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On squares of differentiable functions

by M. KuczmA (Katowice)

Squares are meant here in the sense of the superposition, i.e. f*(z)
= f(f(«)). Let D} denote the family of all the mappings

f: R* >RF

that are of class (" in R, 1 <7< + oo, and have a positive Jacobian
in R*. Further let Q} be the set of all squares of the functions from Dj:

Qr = {f: f=972’-$-€D;c}'
In [2] Z. Moszner has asked:
1° Whether @} = D%,
or, more generally,

2° Whether every function fe D} can be represented as a super-
position of a finite number of functions from Q7?

In the preceding paper [1] we have proved that the answer to 1°
is negative, even in the one-dimensional case (¥ =1). In the present
paper we answer 2° in the positive in the case ¥ = 1. For k > 1 question 2°
remains still open.

Thus the purpose of the present paper is to prove the following

THEOREM. Every function feDi, 1 <r< +oo, can be represented
as a superposition of at most four functions from the class Q.

The proof of this theorem will be based on several lemmas.

LeMMA 1. For any system of real numbers e > 0, d > 0, ¢, > 0, ¢, > 0,
Coy C34 ooy SUCh that

(1) G < dey
there exists a function g(x) of class C* on <0, d) such that

(2) go0) =0, gi(d) = ¢, t=0,1,2,..,
and

(3) 0<g'(w)y<e+e for xe0,d).
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Proof. We shall only outline the proof. By a B-function we under-
stand any function of the form
P(z) exp [(#—a) (x—b)""] for xe(a,b),
0 for z € (— oo, a) v b, +00),

B(x) ==

where a < b are constants and P(z) is an arbitrary function which is
positive and of class C™ on <a, b). As is well known, every B-function
is of class €% in (— oo, --o0).

By Whitney’s theorem [3] there exists a function g,(z) of class C*
on {3d,d) such that

g’(3ad) =0, ¢d) =cie, P=0,1,2,..

We define g,(z) on <0, 3d> as a B-function with the support <0, id.
Thus g, is of class C* on <0, d>, positive on (0, 1d), and fulfils the con-
ditions

g(0) =0, ¢d) =ei2, i=0,1,2,..
Let M = sup |g,(#)] and let § > 0 be chosen so that
(0,d>

(4) 0 < d— & < min (¢/2M, ¢,/2 M) .

By adding, if necessary, to g, a B-function with the support <0, d,,
we obtain a function g,, of class € on <0, d), positive on (0, é), and such
that
(5) 9(21’)(0) =0, ggzi)(d) = Cit2y t=0,1,2,..,

(6) lgofz)| < 2M  for we (5,d) .

Adding or subtracting from g, a finite number of B-functions with
supports contained in (0, ) we arrive at a new function, g,(z), of class C*
on <0, d), positive on (0, é) and fulfilling the following conditions:

(7) g0) =0, ¢d) =cip2, 1=0,1,2,..,
4

a
(8) [ gstydt = e,— [ gyt .
[/ ]

0

(It follows from (4) and (6) that the expression on the right-hand side
of (8) is positive.) Since

(9) 9:(2) = gy(x)  for z € (3, d),

relation (8) implies that
a

(10) [at)yat =, .

0
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Now we put
(11) gux) = [ gs(tyae.
0

By (7) and (10) the function g,(x) fulfils the conditions
(12) ¢20)=0, ¢%d)=ci,, 1=0,1,2,..

Moreover, since g(t) > 0 in (0, 8), we have by (11), (8), (4) and (6)
for x € <0, 6>

a a
0 < gu(@) < guld) = er— [ go(t) @t < &+ [ lgao(t)] dt < €, +¢ .
J 8

On the other hand, for z ¢ (5, d> we have by (11), (9) and (8)

z d
94(®) = gu(8) + [ g0Vt = e, — [ g (D)t ,
] z

whence by (4) and (6)

d
195@) — 2] < [ 1ge(t)]dt < min (e, ) .
Consequently
(13) 0<gz)<ec,+e for xed0,d).

Adding and subtracting a suitable combination of B-functions with

supports contained in (0,d) we may make g,(x) to satisfy additionally
the condition

d
(14) [ ga(tydt = ¢
0

(ef. (1)). In virtue of (12), (14) and (13) the function

g(@) = [ guv)at

fulfils conditions (2) and (3) and evidently is of class C* on <0, d).
LeEMMA 2. Let F(z) be a function of class ¢7 on (—oo, +o0), 1 <7
< 4 oo, such that

(15) lim sup F(z) < + oo

and

(16) P(z)>—1 for @ e(—o0, - o).
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Then there exists a function H(x) of class C7 on (— oo, + oo) fulfilling
the following conditions:

a7 H(z)>0 for x e(— oo, +00),
(18) H(z)>F(x) for xe(— o0, +o0),
(19) 0< H'(z) < F(x)+1 for @ e(—o0, +0o).

Proof. At first we shall define an auxiliary funetion G(x). By (15)
there exists a positive constant M such that

(20) Fl)<M for ze(—o0,0).
We put 2, =0,

(21) Gx)=M+2 for ze(—o0,0) = (—o00,2y,
and
G (w2n) for v e (@2ny Zan+1)
(22) G(@) = F(2)+1 +kn(@ — Zont1)  fOr @ € (Foni1, Tonse)
n=20,1,2,..,
where

(23) Tap+1 = inf {a} > Zopt F(ﬁ) > G(-’rzn)—l} s n = O, 1, 2, R

(24) Topte = o1 +2, n=20,1,2,..,
and

(25) kn = 3(ma+1),

where

(26) My = Max (% ,  sup (—F'(w))) .

{(Zan+1,Ten+2>

If the set on the right-hand side of (23) is empty, then the sequence {x,}
is finite, with last term x,,, and G(r) = G(T) In (T2, +oo). If 25,4,
exists, then

(27) F(@op11) = G(2) —1 = G(Z2n1) —1.
On the other hand, we have for x.,
(28) F(r,) < G(x2p)—2, n=0,1,2,..

In fact, for » = 0 (28) holds in view of (20) and (21), and for n > 0
we have by (22), (24) and (25)

G(m2n) _F(mzn) =1 +kn—1(w2n_ wZn—l) =1 +’2kn—1 =2 +mn—1 > 2.

By (23) and (24) the sequence x, increases to infinity and thus for-
mulae (21) and (22) define the function G(x) in the whole (— co, + co).
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G () is continuous in (— co, 4 o) (the continuity at #s,,, results from (27))
and of class C7 in the set

(20) - (—o0, @) © U (n, @nsa)

In intervals (— oo, #;) and (¥2n, Ton+1), # =1, 2, ..., G(x) is constant
and thus in view of (16)

0=G )< F(z)+1.
In intervals (%2p414 Zonte)y, » =0,1,2, ..., we have
(30) &' (z) = F'(2) +Fn .
By (26) and (16) we have — F'(2) < m, < 1, whence according to (25)

—Flr)<ks<1,
and by (30)

(31) 0< (o)< F'(2)+1 .

Thus relation (31) holds in the whole set (29). This shows that G(z)
is non-decreasing and hence positive in (— oo, +o0), since M has been
assumed positive. It follows from the definition of G that

G(z) > F(x)+1> F(z) in (— oo, +00).

As we see, the function G has all the properties required except that
it is not of class C" in (— co, 4 o). Now we shall modify the definition
of G in a neighbourhood of each z,, n =1, 2, ...

Let us fix an #,4,. Let us put

(32) e =31—Fkn)

and let U be an open interval containing ..+ such that
(33) IF’(m)—F'(me.l)l < €& for xe U

and

(34) F(z) < G(2pt+,) for zelU.

Next we fix %sni1, V2n+1 € U such that
(35) Tan < Uant1 < Tont1 < Veni1 < Danse
(36) F'(ven41) > 0,
(37)  G(van+1) — G(@2n+1) < (Ven+1— Usn+1) kn < (V2n+1— Uzni1) G (V2n41) -

In particular, condition (36) can be realized in virfue of (23)
and (27).
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By Lemma 1 there exists a function hsn41(2) of class C% in Cugn i1, Vonir)
and fulfilling the conditions

(38) B o1 (Uznr) = FNuzni1) s Pini1(Vens1) = G (Vanyy) y
1=0,1,2,..,r,
(39) 0 < hon1(Z) < F(Vep4a) 46 fOT @ € CUsntr,y Vansr) .

Relation (39) guarantees that hs,ii(z) is non-decreasing on {(Ugpiq,
Von41y, and hence by (38) (¢ = 0) it is positive, and by (34)

F(2) < G(@ent1) = G(Uzns1) = hzni1(Uens1) < honia(®)
for & € (ugnyry Vensr) -

Moreover, we have in virtue of (39), (30), (33) and (32) for
% € {Ugni1y Vont1)

h§n+l(w) < G’('U2n+1) +e= F'('vzn+1) +knte
< F'(%2n+1) + kn+2¢ < F'(@) +-kn+3e = F'(x) +1.

A similar construction leads us to a function hg,(x) which is positive
and of class C% in an interval (us,, ¥e,> such that @y, ; < Uen < Ton < Vs
< Tgny1, and fulfils the conditions:

BeD(tzn) = GMNugy) ,  hs(0en) = GNveg), 1 =0,1,..,7,
F(w) < heon(@) for v e {Usgn, Vap) »

0 < hgp(®) < F'(x)4+1  for @ € {Ugn, Von)

n=1,2,..
Putting

hao(z) for xeUn,va>, n=1,2,..,

Hw) = G(z) for xe(— oo, +°°)\G tny Vn)
n=1

we obtain the required function H({(«) fulfilling all the conditions of the
lemma.

LeMMA 3. If fe Dy and f(x) # & in (— oo, +o0), then fe Q.

This has been proved in [1].

For an arbitrary function f on (— oo, 4+ o0) we put

L* =limsup (f()—a), L; =liminf(f(z)—a),
(40) Z—++00 -+t 00

L~ = lim sup (fl®)—a), L_ =Iliminf(f(x)—a).
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LEMMA 4. If fe D] and at least one of limits (40) is finite, then f is
a superposition of two functions from the class Q7.

Proof. Let us suppose that L~ < co. We shall distinguish two
cases. '

I lim f(z) = -+ oo.

Zz—>+oo

The function F(z) = f(z) —= fulfils the hypotheses of Lemma 2 and
consequently there exists a function H(z) of class C" in (— oo, 4-00)
fulfilling conditions (17) through (19). We put

(41) fi(w) = f(x)—H () .
The function f, is of class ¢ in (—oo, 4-c0) and by (19)
fi@) =f'(@)— H'(@) > f(@)— (F(2)+1) = 0.

Consequently f, e Di. Further we have by (18)

(42) filz) < f@e)—F(z) =2 for ® e(—o0, +0o0),
which shows that lim fi(x) = —oo. Since f; is increasing, the limit
r—>—00

lim f,(x) exists. If the sequence x, occurring in the proof of Lemma 2
2—++00

is finite, then H(z) = const for large # and consequently

(43) Iim fi(z) = +oo.
r—>+00
If z, is infinite, then for # = x,,, n» =1,2, ..., we have

H (22q) < H(v2p) = G (v2n) = G(T2n) = F(%on) +1 + 2ka

< F(®20) +3 = f(@en)— %2n+3 ,
whence

Ji(@en) = f(22n) — H (%20) > T2n—3
and (43) holds all the same. Consequently the function
(44) fol@) =z +H (fr (=)

is defined and of class C” in (— oo, +-oo0), moreover, since f; - is increasing,
fs(x) > 1 and thus f, e D]. According to (17)

(45) folw) >x for v e(—oo, 4-00).

By (42), (45) and Lemma 3 we have f, € Qi and f, € Q1.
16+
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By (44) and (41) fo(fulz)) = filz) + H () = f(=).
II. lim f(x) < 4-oo.

z—++00

Then f(x) < « for large # and we can find a positive constant H such
that H > f(z)—2 for # € (— oo, + oc0).

Then the functions fy(x) = f(x)— H, fy(x) = 2+ H, both belong to D]
and fulfil (42) and (45), respectively. Thus they belong to Q] and the
lemma, follows as in the preceding case.

If L™ = oo, but another of limits (40) is finite, the proof is analogous.

Proof of the theorem. In view of Lemma 4 it is enough to consider
the case where all the four limits (40) are infinite (*). We take a 2z € (— oo,
+ oo) such that f(2) = z and arbitrarily close to z there exist # > 2 such
that f(x) > 2. (The existence of such a z is guaranteed by the condition
L* = 0o.) Next we fix u, v such that v <z < v and f'(v) > 1, f(v) > ».
By Lemma 1 there exists (2) a function g(x) of class 0 in (u, v)> such that

g u)=0 for+=0,1,2,...,
gdw) =fOw) for 1 =2,..,r,
g() =f(v)—2, ¢ =f(v)-1,

g'(@®) >0 for zelu,v).

The function

x for z e (— o0, u),
filw) ={x+g(x) for melu,v),
f(x) for z e (v, +00),
evidently belongs to D]. Moreover, lim f,(#) = — oo, and, since L' = - oo,

Z->—00

lim fy(z) = + oo. Consequently the function f,(#) = f(fi () also belongs
z—>+00 :
to Di, and f,(fi(#)) = f(»). Now

lim (fy2)—a) = lim (fy(x)—x) =0.
I—>—00 z—>+00
By Lemma 4 each of the functions f;, f, can be represented as a super-
position of two functions from the class @;, and consequently f is
a composition of four functions from the class @7, which was to be
proved.

(1) A function with such a property is constructed in [1], example V.

(®) The condition f(v)—v < (f(v)—1)(v—u), corresponding to (1), need not be
fulfilled here, but this may have influence only on the second inequality in (3), which
is irrelevant in the present case.
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