = 0$$
.

Consequently $f_1 \in D_1^r$. Further we have by (18)

$$(42) f_1(x) < f(x) - F(x) = x for x \in (-\infty, +\infty),$$

which shows that $\lim_{x\to-\infty} f_1(x) = -\infty$. Since f_1 is increasing, the limit $\lim_{x\to+\infty} f_1(x)$ exists. If the sequence x_n occurring in the proof of Lemma 2 is finite, then H(x) = const for large x and consequently

$$\lim_{x\to+\infty}f_1(x)=+\infty.$$

If x_n is infinite, then for $x = x_{2n}$, n = 1, 2, ..., we have

$$H(x_{2n}) \leqslant H(v_{2n}) = G(v_{2n}) = G(x_{2n}) = F(x_{2n}) + 1 + 2k_n$$

$$< F(x_{2n}) + 3 = f(x_{2n}) - x_{2n} + 3,$$

whence

$$f_1(x_{2n}) = f(x_{2n}) - H(x_{2n}) > x_{2n} - 3$$

and (43) holds all the same. Consequently the function

(44)
$$f_2(x) = x + H(f_1^{-1}(x))$$

is defined and of class C' in $(-\infty, +\infty)$, moreover, since f_1^{-1} is increasing, $f_2'(x) \ge 1$ and thus $f_2 \in D_1'$. According to (17)

(45)
$$f_2(x) > x \quad \text{for } x \in (-\infty, +\infty).$$

By (42), (45) and Lemma 3 we have $f_1 \in Q_1^r$ and $f_2 \in Q_1^r$.

By (44) and (41)
$$f_2(f_1(x)) = f_1(x) + H(x) = f(x)$$
.
II. $\lim_{x\to +\infty} f(x) < +\infty$.

Then f(x) < x for large x and we can find a positive constant H such that H > f(x) - x for $x \in (-\infty, +\infty)$.

Then the functions $f_1(x) = f(x) - H$, $f_2(x) = x + H$, both belong to D_1^r and fulfil (42) and (45), respectively. Thus they belong to Q_1^r and the lemma follows as in the preceding case.

If $L^- = \infty$, but another of limits (40) is finite, the proof is analogous.

Proof of the theorem. In view of Lemma 4 it is enough to consider the case where all the four limits (40) are infinite (1). We take a $z \in (-\infty, +\infty)$ such that f(z) = z and arbitrarily close to z there exist x > z such that f(x) > x. (The existence of such a z is guaranteed by the condition $L^+ = \infty$.) Next we fix u, v such that u < z < v and f'(v) > 1, f(v) > v. By Lemma 1 there exists (2) a function g(x) of class C^∞ in $\langle u, v \rangle$ such that

$$g^{(i)}(u) = 0$$
 for $i = 0, 1, 2, ...,$ $g^{(i)}(v) = f^{(i)}(v)$ for $i = 2, ..., r,$ $g(v) = f(v) - v,$ $g'(v) = f'(v) - 1,$ $g'(x) \geqslant 0$ for $x \in \langle u, v \rangle$.

The function

$$f_1(x) = egin{cases} x & ext{for } x \in (-\infty, u) \ x + g(x) & ext{for } x \in \langle u, v
angle \ f(x) & ext{for } x \in (v, +\infty) \ , \end{cases}$$

evidently belongs to D_1^r . Moreover, $\lim_{x\to -\infty} f_1(x) = -\infty$, and, since $L^+ = +\infty$, $\lim_{x\to +\infty} f_1(x) = +\infty$. Consequently the function $f_2(x) = f(f_1^{-1}(x))$ also belongs to D_1^r , and $f_2(f_1(x)) = f(x)$. Now

$$\lim_{x\to -\infty} (f_1(x)-x) = \lim_{x\to +\infty} (f_2(x)-x) = 0.$$

By Lemma 4 each of the functions f_1 , f_2 can be represented as a superposition of two functions from the class Q_1^r , and consequently f is a composition of four functions from the class Q_1^r , which was to be proved.

⁽¹⁾ A function with such a property is constructed in [1], example V.

⁽²⁾ The condition f(v)-v < (f'(v)-1)(v-u), corresponding to (1), need not be fulfilled here, but this may have influence only on the second inequality in (3), which is irrelevant in the present case.

References

- [1] M. Kuczma, Fractional iteration of differentiable functions, this fascicule, pp. 217-227.
- [2] Z. Moszner, Problème P.2, Aequationes Math. 1 (1968), p. 150.
- [3] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), pp. 63-89.

Reçu par la Rédaction le 6. 6. 1968